Algorithmen und Datenstrukturen

Tanya Braun

Prof. Dr. Ralf Möller

Universität zu Lübeck

Institut für Informationssysteme

Tanya Braun (Übungen) sowie viele Tutoren

Danksagung

Die nachfolgenden Präsentationen wurden mit ausdrücklicher Erlaubnis des Autors übernommen und danach abgewandelt aus:

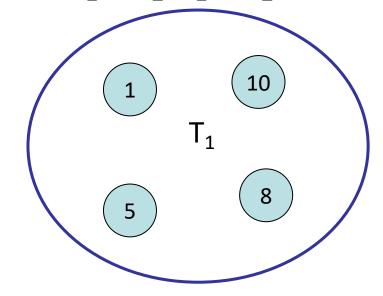
 "Effiziente Algorithmen und Datenstrukturen" (Kapitel 6: Verschiedenes) gehalten von Christian Scheideler an der TUM http://www14.in.tum.de/lehre/2008WS/ea/index.html.de

Der Inhalt zum Beweis zur amortisierten Analyse der Union-Find Datenstruktur basiert auf

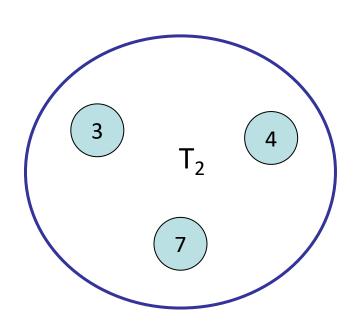
 Hopcroft, J.E. and Ullman, J.D.; Set Merging Algorithms, SIAM Journal of Computing 2(4), S. 294-303, 1973.

Partitionen einer Menge

- Disjunkte Teilmengen, die zusammen die Ursprungsmenge ergeben
 - $-T = \{1, 5, 8, 10, 3, 4, 7\}$
 - Partitionen: T_1 und T_2
 - $-T = T_1 \cup T_2, T_1 \cap T_2 = \emptyset$



Identifizierung?



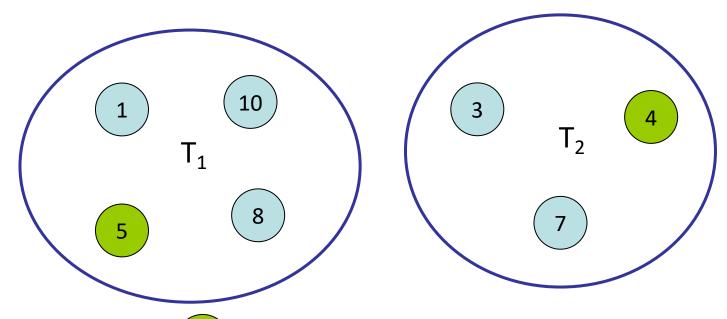
Identifizierung einer Partition

Element aus Partition als Repräsentant

$$-T = \{1, 5, 8, 10, 3, 4, 7\}$$

- T_1 : Repräsentant 5

- T₂: Repräsentant 4



Datenstruktur für Disjunkte Mengen

Wozu brauchen wir so eine Datenstruktur?

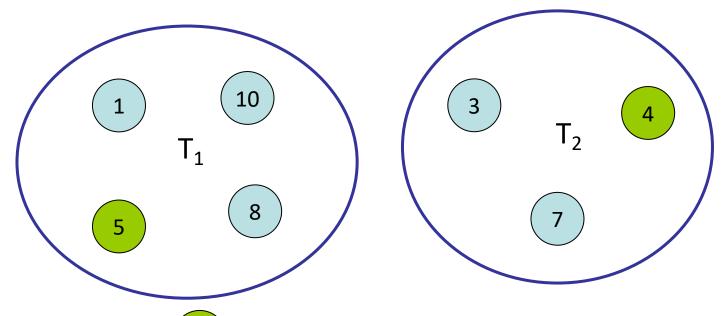
- Effiziente Implementierung von Graphalgorithmen
 - Ermittlung minimaler Spannbäume (Kruskal)
 - Ermittlung starker Zusammenhangskomponenten
 (Beides kommt in dem Vorlesungsteil zu Graphen vor)

Was muss die Datenstruktur können?

- Testen, ob zwei Elemente zu einer Menge gehören
- Zwei Mengen vereinigen

Test: Zugehörigkeit zur selben Partition?

