Datenbanken

Das Relationale Datenmodell

Ralf Möller
Universität zu Lübeck
Institut für Informationssysteme

RDM: Überblick über die Konzepte (1)

- Eine Datenbank ist eine Menge benannter Relationen
- Eine Relation ist eine Menge von Elementen (Tupeln)
 - deren Struktur durch Attribute definiert,
 - deren Identität durch Schlüssel realisiert und
 - deren Werte durch Domänen kontrolliert werden
- Relationen werden meist durch Tabellen dargestellt, wobei jede Tabelle aus Zeilen und Spalten besteht
- Jede Zeile repräsentiert ein Element der Relation und wird auch als Tupel bezeichnet
- Die Zahl der Zeilen ist variabel und wird Kardinalität der Relation genannt
- Die Spalten der Tabellen enthalten die Attribute der Relation

RDM: Überblick über die Konzepte (2)

- Die Zahl der Spalten einer Tabelle wird im Schema festgelegt
- Jeder Spalte ist eine **Domäne** zugeordnet, welche die zulässigen Werte für das Attribut in allen Zeilen festlegt
- Jede Tabelle besitzt einen Primärschlüssel, der ein einzelnes Attribut oder eine Kombination von Attributen ist, so dass eine eindeutige Identifikation jedes Tupels innerhalb der Tabelle ermöglicht wird
- Beziehungen zwischen Datenobjekten werden durch Identifikation des referenzierten Objektes über seinen Primärschlüssel repräsentiert (***** assoziative Identifikation)
- Einen Schlüssel, der in Relation A zur Identifikation eines Tupels in Relation B benutzt wird, bezeichnet man als Fremdschlüssel

RDM: Projektdatenbank

Nr 100	<i>Titel</i> DB Fahrpläne	Budget 300.000
<i>Nr</i> 200	Titel ADAC Kundenstamm	<i>Budget</i> 100.000
<i>Nr</i> 300	<i>Titel</i> Telekom Statistik	Budget 200.000

Projekte

Kurz
$N \cap P \setminus V \cap V$
MFSW
Kurz
UXSW
Kurz
LTSW
Kurz
<u>UXSW</u>
Kurz
PERS
. =
Kurz
MFSW

Oberabt Kurz Name **MFSW** Mainframe SW **LTSW** Kurz Name Oberabt **Unix SW UXSW LTSW** Kurz Name Oberabt **PCSW** PC SW **LTSW** Oberabt Kurz Name **LTSW** Leitung SW **NULL** Oberabt Name Kurz **PERS NULL** Personal

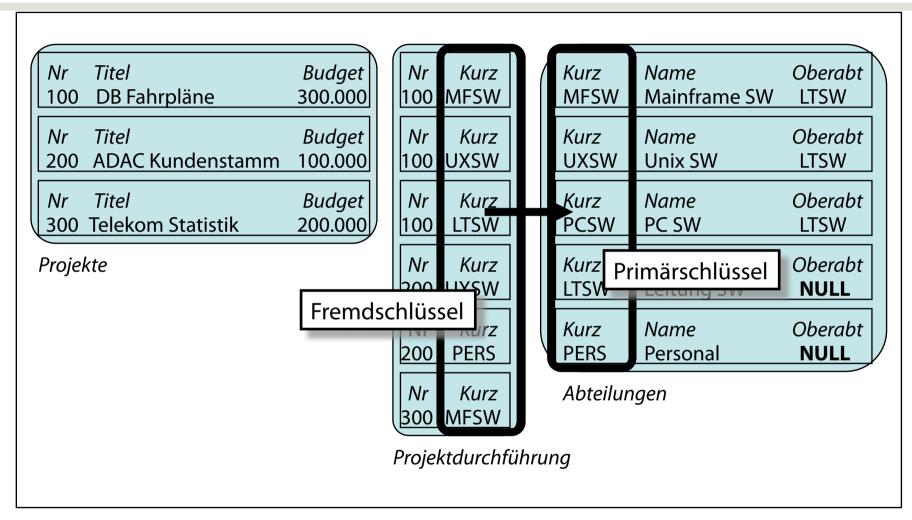
Abteilungen

Projektdurchführung

Projektdatenbank

RDM: Tabellen und Schlüssel (1)

