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Motivation

The techniques we’ve seen so far all built on the same
assumptions:

I Query processing cost is dominated by disk I/O.
I Main memory is random-access memory.
I Access to main memory has negligible cost.

Are these assumptions justified at all?
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Hardware Trends
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Hardware Trends

There is an increasing gap between CPU and memory speeds.

Also called the memory wall.

CPUs spend much of their time waiting for memory.
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Memory 6= Memory

Dynamic RAM (DRAM) Static RAM (SRAM)

VDD

WL

BL
BL

State kept in capacitor

Leakage

! refreshing needed

Bistable latch (0 or 1)

Cell state stable

! no refreshing needed
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DRAM Characteristics

Dynamic RAM is comparably slow.

Memory needs to be refreshed periodically (⇡ every 64ms).
(Dis-)charging a capacitor takes time.

charge discharge
%
ch
ar
ge
d

time

DRAM cells must be addressed and capacitor outputs amplified.

Overall we’re talking about ⇡ 200 CPU cycles per access.
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DRAM Characteristics

Under certain circumstances, DRAM can be reasonably fast.

DRAM cells are physically organized as a 2-d array.

The discharge/amplify process is done for an entire row.

Once this is done, more than one word can be read out.

In addition,

Several DRAM cells can be used in parallel.

! Read out even more words in parallel.

We can exploit that by using sequential access patterns.
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SRAM Characteristics

SRAM, by contrast, can be very fast.

Transistors actively drive output lines, access almost instantaneous.

But:

SRAMs are significantly more expensive (chip space ⌘ money)
Therefore:

Organize memory as a hierarchy.

Small, fast memories used as caches for slower memory.
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Memory Hierarchy

CPU

L1 Cache

L2 Cache

main memory
...
disk

technology

SRAM

SRAM

SRAM

DRAM

capacity

bytes

kilobytes

megabytes

gigabytes

latency

< 1 ns

⇡ 1 ns
< 10 ns

70–100 ns

Some systems also use a 3rd level cache.

cf. Architecture & Implementation course

! Caches resemble the bu↵er manager but are controlled by
hardware
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Principle of Locality

Caches take advantage of the principle of locality.

90% execution time spent in 10% of the code.

The hot set of data often fits into caches.

Spatial Locality:

Code often contains loops.

Related data is often spatially close.

Temporal Locality:

Code may call a function repeatedly, even if it is not spatially close.

Programs tend to re-use data frequently.
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CPU Cache Internals

To guarantee speed, the overhead of caching must be kept reasonable.

Organize cache in cache lines.

Only load/evict full cache lines.

Typical cache line size: 64 bytes.

0 1 2 3 4 5 6 7

cache line

line
size

The organization in cache lines is consistent with the principle of
(spatial) locality.

Block-wise transfers are well-supported by DRAM chips.
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Memory Access

On every memory access, the CPU checks if the respective cache line is
already cached.

Cache Hit:

Read data directly from the cache.

No need to access lower-level memory.

Cache Miss:

Read full cache line from lower-level memory.

Evict some cached block and replace it by the newly read cache line.

CPU stalls until data becomes available.2

2Modern CPUs support out-of-order execution and several in-flight cache

misses.
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Block Placement: Fully Associative Cache

In a fully associative cache, a block can be loaded into any cache line.

O↵ers freedom to block
replacement strategy.

Does not scale to large
caches

! 4MB cache,
line size: 64B:
65,536 cache lines.

Used, e.g., for small
TLB caches.
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Block Placement: Direct-Mapped Cache

In a direct-mapped cache, a block has only one place it can appear in
the cache.

Much simpler to
implement.

Easier to make fast.

Increases the chance of
conflicts.
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Block Placement: Set-Associative Cache

A compromise are set-associative caches.

Group cache lines into
sets.

Each memory block
maps to one set.

Block can be placed
anywhere within a set.

Most processor caches
today are
set-associative.
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E↵ect of Cache Parameters
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Block Identification

A tag associated with each cache line identifies the memory block
currently held in this cache line.

status tag data

The tag can be derived from the memory address.

byte address

block address

tag set index o↵set
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Example: Intel Q6700 (Core 2 Quad)

Total cache size: 4MB (per 2 cores).