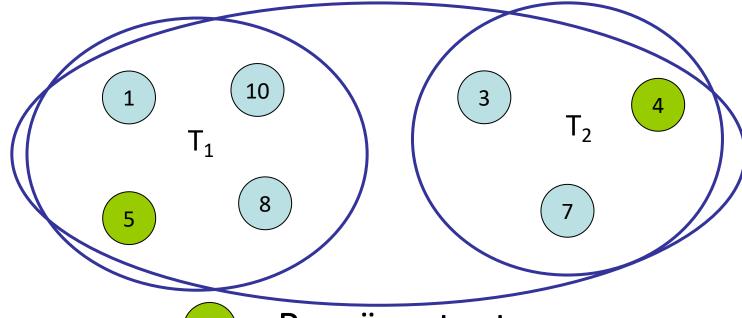
- Gegeben: Partitionen mit Repräsentant, zwei Elemente
 - Partitionen: T_1, T_2 , Elemente: 1 und 10, 1 und 3
- Test über Gleichheit der Repräsentanten
 - Anforderung: schnell auf Repräsentant kommen



: Repräsentant

Vereinigung zweier Partitionen

- Gegeben: Partitionen mit Repräsentant
 - Partitionen: T_1 , T_2
- Elemente vereinigen, einen Repräsentanten behalten
 - Anforderung: schnell zwei Mengen verschmelzen



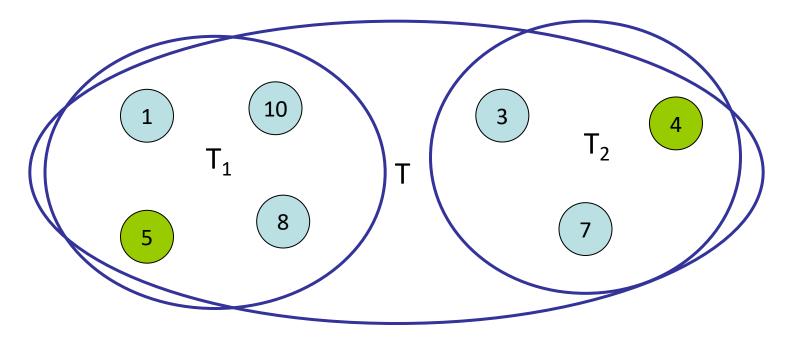
: Repräsentant

Gegeben: Menge von n Elementen.

Operationen:

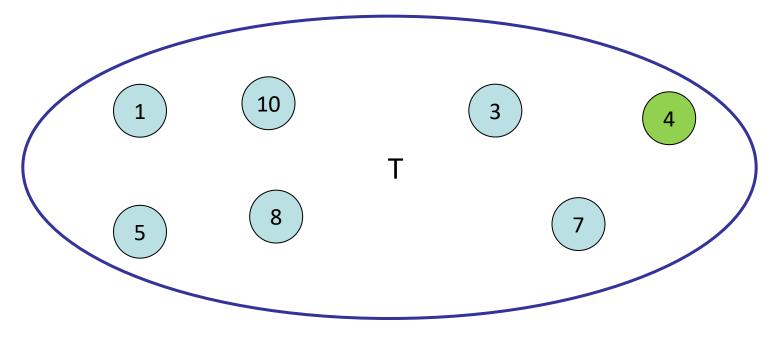
- MakeSet(x): erzeugt für x eine (Teil)menge T mit x als Repräsentant (Initialisierung)
- Union(T₁,T₂): vereinigt Elemente in T₁ und T₂ zu
 T=T₁ U T₂
- Find(x): gibt (eindeutigen) Repräsentanten der Teilmenge aus, zu der x gehört
 - Nimmt an, dass es einen direkten Zugriff auf x gibt

Union (T_1,T_2) :