Duplikate bzgl. der Schlüsselwerte sind nicht erlaubt, d.h. die Gesamtheit aller Attribute bildet automatisch einen Schlüsselkandidaten


Oft ist jedoch die Einführung eines künstlichen Schlüssels z.B. einer eindeutigen Nummer (ID) sinnvoll

Eine Relation mit Primärschlüssel repräsentiert eine Funktion von den Primärschlüsselattributen zu den Nicht-Schlüsselattributen

Beispiel: Kurz → (Name, Oberabt), Kurz → Name, Kurz → Oberabt

RDM: Tabellen und Schlüssel (2)

Projektdatenbank

6

RDM: Datendefinition

Schemadefinition der Projektdatenbank:

```
create table Projekte
( Nr integer not null,
   Titel char(30) not null,
   Budget decimal(10,2) not null,
   primary key(Nr) );
```

```
create table
Projektdurchfuehrung

( Nr integer not null,
   Kurz char(4) not null,
   primary key(Nr, Kurz) );
```

```
create table Abteilungen
( Kurz char(4) not null,
  Name char(30) not null,
  Oberabt char(4),
  primary key(Kurz) );
```

Referentielle Integrität in SQL: Kapitel 3.2

RDM: Referentielle Integrität

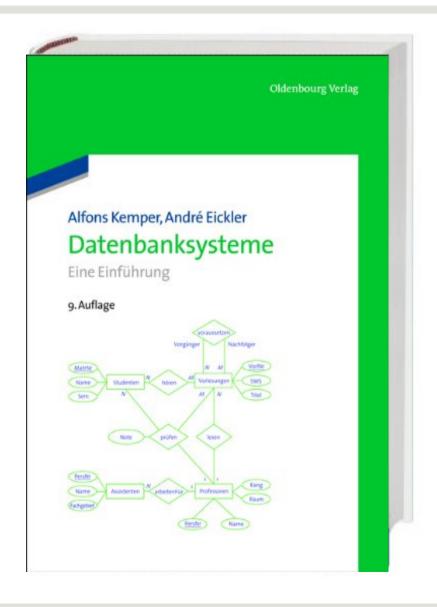
Referentielle Integrität: Zu jedem benutzten Fremdschlüssel existiert ein Tupel mit einem entsprechenden Primärschlüsselwert in der referenzierten Tabelle.

Überprüfung der referentiellen Integrität ist notwendig beim

- Einfügen eines neuen Fremdschlüsselwertes in eine Beziehungstabelle.
 Das referenzierte Objekt mit diesem Wert als Primärschlüssel muss existieren.
- Löschen eines Tupels aus einer Entitätentabelle. Auf dieses Tupel dürfen keine Referenzen bestehen. Gibt es noch Referenzen, bieten sich mehrere Möglichkeiten an:
 - Eine Fehlermeldung wird erzeugt.
 - Propagierung der Löschoperation, das referenzierende Tupel wird ebenfalls gelöscht (*** kaskadiertes Löschen).
 - Die Referenzen können durch Setzen des Fremdschlüssels auf einen Nullwert ungültig gemacht werden, sofern dieser nicht Bestandteil des Schlüssels ist.

RDM: Domänen

- Domänen legen zulässige Wertebereiche für Attribute fest. Sie sind mit Typen vergleichbar und können
 - mit vordefinierten Typen übereinstimmen, Int
 - spezielle Wertmengen festlegen. "Yes", "No", "Don't know"
- Operationen auf Attributen, wie z.B. der Vergleich zwischen Budget und Nummer, können auf ihre Zulässigkeit überprüft werden.