Cache line size: 64 bytes.

! 6-bit o↵set (26 = 64)
! There are 65,536 cache lines in total (4MB÷ 64 bytes).
Associativity: 16-way set-associative.

! There are 4,096 sets (65, 536÷ 16 = 4, 096).
! 12-bit set index (212 = 4, 096).

Maximum physical address space: 64GB.

! 36 address bits are enough (236 bytes = 64GB)
! 18-bit tags (36� 12� 6 = 18).

18 bit 12 bit 6 bit

tag set index o↵set
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Block Replacement

When bringing in new cache lines, an existing entry has to be evicted.

Di↵erent strategies are conceivable (and meaningful):

Least Recently Used (LRU)

Evict cache line whose last access is longest ago.

! Least likely to be needed any time soon.

First In First Out (FIFO)

Behaves often similar like LRU.

But easier to implement.

Random

Pick a random cache line to evict.

Very simple to implement in hardware.

Replacement has to be decided in hardware and fast.
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What Happens on a Write?

To implement memory writes, CPU makers have two options:

Write Through

Data is directly written to lower-level memory (and to the cache).

! Writes will stall the CPU.3

! Greatly simplifies data coherency.

Write Back

Data is only written into the cache.

A dirty flag marks modified cache lines (Remember the status field.)

! May reduce tra�c to lower-level memory.
! Need to write on eviction of dirty cache lines.

Modern processors usually implement write back.

3Write bu↵ers can be used to overcome this problem.
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Putting it all Together

To compensate for slow memory, systems use caches.

DRAM provides high capacity, but long latency.

SRAM has better latency, but low capacity.

Typically multiple levels of caching (memory hierarchy).

Caches are organized into cache lines.

Set associativity: A memory block can only go into a small number
of cache lines (most caches are set-associative).

Systems will benefit from locality.

A↵ects data and code.
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Example: AMD Opteron

Example: AMD Opteron, 2.8 GHz, PC3200 DDR SDRAM

L1 cache: separate data and instruction caches,
each 64 kB, 64B cache lines, 2-way set-associative

L2 cache: shared cache,
1MB, 64B cache lines, 16-way set-associative, pseudo-LRU policy

L1 hit latency: 2 cycles

L2 hit latency: 7 cycles (for first word)

L2 miss latency: 160–180 cycles
(20 CPU cycles + 140 cy DRAM latency (50 ns) + 20 cy on mem. bus)

L2 cache: write-back

40-bit virtual addresses

Source: Hennessy & Patterson. Computer Architecture—A Quantitative Approach.
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Performance (SPECint 2000)
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Assessment

Why do database systems show such poor cache behavior?

Poor code locality:

Polymorphic functions
(E.g., resolve attribute types for each processed tuple individually.)

Volcano iterator model (pipelining)
Each tuple is passed through a query plan composed of many
operators.

Poor data locality:

Database systems are designed to navigate through large data
volumes quickly.

Navigating an index tree, e.g., by design means to “randomly” visit
any of the (many) child nodes.
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Data Caches

How can we improve data cache usage?

Consider, e.g., a selection query:

SELECT COUNT(*)

FROM lineitem

WHERE l_shipdate = "2009-09-26"

This query typically involves a full table scan.
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Table Scans (NSM)

Tuples are represented as records stored sequentially on a database page.

recordl_shipdate

cache block boundaries

With every access to a l_shipdate field, we load a large amount of
irrelevant information into the cache.

Accesses to slot directories and variable-sized tuples incur additional
trouble.
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Motivation

Let’s have a look at a real, large-scale database:
I Amadeus IT Group is a major provider for travel-related IT.
I Core database: “Global Distribution System” (GDS):

I dozens of millions of flight bookings
I few kilobytes per booking
I several hundred gigabytes of data

These numbers may sound impressive, but:
I The hot set of this database is significantly slower.

I Flights with near departure times are most interesting.
I My laptop already has four gigabytes of RAM.