: Repräsentant

Find(10) liefert 4



: Repräsentant

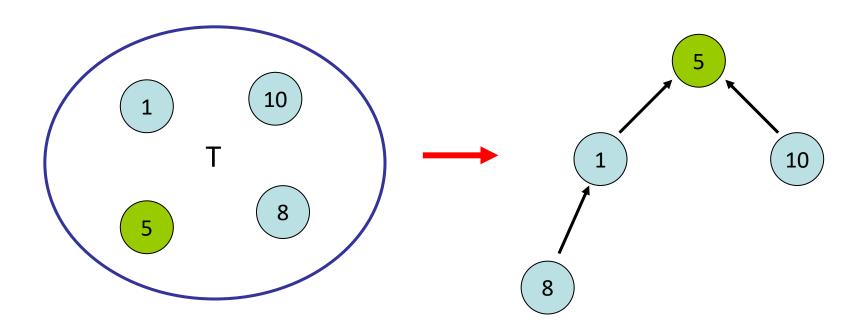
Umsetzung als Datenstruktur

- Version 1: Liste mit Repräsentant als Listenende
 - Schnell bei Union (T_1, T_2) (eine Liste an andere hängen) O(1)
 - Langsam bei Find(x) (durchlaufen bis zum Ende) O(n)
- Version 2: Baum mit Repräsentant als Wurzel, Elemente als Blattknoten unter Wurzel
 - Schnell bei Find(x) (sofort von Blatt an Wurzel) O(1)
 - Langsam bei Union(T₁, T₂) (für eine Partition alle Blattknoten und Wurzel umhängen) O(n)

Union-Find Datenstruktur: Gerichteter Baum

Idee: Repräsentiere jede Teilmenge T als gerichteten Baum mit Wurzel als Repräsentant

Wald von Bäumen für ganze Menge



Realisierung der Operationen:

• Union (T_1,T_2) :



• Find(x): Suche Wurzel des Baumes, in dem sich x befindet

Naïve Implementierung:

- Union(1,5), Union(8,5), Union(10,5), ...
- Union(1,5), Union(5,8), Union(8,10), ...

Beobachtung

Tiefe des Baums kann bis zu n sein (bei n Elementen)

Naïve Implementierung:

- Zeit für Find: O(n)
- Zeit für Union: O(1)
 - Annahme: T₁ und T₂ liegen durch Repräsentant vor

- Schluss?
 - Tiefe des Baums berücksichtigen

Gewichtete Union-Operation: Mache die Wurzel des flacheren Baums zum Kind der Wurzel des tieferen Baums.

Beobachtung

- Unterschiedlich tiefe Bäumen?
 - Tiefe des neuen Baums ist gleich Tiefe des tieferen Baums
- Was ist bei gleicher Tiefe?
 - Tiefe nimmt um 1 zu

Worst Case bei n Elementen?

- 1
- 5
- 8
- 10
- 3
- 7
- 4

Gewichtete Union-Operation: Mache die Wurzel des flacheren Baums zum Kind der Wurzel des tieferen Baums.

Beh.: Die Tiefe eines Baums mit n Elementen ist höchstens O(log n)

- Die Tiefe von T=T₁ U T₂ erhöht sich nur dann, wenn Tiefe(T₁)=Tiefe(T₂) ist
- N(t): min. Anzahl Elemente in Baum der Tiefe t
- Es gilt $N(t)=2\cdot N(t-1)=2^t$ mit N(0)=1
 - Beweis über Induktion
- Also ist $N(\log n) = 2^{\log n} = n$

Gewichtete Union-Operation: Mache die Wurzel des flacheren Baums zum Kind der Wurzel des tieferen Baums.

Beobachtungen:

- Bei n Elementen ist die max. Tiefe eines Baums log n
- In einem Baum der Tiefe t sind min. 2^t Elemente
- Bei n Elementen im Wald gibt es max. n/2^t Knoten der Tiefe t

Mit gewichteter Union-Operation:

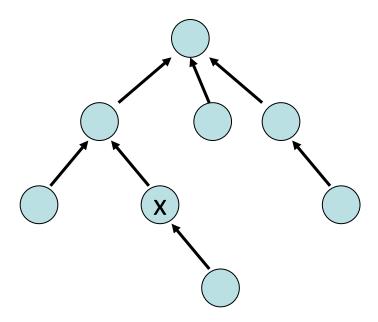
- Zeit für Find: O(log n)
- Zeit für Union: O(1)

Geht das noch besser für Find?