RDM: Entwurf relationaler Schemata

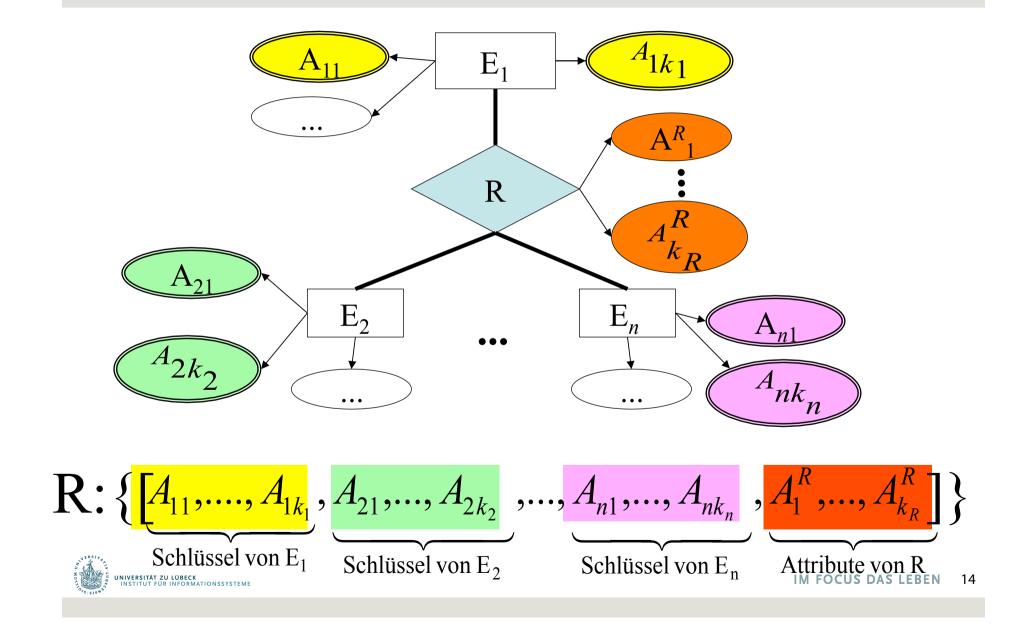
Zwei alternative Methoden:

- Entwickle zunächst ein ER-Diagramm, leite daraus ein relationales Schema mit Entitäten- und Beziehungstabellen ab (vgl. C. Batini, S. Ceri, S.B. Navathe. Conceptual Database Design An Entity Relationship Approach, Benjamin/Cummings, Redwood City, Kalifornien, 1992).
- Sammle funktionale Abhängigkeiten aus der Anforderungsdefinition und erzeuge daraus ein relationales Schema in Normalform (Im Trend 1970...80).
 Ausführlich in der Literatur beschrieben (vgl. S.M. Lang, P.C. Lockemann. Datenbankeinsatz. Springer, Berlin u.a., 1995).

Acknowledgments / Skript zur Vorlesung

Relationale Darstellung von Entitytypen

Studenten: {[MatrNr:integer, Name: string, Semester: integer]}


Vorlesungen: {[VorlNr:integer, Titel: string, SWS: integer]}

Professoren: {[PersNr:integer, Name: string, Rang: string, Raum: integer]}

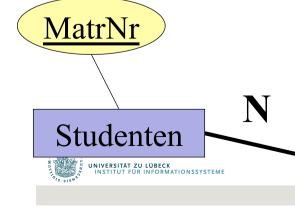
Assistenten: {[PersNr:integer, Name: string, Fachgebiet: string]}

Relationale Darstellung von Beziehungen

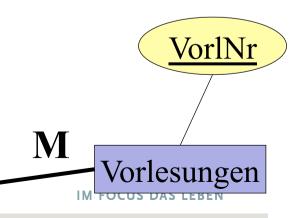
Beziehungen unseres Beispiel-Schemas

Schlüssel der Relationen

```
hören: {[MatrNr: integer, VorlNr: integer]}
lesen: {[PersNr: integer, VorlNr: integer]}
   Warum nicht beide Attribute?
arbeitenFür : {[AssistentenPersNr: integer, ProfPersNr: integer]}
voraussetzen : {[Vorgänger: integer, Nachfolger: integer]}
prüfen : {[MatrNr: integer, VorlNr: integer, PersNr: integer,
            Note: decimal]}
```



Ausprägung der Beziehung hören


Studenten		
MatrNr	:	
26120		
27550		

hören		
MatrNr	VorlNr	
26120	5001	
27550	5001	
27550	4052	
28106	5041	
28106	5052	
28106	5216	
28106	5259	
29120	5001	
29120	5041	
29120	5049	
29555	5022	
25403	5022	
29555	5001	