It is perfectly realistic to have the hot set in main memory.
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Row-Wise Storage

Remember the row-wise data layout we discussed in Chapter I:

a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4

a1 b1 c1
c1 d1 a2

b2 c2 d2
d2 a3 b3

c3 d3

page 0

a4 b4 c4
c4 d4

page 1

I Records in Amadeus’ ITINERARY table are⇡ 350 bytes,
spanning over 47 attributes (i.e., 10–30 records per page).
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Row-Wise Storage
To answer a query like

SELECT * FROM ITINERARY
WHERE FLIGHTNO = ’LX7’ AND CLASS = ’M’

the system has to scan the entire ITINERARY table.18

I The table probably won’t fit
into main memory as a whole.

I Though we always have to
fetch full tables from disk, we
will only inspect⇡ 20–60 data
items per page (to decide the
predicate).

18assuming there is no index support
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Column-Wise Storage

Compare this to a column-wise storage:

a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4

a1 a2 a3
a3 a4

page 0

b1 b2 b3
b3 b4

page 1

· · ·

We now have to evaluate the query in two steps:
1. Scan the pages that contain the FLIGHTNO and CLASS

attributes.
2. For each matching tuple, fetch the 45 missing attributes

from the remaining data pages.
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Column-Wise Storage

I We read only a subset of the table,
which may now fit into memory.

I We actually use hundreds or
thousands of data items per page.

I But: We have to re-construct each
tuple from 45 different pages.

scan

fe
tc

h

Column-wise storage particularly pays off if
I tables are wide (i.e., contain many columns),
I there is no index support (in high-dimensional spaces, e.g.,

indexes become ineffective% Chapter III), and
I queries have a high selectivity.

OLAP workloads are the prototypical use case.
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Example: MonetDB
The open-source database MonetDB19 pushes the idea of vertical
decomposition to its extreme:

I All tables (“binary association tables, BATs”) have 2 columns.

ID NAME SEX
4711 John M
1723 Marc M
6381 Betty F

;
OID ID
0 4711
1 1723
2 6381

OID NAME
0 John
1 Marc
2 Betty

OID SEX
0 M
1 M
2 F

I Columns that carry consecutive numbers (such as OID
above) can be represented as virtual columns.

I They are only stored implicitly (tuple order).
I Reduces space consumption and allows positional

lookups.
19
http://www.monetdb.org/
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Reduced Memory Footprint

I With help of column-wise storage, the hot set of the
database may better fit into main memory.

I In addition, it increases the effectiveness of compression.
I All values within a page belong to the same domain.
I There’s a high chance of redundancy in such pages.

I So, with “all” data in main memory, are we done already?

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 304



Main Memory Access Cost
int data[rows * columns];

for (int c = 0; c < colums; c++)

for (int r = 0; r < rows; r++)

process (data[r * columns + c]);
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Main Memory Access Cost

int data[arr_size];

for (int i = arr_size - 1;

i >= 0; i -= stride)

process (data[i]);

I Memory access incurs a
significant latency (209
CPU cycles here).

I (Multiple levels of)
caches try to hide this
latency.

I Latency is increasing
over time.
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Memory Access Cost

I Various caches lead to the situation that RAM is not
random-access in today’s systems.

I multi-level data caches
(Intel x86: two levels20, AMD: three levels),

I instruction caches,
I translation lookaside buffers (TLBs)

(to speed-up virtual address translation).
I Novel database systems (sometimes called “main-memory

databases”) include algorithms that are optimized for
in-memory processing.

I To keep matters simple, they assume that all data
always resides in main memory.

20The new i7 processor line has an L3 cache, too.
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Optimizing for Cache Efficiency

To access main memory, CPU caches, in a sense, play the role that
the buffer manager played to access the disk.

I Use the same “tricks” to make good use of the caches.
I Data processing in blocks

I Choose block size to match the cache size now.
I Sequential access

I Explicit hardware support for sequential scans.
I Use prefetching if possible.