- Best Case für Find: Nicht-Repräsentanten sind Blattknoten
 - Schnell beim Repräsentant
- Bei Find durchlaufen wir den Pfad vom Element zum Repräsentant
 - Elemente auf Pfad direkt auf Wurzel umleiten

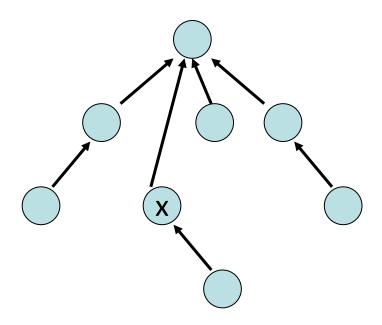
Besser: gewichtetes Union mit Pfadkompression

 Pfadkompression bei jedem Find(x): alle Knoten von x zur Wurzel zeigen direkt auf Wurzel



Besser: gewichtetes Union mit Pfadkompression

 Pfadkompression bei jedem Find(x): alle Knoten von x zur Wurzel zeigen direkt auf Wurzel



Theorem: Bei gewichtetem Union mit Pfadkompression ist die amortisierte Zeit für **Find** O(log* n).

Was ist log* n?

Iterierter Logarithmus log* n

Bemerkung: log* n ist definiert als

```
log* n = 0 f \ddot{u} r n \le 1

log* n = min{i > 0 | log log ... log n \le 1} sonst

i-mal
```

Beipiele:

- log* 2 = 1
- log* 4 = 2
- $\log^* 16 = 3$
- $\log^* 2^{65536} = 5$

log* n wächst sehr langsam

Theorem: Bei gewichtetem Union mit Pfadkompression ist die amortisierte Zeit für **Find** O(log* n).

→ quasi konstant (log* n ≤ 5 für sehr große Zahlen)

Ein paar Hilfsterme und Beobachtungen folgen...

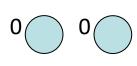
Union-Find Datenstruktur: rank(x)

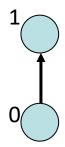
Ordne jedem Element x zu:

- rank(x) = Tiefe des Unterbaums von Wurzel x ohne Pfadkompression
 - MakeSet(x) setzt rank(x) = 0
 - Union(T_1 , T_2) by rank: Erhöht rank(x) um 1 für Wurzel der Vereinigung, wenn für die Repräsentanten x_1 , x_2 von T_1 , T_2 gilt: rank(x_1) = rank(x_2)
 - Kann sich also nur unter Umständen für Repräsentanten ändern

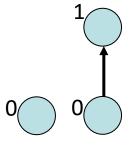
Union-Find Datenstruktur: rank(x)

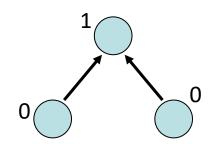
- Veränderung von rank(x) bei Union(T₁,T₂)
 - Gleiche Ränge





Unterschiedliche Ränge



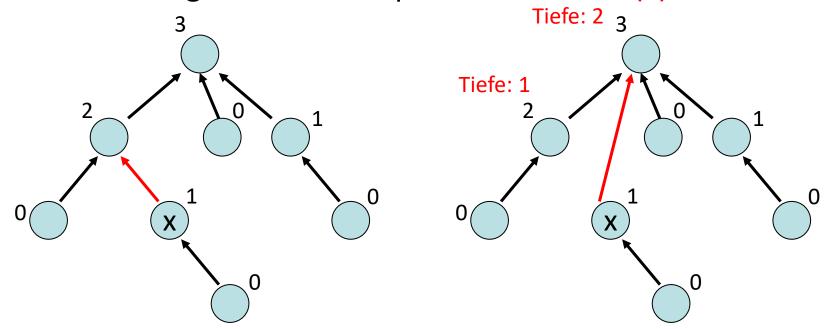


Beobachtungen:

 Wenn ein Repräsentant angehängt wird und damit kein Repräsentant mehr ist, ändert sich sein Rang nicht mehr

Union-Find Datenstruktur: rank(x)

Auswirkung von Pfadkompression bei Find(x)

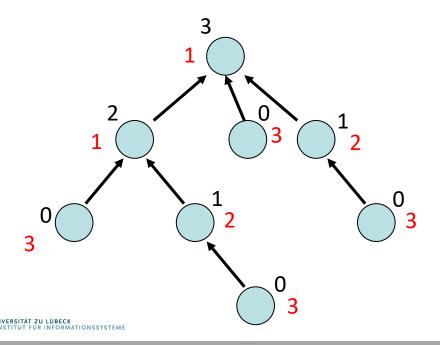


Beobachtungen:

- Auf dem Weg zur Wurzel: rank(xi) aufsteigend
- Neuer Elternknoten hat h\u00f6heren Rang

Jedes Element x gehört einer Gruppe gi an

- Gruppe $g_i = \{v \mid log^{j+1} n < rank(v) \le log^j n\}, j > 0$
 - log^j n wendet den Logarithmus j-mal auf n an



