Algorithmen und Datenstrukturen

Prof. Dr. Ralf Möller

Universität zu Lübeck Institut für Informationssysteme

Tanya Braun (Übungen) sowie viele Tutoren

Danksagung

Nach einem Vortrag von

Optical Character Recognition:
Using the Ullmann Algorithm for Graphical Matching

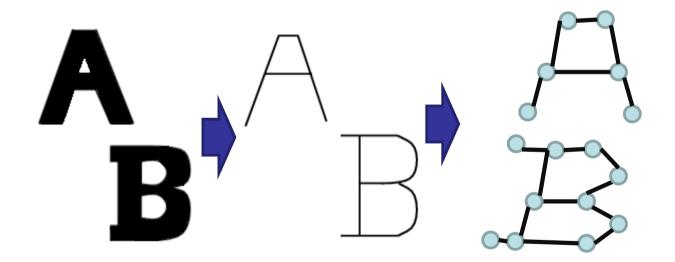
von

Iddo Aviram

OCR – Zeichenerkennung durch Graphabgleich

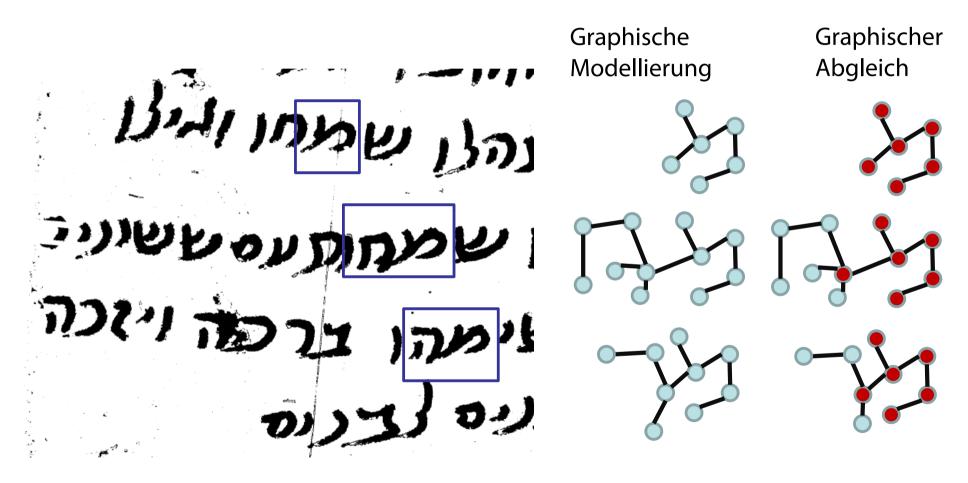
Bestimmung einer Datenstruktur:

Segmentation → Verdünnung → Graphrepräsentation



OCR durch Graphabgleich (Matching)

Durch Subgraphabgleich Kandidaten finden

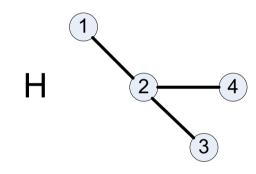


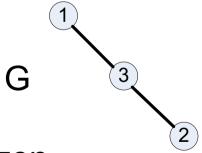
Subgraph-Isomorphie

Subgraph-Isomorphismus-Problem

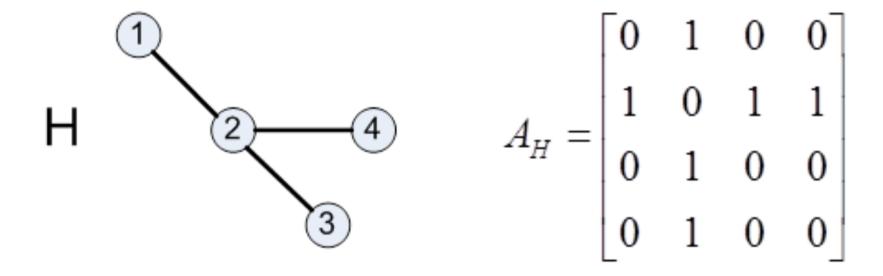
- Gegeben zwei Graphen H and G. Bestimme, ob H einen Subgraphen hat, der isomorph zu G ist, also bis auf Knotenumbenennung die Gestalt von G hat
- Zur Lösung müssen wir Korrespondenzen finden
- Beispiel: (Es gibt weitere Lösungen)

- Antwort: Ja
- Sollen wir alle möglichen Korrespondenzen generieren und testen?