I E.g., x86 prefetchnta assembly instruction.
I What page size was in the buffer manager, is the cache line

size in the CPU cache (e.g., 64 bytes).
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In-Memory Hash Join
Straightforward clustering may cause
problems:

I If H exceeds the number of cache
lines, cache thrashing occurs.

I If H exceeds the number of TLB
entries, clustering will thrash the
TLB.

How could we avoid these problems?

Perform clustering in multiple phases,
such that in each phase neither caches
nor the TLB is thrashed.
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Radix Clustering
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I h1 and h2 are the same hash function, but they look at
different bits in the generated hash.
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Radix Clustering
16
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(Vertical grid lines indicate, where the number of clusters created equals the number of TLB entries, L1, or L2 cache
lines, respectively.)

Figure 10: Execution Time Breakdown of Radix-Cluster using one pass (Cardinality = 8M)

In our experiments, we found that in our algorithms, branch mispredictions and instruction cache
misses do not play a role on either architecture. Thus, for simplicity of presentation, we omit them
in our evaluation.

Radix Cluster To analyze the impact of all three parameters (B, P , Bp) on radix clustering, we
conduct two series of experiments, keeping one parameter fixed and varying the remaining two.

First, we conduct experiments with various numbers of radix-bits and passes, distributing the radix-
bits evenly across the passes. Figure 10 shows an execution time breakdown for 1-pass radix-cluster
(C = 8M) on each architecture. The pure CPU costs are nearly constant across all numbers of radix-
bits, taking about 3 seconds on the Origin, 2.5 seconds on the PC, and a about 5.5 seconds on the Sun.
Memory and TLB costs are low with small numbers of radix-bits, but grow significantly with rising
numbers of radix-bits. With more than 6 radix-bits, the number of clusters to be filled concurrently
exceeds the number of TLB entries (64), causing the number of TLB misses to increase significantly.
On the Origin and on the Sun, the execution time increases significantly due to their rather high TLB
miss penalties. On the PC however, the impact of TLB misses is hardly visible due to its very low
TLB miss penalty. Analogously, the memory costs increase as soon as the number of clusters exceeds
the number of L1 and L2 cache lines, respectively. Further, on the PC, “resource related stalls” (i.e.,
stalls due to functional unit unavailability) play a significant role. They make up one fourth of the
execution time when the memory costs are low. When the memory costs rise, the resource related
stalls decrease and finally vanish completely, reducing the impact of the memory penalty. In other
words, minimizing the memory access costs does not fully pay back on the PC, as the resource related
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Figure 11: Execution Time Breakdown of Radix-Cluster using optimal number of passes (C = 8M)

#define HASH(v) ((v>>7) XOR (v>>13) XOR (v>>21) XOR v)
typedef struct {

int v1,v2; /* simplified binary tuple */
} bun;

radix cluster(bun *dst[2D], bun *dst end[2D] /* output bu�ers for created clusters */
bun *rel, bun *rel end, /* input relation */
int R, int D /* radix and cluster bits */

){
int M = (2D - 1) << R;
for(bun*cur=rel; cur<rel end; cur++) {
int idx = (*hashFcn)(cur!v2)&M; int idx = HASH(cur!v2)&M;
memcpy(dst[idx], cur, sizeof(bun)); *dst[idx] = *cur;
if (++dst[idx]�dst end[idx]) REALLOC(dst[idx],dst end[idx]);

}
}

Figure 12: C language radix-cluster with annotated CPU optimizations (right)

stalls partly take over their part.
Figure 11 depicts the breakdown for radix-cluster using the optimal number of passes. The idea

of multi-pass radix-cluster is to keep the number of clusters generated per pass low—and thus the
memory costs—at the expense of increased CPU costs. Obviously, the CPU costs are too high to
avoid the TLB costs by using two passes with more than 6 radix-bits. Only with more than 15
radix-bits—i.e., when the memory costs exceed the CPU costs—two passes win over one pass.