Vorlesungen		
VorINr		
5001		
4052		



Notation für Relationenschemata

- Schema: Tabellenname = {[Attr1: Typ1, Attr2: Typ2, ...]}
- In eckigen Klammern [...] wird angegeben, wie die Tupel aufgebaut sind
- Die Mengenklammern sollen ausdrücken, dass es sich bei einer Relationenausprägung um eine Menge von Tupeln handelt
- Manchmal werden die Attribute auch als Menge benötigt:
 Wir schreiben für das Schema der Tabelle R: R = {Attr1, Attr2, ...}
- Eine konkrete Relation R ist eine Teilmenge des Kreuzproduktes von dom(Attr1) x dom(Attr2) x ...

Verfeinerung des relationalen Schemas

1:N-Beziehung

Initial-Entwurf

Vorlesungen : {[VorlNr, Titel, SWS]}

Professoren : {[PersNr, Name, Rang, Raum]}

lesen: {[VorINr, PersNr]}

Verfeinerung des relationalen Schemas

1:N-Beziehung

Initial-Entwurf

Vorlesungen: {[VorlNr, Titel, SWS]}

Professoren: {[PersNr, Name, Rang, Raum]}

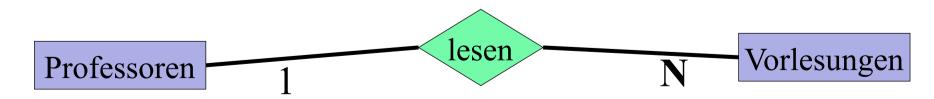
lesen: {[VorINr, PersNr]}

Verfeinerung durch Zusammenfassung

Vorlesungen : {[VorlNr, Titel, SWS, gelesenVon]}

Professoren: {[PersNr, Name, Rang, Raum]}

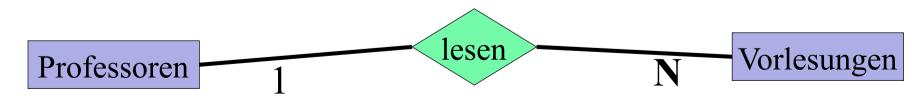
Regel


Relationen mit gleichem Schlüssel kann man zusammenfassen aber nur diese und keine anderen!

Ausprägung von Professoren und Vorlesung

Professoren				
PersNr	Name	Rang	Raum	
2125	Sokrates	C4	226	
2126	Russel	C4	232	
2127	Kopernikus	C3	310	
2133	Popper	C3	52	
2134	Augustinus	C3	309	
2136	Curie	C4	36	
2137	Kant	C4	7	

Vorlesungen			
VorlNr	Titel	SWS	Gelesen Von
5001	Grundzüge	4	2137
5041	Ethik	4	2125
5043	Erkenntnistheorie	3	2126
5049	Mäeutik	2	2125
4052	Logik	4	2125
5052	Wissenschaftstheorie	3	2126
5216	Bioethik	2	2126
5259	Der Wiener Kreis	2	2133
5022	Glaube und Wissen	2	2134
4630	Die 3 Kritiken	4	2137



Vorsicht: So geht es NICHT

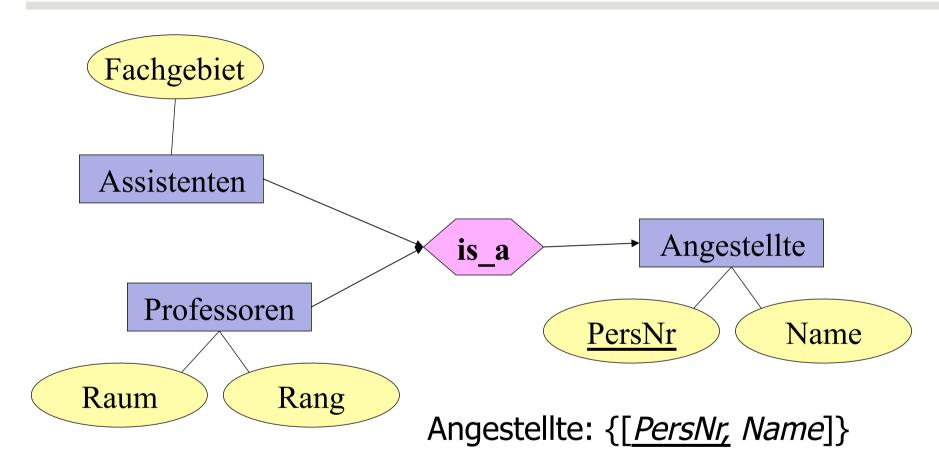
Professoren				
PersNr	Name	Rang	Raum	liest
2125	Sokrates	C4	226	5041
2125	Sokrates	C4	226	5049
2125	Sokrates	C4	226	4052
2134	Augustinus	C3	309	5022
2136	Curie	C4	36	??