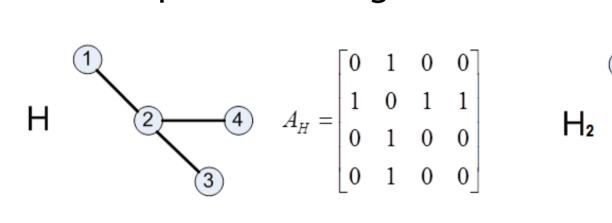


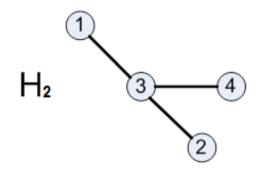
- Verwendung von algebraischen Formulierungen des Subgraph-Isomorphie-Problems
- Adjazenzmatrix A_H eines Graphen H:



Aufbau des Suchraums nach Korrespondenzen

- Verwendung der sog. Permutationsmatrix
- Über Permutationsmatrix kann isomorphe Korrespondenz ausgedrückt werden





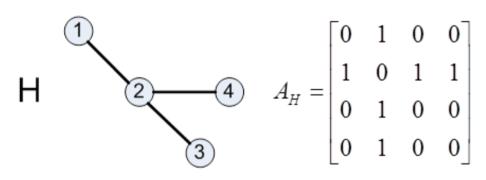
Isomorphe Korrespondenz

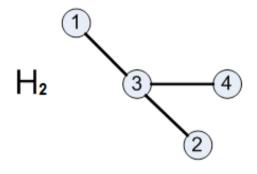
Permutationsmatrix

F~P

Isomorphiekriterium

Zwei Graphen H und H₂ sind isomorph mit Korrespondenz F genau dann, wenn A_H ähnlich zu A_{H_2} ist, also eine Permutationsmatrix P~F existiert.





Isomorphe Korrespondenz

Permutationsmatrix

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

F~P

Isomorphiekriterium:

$$A_{H_2} = PA_H P^T$$

 $gdw H_2$ ist isomorph zu H mit Korrespondenz F~P

Skeptisch?

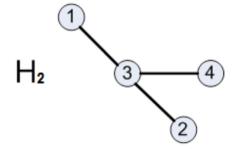
$$\mathbf{P} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad A_H = \begin{bmatrix} 0 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 \end{bmatrix}$$

$$A_H = \begin{bmatrix} 0 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 \end{bmatrix}$$

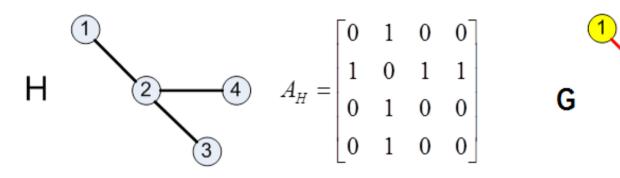
P "moves" the row and columns of A_H using the mapping

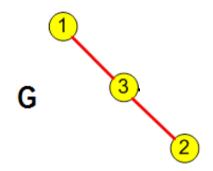
1: Moves only the rows

2: Moves only the columns



In gleicher Weise können wir ein algebraisches Kriterium für Subgraph-Isomorphie bestimmen





Isomorphe Korrespondenz

$$F = \begin{array}{c} \mathbf{1}_{G} - \mathbf{1}_{H} \\ \mathbf{2}_{G} - \mathbf{3}_{H} \\ \mathbf{3}_{G} - \mathbf{2}_{H} \\ \mathbf{4}_{G} - \phi \end{array} \qquad P = \begin{array}{c} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