The only way to improve this situation is to reduce the CPU costs. Figure 12 shows the source
code of our radix-cluster routine. It performs a single-pass clustering on the D bits that start R bits
from the right (multi-pass clustering in P > 1 passes on B = P ⇤D bits is done by making subsequent
calls to this function for pass p = 1 through p = P with parameters Dp = D and Rp = (p � 1) ⇤D,
starting with the input relation and using the output of the previous pass as input for the next). As the
algorithm itself is already very simple, improvement can only be achieved by means of implementation

18

Origin2000

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0

se
co

nd
s

cl
oc

ks
 (i

n 
bi

llio
ns

)

number of radix-bits

P=1 P=2 P=3

Sun Ultra

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

0 5 10 15 20
0.0

0.5

1.0

1.5

se
co

nd
s

cl
oc

ks
 (i

n 
bi

llio
ns

)

number of radix-bits

P=1 P=2

Intel PC

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

0 5 10 15 20
0.0

1.0

2.0

3.0

4.0

se
co

nd
s

cl
oc

ks
 (i

n 
bi

llio
ns

)

number of radix-bits

P=1 P=2

Figure 13: Execution Time Breakdown of optimized Radix-Cluster using optimal number of passes
(C = 8M)

techniques. We replaced the generic ADT-like implementation by a specialized one for each data type.
Thus, we could inline the hash function and replace the memcpy by a simple assignment, saving two
function calls per iteration.

Figure 13 shows the execution time breakdown for the optimized multi-pass radix-cluster. The CPU
costs have reduced significantly, by almost a factor 4. Replacing the two function calls has two e�ects.
First, some CPU cycles are saved. Second, the CPUs can benefit more from the internal parallel
capabilities using speculative execution, as the code has become simpler and parallelization options
more predictable. On the PC, the resource stalls have doubled, neutralizing the CPU improvement
partly. We think the simple loop does not consist of enough instructions to fill the relatively long
pipelines of the PC e�ciently.

With this optimization, multi-pass radix-cluster is feasible already with smaller numbers of radix-
bits. On the Origin, two passes win with more than 6 radix-bits, and three passes win with more
than 13 radix-bits, thus avoiding TLB thrashing nearly completely. On the PC, the improvement
is marginal. The severe impact of resource stalls with low numbers of radix-bits makes the memory
optimization of multi-pass radix-cluster almost ine�ective.

In order to estimate the performance of radix-cluster, and especially to predict the number of passes
to be used for a certain number of radix-bits, we now provide an accurate cost model for radix-cluster.
The cost model takes the number of passes, the number of radix-bits, and the cardinality as input
and estimates the number of memory related events, i.e., L1 cache misses, L2 cache misses, and TLB
misses. The overall execution time is calculated by scoring the events with their penalties and adding
the pure CPU costs.
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I SGI Origin 2000, 250 MHz, 32 kB L1 cache, 4 MB L2 cache.
% S. Manegold, P. Boncz, and M. Kersten. Optimizing Main-Memory Join
on Modern Hardware. IEEE TKDE, vol. 14(4), Jul/Aug 2002.
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(Vertical grid lines indicate, where the number of clusters created equals the number of TLB entries, L1, or L2 cache
lines, respectively.)

Figure 10: Execution Time Breakdown of Radix-Cluster using one pass (Cardinality = 8M)

In our experiments, we found that in our algorithms, branch mispredictions and instruction cache
misses do not play a role on either architecture. Thus, for simplicity of presentation, we omit them
in our evaluation.

Radix Cluster To analyze the impact of all three parameters (B, P , Bp) on radix clustering, we
conduct two series of experiments, keeping one parameter fixed and varying the remaining two.

First, we conduct experiments with various numbers of radix-bits and passes, distributing the radix-
bits evenly across the passes. Figure 10 shows an execution time breakdown for 1-pass radix-cluster
(C = 8M) on each architecture. The pure CPU costs are nearly constant across all numbers of radix-
bits, taking about 3 seconds on the Origin, 2.5 seconds on the PC, and a about 5.5 seconds on the Sun.
Memory and TLB costs are low with small numbers of radix-bits, but grow significantly with rising
numbers of radix-bits. With more than 6 radix-bits, the number of clusters to be filled concurrently
exceeds the number of TLB entries (64), causing the number of TLB misses to increase significantly.
On the Origin and on the Sun, the execution time increases significantly due to their rather high TLB
miss penalties. On the PC however, the impact of TLB misses is hardly visible due to its very low
TLB miss penalty. Analogously, the memory costs increase as soon as the number of clusters exceeds
the number of L1 and L2 cache lines, respectively. Further, on the PC, “resource related stalls” (i.e.,
stalls due to functional unit unavailability) play a significant role. They make up one fourth of the
execution time when the memory costs are low. When the memory costs rise, the resource related
stalls decrease and finally vanish completely, reducing the impact of the memory penalty. In other
words, minimizing the memory access costs does not fully pay back on the PC, as the resource related