Vorlesungen			
VorlNr	Titel SWS		
5001	Grundzüge 4		
5041	Ethik	4	
5043	Erkenntnistheorie	3	
5049	Mäeutik	2	
4052	Logik 4		
5052	Wissenschaftstheorie 3		
5216	Bioethik	2	
5259	Der Wiener Kreis	2	
5022	Glaube und Wissen	2	
4630	Die 3 Kritiken	4	

Anomalien

Professoren				
PersNr	Name	Rang	Raum	liest
2125	Sokrates	C4	226	5041
2125	Sokrates	C4	226	5049
2125	Sokrates	C4	226	4052
2134	Augustinus	C3	309	5022
2136	Curie	C4	36	??

	Vorlesungen			
VorlNr	Titel SWS			
5001	Grundzüge	4		
5041	Ethik	4		
5043	Erkenntnistheorie	3		
5049	Mäeutik	2		
4052	Logik	4		
5052	Wissenschaftstheorie	3		
5216	Bioethik	2		
5259	Der Wiener Kreis	2		
5022	Glaube und Wissen	2		
4630	Die 3 Kritiken	4		


Update-Anomalie: Was passiert, wenn Sokrates umzieht

Lösch-Anomalie: Was passiert, wenn "Glaube und Wissen" wegfällt

Einfügeanomalie: Curie ist neu und liest noch keine Vorlesungen

Relationale Modellierung der Generalisierung

Professoren: {[PersNr, Rang, Raum]}

Assistenten: {[PersNr, Fachgebiet]}

Vereinbarung zur Notation

Sei $\mathcal{R} = \{A, B, C, D\}$ ein Relationenschema.

Seien r und t Tupel aus einer konkreten

Relation R gemäß dem Schema \mathcal{R} .

Sei weiterhin $\alpha \subseteq \mathcal{R}$.

Wir vereinbaren:

 $r.\alpha = t.\alpha$ soll heißen, dass für alle A aus α gilt: r.A = t.A.

Funktionale Abhängigkeiten

Schema

$$\mathcal{R} = \{A, B, C, D\}$$

Ausprägung R

Seien $\alpha \subseteq \mathcal{R}$, $\beta \subseteq \mathcal{R}$

 $\alpha \rightarrow \beta$ genau dann wenn $\forall r, s \in R$ mit $r \cdot \alpha = s \cdot \alpha \Rightarrow r \cdot \beta = s \cdot \beta$

R					
A	В	С	D		
a4	b2	c4	d3		
a1	b1	c1	d1		
a1	b1	c1	d2		
a2	b2	сЗ	d2		
a3	b2	c4	d3		

$$\{A\} \rightarrow \{B\}$$

$$\{C, D\} \rightarrow \{B\}$$

Nicht:
$$\{B\} \rightarrow \{C\}$$

Notationskonvention:

$$CD \rightarrow B$$

Beispiel

Stammbaum				
Kind	Vater	Mutter	Ора	Oma
Sofie	Alfons	Sabine	Lothar	Linde
Sofie	Alfons	Sabine	Hubert	Lisa
Niklas	Alfons	Sabine	Lothar	Linde
Niklas	Alfons	Sabine	Hubert	Lisa
•••			Lothar	Martha
			•••	•••

Kind → Vater,Mutter Kind,Opa → Oma Kind,Oma → Opa

Schlüssel

 $\alpha \subseteq \mathcal{R}$ ist ein **Super-Schlüssel**, falls folgendes gilt:

$$-\alpha \rightarrow \mathcal{R}$$

Wir nennen α Super-Schlüssel, weil noch nichts darüber ausgesagt wird, dass der Schlüssel α minimal ist.