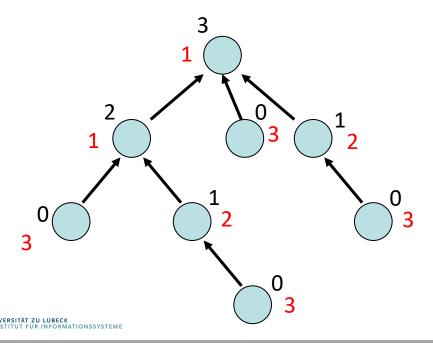
n = 8,
$$\log^* 8 = 3$$

 $\log^1 8 = 3$ g_1
 $\log^2 8 = 1.6$ g_2
 $\log^3 8 = 0.7$ g_3
 $\log^4 8 = -0.5$

$$rank(x)$$
 $j: x \in g_j$

Beobachtungen:

- Knoten mit Rang log n (max. Rang) liegt in g₁
 - Gruppe $g_j = \{v \mid log^{j+1} n < rank(v) \le log^j n\}, j > 0$
 - $g_1 = \{v \mid \log^2 n < rank(v) \le \log^1 n\}$



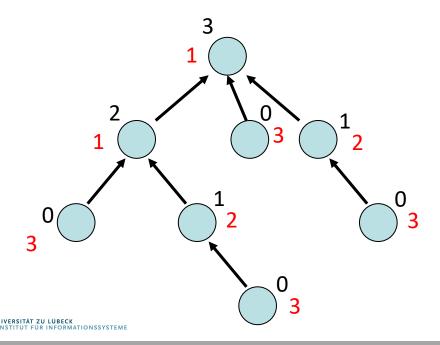
n = 8,
$$\log^* 8 = 3$$

 $\log^1 8 = 3$ gs
 $\log^2 8 = 1.6$ gs
 $\log^3 8 = 0.7$ gs
 $\log^4 8 = -0.5$

$$rank(x)$$
 $j: x \in g_j$

Beobachtungen:

- Knoten mit Rang 1 sind in g_{log* n-1} oder in g_{log* n}
- Knoten mit Rang 0 sind in g_{log* n} oder in g_{log* n+1}
 - Gruppe $g_i = \{v \mid log^{j+1} n < rank(v) \le log^j n\}, j > 0$
- Max. (log* n) + 1 Gruppen



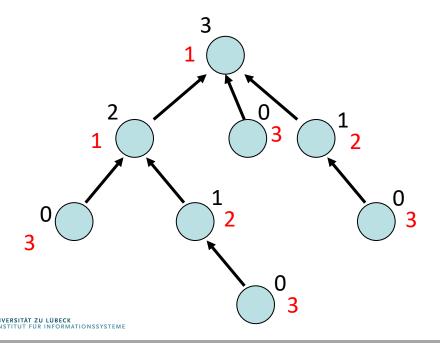
n = 8,
$$\log^* 8 = 3$$

 $\log^1 8 = 3$ gs
 $\log^2 8 = 1.6$ gs
 $\log^3 8 = 0.7$ gs
 $\log^4 8 = -0.5$

$$rank(x)$$
 $j: x \in g_j$

Beobachtungen:

- Es gibt maximal 2n/log^j n Knoten in g_i.
 - g_i enthält Knoten mit Rang zwischen [log^{j-1} n, log^j n]
 - n/2ⁱ Knoten, die einen Rang i haben können (siehe N(t))
 - Summe mit Abschätzung nach oben



n = 8,
$$\log^* 8 = 3$$

 $\log^1 8 = 3$ g
 $\log^2 8 = 1.6$ g
 $\log^3 8 = 0.7$ g
 $\log^4 8 = -0.5$

$$rank(x)$$
 $j: x \in g_j$

IM FOCUS DAS LEBEN

Theorem: Bei gewichtetem Union mit Pfadkompression ist die amortisierte Zeit für **Find** O(log* n).

Theorem: Bei gewichtetem Union mit Pfadkompression und gegeben n≥2 Elementen ist die amortisierte Zeit für m≥n Operationen O(m log* n).

- Sequenz aus m Operationen besteht aus
 - Union: max. n-1
 - Find: min. m-(n-1)

Theorem: Bei gewichtetem Union mit Pfadkompression und gegeben n≥2 Elementen ist die amortisierte Zeit für m≥n Union und Find Operationen O(m log* n).