one-pass clustering

multi-pass clustering

optimized multi-pass
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Optimizing Instruction Cache Usage

Consider a query processor that uses tuple-wise pipelining:

I Each tuple is passed through the pipeline,
before we process the next one.

I For eight tuples we obtain an execution trace

ABCABCABCABCABCABCABCABC ,

where A, B, and C correspond to the code that
implements the three operators.

A

B

C

I Depending on the size of the code that implements A, B, and
C, this can mean instruction cache thrashing.
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Optimizing Instruction Cache Usage
I We can improve the effect of instruction caching if we do

pipelining in larger chunks.
I E.g., four tuples at a time:

AAAABBBBCCCCAAAABBBBCCCC .

I Three out of four executions of every operator will now find
their instructions cached.21

I MonetDB again pushes this idea to the extreme. Full tables
are processed at once (“full materialization”).

What do you think about this approach?

If we choose the chunk size too large, we lose temporal locality in
the data caches. Need to balance data vs. instruction caches.

21This assumes that A, B, and C fit into the instruction cache individually. A
variation is to group operators, such that the code for each group fits into cache.
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Multiple CPU Cores

I Current trend in hardware technology is to no longer
increase clock speed, but rather increase parallelism.

I Multiple CPU cores are packaged onto a single die.
I Such cores often share a common cache.

I If such cores work on fully
independent tasks, they will often
compete for the shared cache.

I Can we make them work together instead?

Fall 2008 Systems Group — Department of Computer Science — ETH Zürich 314



Bi-Threaded Operators

Idea: Pair each database thread with a helper thread.
I All operator execution remains in the main thread.
I The helper thread works ahead of the main thread and

preloads the cache with data that will soon be needed by
the main thread.

I While the helper thread experiences all the memory stalls,
the main thread can continue doing useful work.

% J. Zhou, J. Cieslewicz, K. A. Ross, M. Shah. Improving Database
Performance on Simultaneous Multithreading Processors. VLDB 2005.
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Work-Ahead Set
Main and helper thread communicate via a work-ahead set.

I Main thread posts soon-to-be-needed memory references pi
into a work-ahead set.

I Helper thread reads memory references pi from the
work-ahead set, accesses pi, and thus populates the cache.

w.-a. set
p1
p2
p3
...

post(p) read(p)main
thread

helper
thread

shared cache
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Work-Ahead Set

I Note that the correct operation of the main thread does not
depend on the helper thread.

Why not use CPU-provided prefetch instructions instead?
I Prefetch instructions (e.g., prefetchnta) are only hints to

the CPU, which are not binding.
I The CPU will drop prefetch requests, e.g., if prefetching

would cause a TLB miss.

I Bi-threaded operators need to be implemented with care.
I Concurrent access to the work-ahead set may cause

communication between CPU cores to ensure cache
coherence.
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Heterogeneous Multi-Core Systems
I In addition to an increased number of CPU cores, there is

also a trend toward an increased diversification of cores, e.g.,
I graphics processors (GPUs),
I network processors.
I The Cell Broadband Engine comes with one

general-purpose core and eight “synergetic processing
units (SPEs)”, optimized for vector-oriented processing.

I Some of their functionality is well-suited for expensive
database tasks.

I Sorting, e.g., can be mapped to GPU primitives.
% Govindaraju et al. GPUTeraSort: High Performance Graphics Co-
Processor Sorting for Large Database Management. SIGMOD 2006.

I Network processors provide excellent multi-threading
support.
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