 β ist **voll funktional abhängig** von α genau dann wenn gilt

- $\alpha \rightarrow \beta$ und
- α kann nicht mehr verkleinert werden, d.h.
 - $\forall A \in \alpha$ folgt, dass $(\alpha \{A\}) \rightarrow \beta$ nicht gilt, oder kürzer
 - $\forall A \in \alpha : \neg((\alpha \{A\}) \rightarrow \beta)$

Notation für volle funktionale Abhängigkeit: $\alpha \rightarrow {}^{\bullet} \beta$

 $\alpha \subseteq \mathcal{R}$ ist ein **Kandidaten-Schlüssel**, falls folgendes gilt:

$$\bullet$$
 $\alpha \rightarrow \mathcal{R}$

Schlüsselbestimmung

Städte			
Name	BLand	Vorwahl	EW
Frankfurt	Hessen	069	650000
Frankfurt	Brandenburg	0335	84000
München	Bayern	089	1200000
Passau	Bayern	0851	50000

Kandidaten-schlüssel von Städte:

- {Name,BLand}
- {Name, Vorwahl}

Beachte, dass 2 kleinere Städte dieselbe Vorwahl haben können

Bestimmung funktionaler Abhängigkeiten

Professoren: {[PersNr, Name, Rang, Raum, Ort, Straße, PLZ, Vorwahl, Bland, EW, Landesregierung]}

- {PersNr} → {PersNr, Name, Rang, Raum, Ort, Straße, PLZ, Vorwahl, Bland, EW, Landesregierung}
- {Ort,BLand} → {EW, Vorwahl}
- $\{PLZ\} \rightarrow \{Bland, Ort, EW\}$
- {Bland, Ort, Straße} → {PLZ}
- {Bland} → {Landesregierung}
- {Raum} → {PersNr}

Zusätzliche Abhängigkeiten, die aus obigen abgeleitet werden können:

- {Raum} → {PersNr, Name, Rang, Raum, Ort, Straße, PLZ, Vorwahl, Bland, EW, Landesregierung}
- {PLZ} → {Landesregierung}

of t. person, l. name te Professorus At. rang = "C4" } Tupil kelbuil PIN] Fro ([pinino] & Professour 1 = "C4") & Romerenhalhil

RDM: Relationale Algebra - Anfragen (1)

Vereinigung R ∪ **S**:

- Alle Tupel zweier Relationen werden in einer Ergebnisrelation zusammengefaßt.
- Das Ergebnis enthält keine Duplikate.

$$R \cup S := \{ r \mid r \in R \lor r \in S \}$$

R	
0	
<u>=</u>	
<u>–</u>	
Ð	
\simeq	

ANr	AName	Menge	
001	Anlasser	1.000	
:	:		:
199	Kolben	5.000	

<u>_</u>
三
<u>–</u>
P
\propto

ANr	AName	Menge	
237	Ölfilter	1.560	
:	:		:
851	Schraube	25.000	

Ergebnisrelation $R \cup S$

Nr	AName	Menge	
01	Anlasser	1.000	
:	:		:
99	Kolben	5.000	
37	Ölfilter	1.560	
:	:		:
51	Schraube	25.000	
	01 : 99 37	O1 Anlasser 99 Kolben 37 Ölfilter	01 Anlasser 1.000 1

RDM: Relationale Algebra - Anfragen (2)

Differenz R \ S:

- Die Tupel zweier Relationen werden miteinander verglichen.
- Die in der ersten, nicht aber in der zweiten Relation befindlichen Tupel werden in die Ergebnisrelation aufgenommen.

$$R \setminus S := \{ r \mid r \in R \land r \notin S \}$$

Relation R

ANr	AName	Menge	
001	Anlasser	1.000	
237	Ölfilter	1.560	
199	Kolben	5.000	

Relation S

ANr	AName	Menge	
851	Schraube	25.000	
232	Gummirin	g	2.000
001	Anlasser	1.000	

Ergebnisrelation $R \setminus S$

ANr	AName	Menge
237	Ölfilter	1.560
199	Kolben	5.000

RDM: Relationale Algebra - Anfragen (3)