- Max. n-1 Union Operationen
 - Aufwand pro Union von O(1) (konstant)
 - Also Aufwand in O(n)
- Max. m Find Operationen
 - Aufwand abhängig von Anzahl der Knoten, die durch Pfadkompression auf die Wurzel umgeleitet werden.

Theorem: Bei gewichtetem Union mit Pfadkompression und gegeben n≥2 Elementen ist die amortisierte Zeit für m≥n Union und Find Operationen O(m log* n).

Begründung:

Maximal m Find Operationen

- Find(x): Pfad von x zur Wurzel
 - Jeder Knoten auf dem Pfad wird umgeleitet
 - Kosten (1 Einheit) für das Umleiten aufteilen
 - Wenn group(x) > group(parent(x)): Find(x) zusortieren
 - 2. Wenn group(x) = group(parent(x)) : x zusortieren
- Zusortierte Kosten aufsummieren

Theorem: Bei gewichtetem Union mit Pfadkompression und gegeben n≥2 Elementen ist die amortisierte Zeit für m≥n Union und Find Operationen O(m log* n).

Begründung:

Kosten für das Umleiten aufteilen

- 1. Wenn group(x) > group(parent(x)) : Find(x) zusortieren
 - Oder wenn parent(x) Wurzel
 - Max. log* n + 1 Gruppen
 - Wechsel von einer Gruppe zur nächsten also max. log* n
 - Kosten, die Find(x) zusortiert werden: max. log* n
- 2. Wenn group(x) = group(parent(x)) : x zusortieren

Theorem: Bei gewichtetem Union mit Pfadkompression und gegeben n≥2 Elementen ist die amortisierte Zeit für m≥n Union und Find Operationen O(m log* n).

- 2. Wenn group(x) = group(parent(x)) : x zusortieren
 - Pro Gruppe max. 2n/log^j n Knoten x_j
 - Jeder Knoten x_i kann max. log^j n mal umgeleitet werden
 - Dann gehört Elternknoten der nächsten Gruppe an
 - Kosten gehen an Find ab nächstem Mal
 - Pro Gruppe erhalten die Knoten max. 2n Kosten
 - Bei max. log* n + 1 Gruppen: max. 2n (log* n + 1)

Theorem: Bei gewichtetem Union mit Pfadkompression und gegeben n≥2 Elementen ist die amortisierte Zeit für m≥n Union und Find Operationen O(m log* n).

- Max. m Find Operationen
 - Pro Find(x): O(log* n)
 - Bei m Find Operationen: O(m log* n)
 - Für n Knoten über alle m Find Operationen:
 O(n (log* n + 1)) = O(n (log log* n)) = O(n (log* log n)) =
 O(n log*n)
 - O(m log* n) + O(n log* n) = O((m+n) log* n)

Theorem: Bei gewichtetem Union mit Pfadkompression und gegeben n≥2 Elementen ist die amortisierte Zeit für m≥n Operationen O(m log* n).

- Aufwand für Union und Find Operationen
 - Union: O(n)
 - Find: O((m+n) log* n)
 - Zusammen: O((m+n) log* n)
- Wenn m >> n : O(m log* n)
 - Quasi linear abhängig von m, da log * n quasi konstant

Theorem: Bei gewichtetem Union mit Pfadkompression ist die amortisierte Zeit für **Find** O(log* n).

Theorem: Bei gewichtetem Union mit Pfadkompression und gegeben n≥2 Elementen ist die amortisierte Zeit für m≥n Operationen O(m log* n).

- Wenn m >> n sind fast alle m Operationen Finds
 - Da Anzahl an Unions max. n-1
 - Gleiches Argument für n MakeSet(x) Operationen
- Amortisierte Zeit für eine Find Operation O(log* n)

Zusammenfassung

- Find: O(log* n) amort., Union: O(1)
- Können wir Find auf O(1) bringen?
 - Nur wenn Union nicht mehr in O(1)
 - Die Find-Abschätzung kann tatsächlich noch deutlich verbessert werden¹: $O(\alpha(n))$ amort., wobei α die Umkehrfunktion der Ackermannfunktion ist, also SEHR SEHR langsam wächst
- Man kann nicht gleichzeitig Find und Union auf O(1) bringen²

¹ Tarjan, Robert E.; van Leeuwen, Worst-case analysis of set union algorithms, Journal of the ACM 31 (2), S. 245–281, **1984**