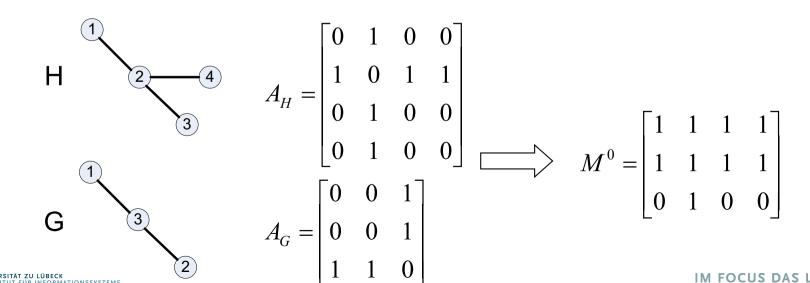
- Gegeben: Graphen G und H
- Gesucht: Permutationsmatrix P mit Dimensionen $|V_G| \times |V_H|$, so dass das Subgraph-Isomorphie-Kriterium erfüllt
- Suchraum über alle möglichen Permutationsmatrizen P mit jeweiliger Prüfung des Kriteriums aufspannen?
- Das geht besser!

Konstruiere Matrix M⁽⁰⁾ der Dimension der P-Matrizen:

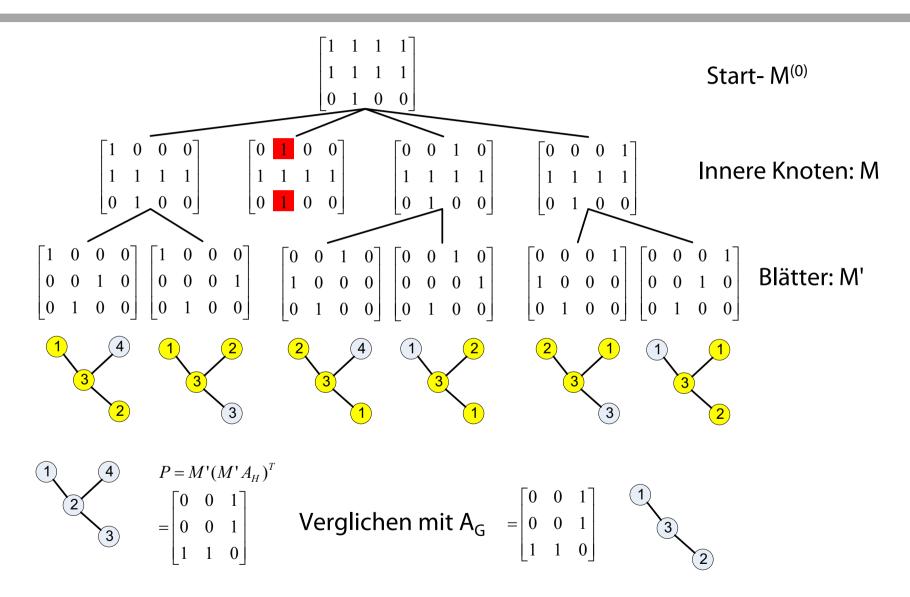
$$m_{i,j}^{(0)} = \begin{cases} 1 & \text{if } \deg(V_{H_j}) \ge \deg(V_{G_i}) \\ 0 & \text{otherwise} \end{cases}, m_{i,j} \in \{0,1\}$$

- Generiere aus M⁽⁰⁾ alle M' durch Wahl einer 1 pro Zeile
- Subgraph-Isomorphismus gefunden, wenn

$$(a_{Gi,j} = 1) \Rightarrow (p_{i,j} = 1) \text{ mit } P=M'(M'A_H)^T$$



Ullmanns Algorithmus (mit einfachem Pruning)



Take-Home Messages

- Pruning kann anwendungsübergreifend erfolgen
 - Alpha-Beta-Pruning
- Pruning kann anwendungsspezifisch erfolgen
 - Subgraph-Isomorphie,
 - Zulässige Heuristik bei A*
- Unter bestimmten Bedingungen gilt: Beste Lösung wird nicht verfehlt