Durchschnitt R ∩ S:

 Alle Tupel, die sowohl in der Relationen R als auch in der Relation S enthalten sind, werden in der Ergebnisrelation zusammengefaßt.

$$R \cap S := \{ r \mid r \in R \land r \in S \}$$

Relation R

ANr	AName	Menge
001	Anlasser	1.000
007	Zündkerze	e1.380
199	Kolben	5.000

Relation S

ANr	AName	Menge
001	Anlasser	1.000
199	Kolben	5.000
237	Ölfilter	1.560

Ergebnisrelation $R \cap S$

ANr	AName	Menge	
001	Anlasser	1.000	
199	Kolben	5.000	

RDM: Relationale Algebra - Anfragen (4)

Kartesisches Produkt R × S:

- Alle Tupel zweier Relationen R und S werden kombinatorisch miteinander verbunden. Wenn die Relation R n Spalten und die Relation S m Spalten umfaßt, dann besitzt R × S (n+m) Spalten.
- Wenn die Relation R k Zeilen und die Relation S I Zeilen umfaßt, dann besitzt R × S (k*I) Zeilen.
- Um eindeutige Attributbezeichnungen in der Ergebnisrelation zu gewährleisten, müssen Attribute, die in den Relationen R und S gleich bezeichnet sind, vor der Bildung des kartesischen Produkts umbenannt werden.

$$R \times S := \{ (r_1, ..., r_n, s_1, ..., s_m) \mid (r_1, ..., r_n) \in R, (s_1, ..., s_m) \in S \}$$

- Beispiel:
 - Projekte × Projektdurchführung (s. nächste Folie)

RDM: Relationale Algebra - Anfragen (5)

Beispiel: Projekte × Projektdurchführung

Projektdurchführung (Ausschnitt)

300.0

Nr	Kurz
100	MFSW
200	PERS
300	MFSW

Ergebnisrelation Projekte × Projektdurchführung

בי בי	Nr	Titel	Budget	Nr2	Kurz
	100	DB Fahrpläne	300.000	100	MFSW
- - -	100	DB Fahrpläne	300.000	200	PERS
	100	DB Fahrpläne	300.000	300	MFSW
ואר	200	ADAC Kundenstamm	100.000	100	MFSW
שבער	200	ADAC Kundenstamm	100.000	200	PERS
_	200	ADAC Kundenstamm	100.000	300	MFSW
ענ	300	Telekom Statistik	200.000	100	MFSW
ין פ	300	Telekom Statistik	200.000	200	PERS
	300	Telekom Statistik	200.000	300	MFSW

RDM: Relationale Algebra - Anfragen (6)

Join (Verbindung) R $>< _{\theta}$ S:

- Eine Verbindung zwischen zwei Relationen wird in einer Kombination von kartesischem Produkt und nachfolgender Selektion (σ) gemäß des Prädikats θ hergestellt.
- Im allgemeinen Fall (*Theta-Join*) vergleicht ein (beliebiges) Prädikat θ mehrere Attribute aus den Relationen R und S (Spezialfall: Equi-Join).

$$R > <_{\theta} S := \sigma_{\theta}(R \times S)$$

- Beispiele:
 - Projekte >< (Nr≠Nr) Projektdurchführung (s. nächste Folie)
 - Projekte >< (Budget > 150000) ^ (Nr = Nr) Projektdurchführung
- Die Ergebnisrelation enthält die Zeilen des kartesischen Produkts der Relationen R und S, die θ erfüllen.

RDM: Relationale Algebra - Anfragen (7)

Beispiel: Projekte $><_{(Nr \neq Nr)}$ Projektdurchführung

Nr Titel Budget 100 DB Fahrpläne 300.000 200 ADAC Kundenstamm 100.000 300 Telekom Statistik 200.000

Projektdurchführung (Ausschnitt)

Nr	Kurz
100	MFSW
200	PERS
300	MFSW

	Nr	Titel	Budget		Nr2	Kurz	
n	100	DB Fahrpläne		300.000		200	PERS
atic	100	DB Fahrpläne		300.000		300	MFSW
srel	200	ADAC Kundenstamm	100.000		100	MFSW	
bnisrelation							
Ergek	200	ADAC Kundenstamm	100.000		300	MFSW	
Εľ	300	Telekom Statistik	200.000		100	MFSW	
	300	Telekom Statistik	200.000		200	PERS	
					///////////////////////////////////////		///////////////

RDM: Relationale Algebra - Anfragen (8)

Join (Verbindung): Fortsetzung

- Von besonderer Bedeutung im RDM ist der *Natural Join*, da er eine Verknüpfung von Tabellen über ihre Fremdschlüsselwerte erlaubt.
 - Beispiel:
 - Projekte >< Projektdurchführung := Projekt >< Nr = Nr
 Projektdurchführung
 - In diesem Fall betrachtet θ nur die Gleichheit zwischen Fremdschlüssel und Primärschlüssel, die den gleichen Attributnamen (Nr) besitzen.
- Weitere abgeleitete Joinoperationen (Semi-Join, Outer-Join, ...) und die Division zweier Relationen sind beschrieben in:
 - S.M. Lang, P.C. Lockemann. Datenbankeinsatz. Springer, Berlin u.a., 1995.

RDM: Relationale Algebra - Anfragen (9)

Natural Join: Projekte $><_{(Nr=Nr)}$ Projektdurchführung

 Nr
 Titel
 Budget

 100
 DB Fahrpläne
 300.000

 200
 ADAC Kundenstamm 100.000

 300
 Telekom Statistik
 200.000

Projektdurchführung (Ausschnitt)

Nr	Kurz
100	MFSW
200	PERS
300	MFSW

Ergebnisrelation

Nr	Titel	Budget		Nr2	Kurz	
100	DB Fahrpläne		300.000		100	MFSW
200	ADAC Kundenstam	m 100.000		200	PERS	
300	Telekom Statistik	200.000		300	MFSW	

RDM: Relationale Algebra - Anfragen (10)

Projektion $\pi_{(r_{f_1}, ..., r_{f_n})}$ (R):

- n Spalten einer m-stelligen Relation R werden über ihren Namen ausgewählt.
- Dadurch entsteht eine n-stellige Relation $(n \le m)$.
- Die Reihenfolge der Spalten in der Ergebnisrelation kann definiert werden.
- Duplikatelimination in der Ergebnisrelation.

$$\pi_{(r_{f_1}, \dots, r_{f_n})}(R) := \{ (r_{f_1}, \dots, r_{f_n}) | (r_1, \dots, r_m) \in R \}$$

- Beispiel: $\pi_{(Nr, Budget)}$ (Projekte)

Ergebnisrelation
$\pi_{(Nr, Budget)}(Projekte)$

• •	Nr	Titel	Budget		
אר אר	100	DB Fahrpläne		300.0	00
2	200	ADAC Kundenstamm	100.000		
_	300	Telekom Statistik	200.000		


Nr	Budget
100	300.000
200	100.000
300	200.000

RDM: Relationale Algebra - Anfragen (11)

Selektion $\sigma_{\theta}(R)$:

- Bestimmte Tupel einer Relation werden ausgewählt und in der Ergebnisrelation vereinigt.
- Zur Auswahl der zu übernehmenden Tupel dient das Prädikat
 θ: R → { true, false }, in dem die Attributbezeichner als
 Eingabevariablen dienen.
- Anwendung dieses Prädikats auf jedes Tupel der Ausgangsrelation, indem die Werte des Tupels unter den jeweiligen Attributen für die Variablen eingesetzt werden.
- In die Ergebnisrelation werden alle Tupel übernommen, für die das Prädikat den Wahrheitswert true liefert.

RDM: Relationale Algebra als Anfragesprache

Vorteil:

- Orthogonale Kombination der Konstrukte
- Einfache, mathematische Behandlung, z.B. $(R \times S) \times T = R \times (S \times T)$
- Einfache (naive) Implementierung möglich
- Optimierung möglich

Nachteile:

- Eingeschränkte Ausdrucksmächtigkeit auf Relationenebene (Summe, Mittelwert, Kardinalität)
- Reine Anfragesprache
- Optimierung nicht trivial

