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(Reading: R&N AIMA  3rd ed., Chapter 18.5) 
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Inductive learning:  
given the  training set, a learning algorithm generates a hypothesis. 
 
Run hypothesis on the test set. The results say something about how good our 

hypothesis is.  
 
But how much do the results really tell you? Can we be certain about how the 

learning algorithm generalizes?  
 
We would have to see all the examples. 
 

Computational Learning Theory 

Insight: introduce probabilities to measure degree of 
certainty and correctness (Valiant 1984). 
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Example:  
 
We want to use height to distinguish men and women drawing people from 

the same distribution for training and testing. 
 
We can never be absolutely certain that we have learned correctly our target 

(hidden) concept function. (E.g., there is a non-zero chance that, so far, we 
have only seen  a sequence of bad examples) 

 
E.g., relatively tall women and relatively short men… 
 
We’ll see that it’s generally highly unlikely to see a long series of bad 

examples! 

Computational Learning Theory 
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Aside: flipping a coin 
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Experimental data 

C program – simulation of flips of a fair coin: 
 
 



Carla P. Gomes 
CS4700 

Experimental Data Contd. 

Coin example is the key to computational learning theory! 

 With a sufficient number of flips  
(set of flips=example of coin bias), 
 large outliers become quite rare.  
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Computational Learning Theory 

Intersection of AI, statistics, and theory of computation. 
 
Introduce Probably Approximately Correct Learning concerning 

efficient learning 
 
For our learning procedures we would like to prove that: 
 

With high probability an (efficient) learning algorithm will find a 
hypothesis that is approximately identical to the hidden target concept. 

 
 Note the double “hedging” – probably and approximately. 

 
Why do we need both levels of uncertainty (in general)? 
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Probably Approximately  
Correct Learning 

 

  
Underlying principle: 
 

 Seriously wrong hypotheses can be found out almost certainly 
(with high probability) using a “small” number of examples 

 
–  Any hypothesis that is consistent with a significantly large 

set of training examples is unlikely to be seriously wrong: it 
must be  probably approximately correct. 

–  Any (efficient) algorithm that returns hypotheses that are 
PAC is called a PAC-learning algorithm   
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Probably Approximately  
Correct Learning 

 

How many examples are needed to guarantee correctness?  
 
 

–  Sample complexity (# of examples to “guarantee” 
correctness) grows with the size of the Hypothesis  space 

–  Stationarity assumption: Training set and test sets are drawn 
from the same distribution 
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Notations: 
–  X: set of all possible examples 
–  D: distribution from which examples are drawn 
–  H: set of all possible hypotheses 
–  N: the number of examples in the training set 
–  f: the true function to be learned  

Assume: the true function f is in H. 
 
Error of a hypothesis h wrt f :  
 

 Probability that h differs from f on a randomly picked example: 
 

                      error(h) = P(h(x) ≠ f(x)| x drawn from D)   
 
 
 

Exactly what we are trying to measure with our test set. 

Notations 
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A hypothesis h is  approximately correct if: 
 

                      error(h) ≤ ε,  
 
 where ε is a given threshold, a small constant 
 

Goal: 
 

 Show that after seeing a small (poly) number of examples N, with 
high probability, all consistent hypotheses will be approximately correct. 
 
I.e, chance of “bad” hypothesis, (high error but consistent with examples) is 

small  (i.e, less than δ) 

Approximately Correct  
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Approximately Correct 

Approximately correct hypotheses lie inside 
 the ε -ball around f;  
Those hypotheses that are seriously wrong (hb ∈ 
HBad) are outside the ε -ball,  
 
Error(hbad)= P(hb(x) ≠ f(x)| x drawn from D)   > ε,  
 
Thus the probability that the hbad (a seriously wrong 
hypothesis) disagrees with  one example is at least ε  
(definition of error).  
 
 
 
 

Thus the probability that the hbad (a seriously wrong hypothesis) agrees with  one 
example is no more than (1- ε).  

So for N examples,  P(hb  agrees with N examples) ≤ (1- ε )N.  
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Approximately Correct Hypothesis 

The probability that HBad contains at least one consistent hypothesis is  
bounded by the sum of the individual probabilities. 
 
 P(Hbad  contains a consistent hypothesis, agreeing with all the examples) 
≤ |Hbad|(1- ε )N ≤ |H|(1- ε )N  

 

hbad agrees with  one example is no more than (1- ε).  



P(Hbad  contains a consistent hypothesis) ≤ |Hbad|(1- ε )N ≤ |H|(1- ε )N 

Goal –  
Bound the probability of learning a  bad hypothesis  below some 

small number δ. 
 
 
 
 
What is the probability 
P(Hgood) of learning a  
good hypothesis? 
 
How large should N be? 
 
Derivation: see blackboard 

Sample Complexity: Number of examples to  
guarantee a PAC learnable function class 

If the  learning algorithm returns a  
hypothesis that is consistent with this many  

examples, then with probability at least (1-δ) the  
learning algorithm has an error of at most ε.  

and the hypothesis  is  
Probably Approximately Correct.  

Note: 
The more accuracy  (smaller ε), and  
the more certainty (with smaller δ)  
one wants, the more examples one needs. 

P(Hbad  contains a consistent hypothesis) ≤ 
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Probably Approximately correct hypothesis h: 
–  If the probability of  a small error (error(h) ≤ ε ) is greater than or equal to 

a given threshold 1 - δ 
–  A   bound on the number of examples (sample complexity) needed to 

guarantee PAC, that is polynomial 

 (The more accuracy   (with smaller ε), and the more certainty desired  (with smaller δ), the more examples 
one needs.) 

–  An efficient learning algorithm 

Theoretical results apply to fairly simple learning models (e.g., decision list learning) 
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PAC Learning 

Two steps: 
 

 Sample complexity – a polynomial number of examples suffices to specify a 
good consistent hypothesis (error(h) ≤ ε ) with high probability (≥ 1 – δ). 

 
 
 

 Computational complexity – there is an efficient algorithm for learning a 
consistent  hypothesis from the small sample. 

 
 
  
 

  

Let’s be more specific with  examples. 
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Example: 
Boolean Functions 

Consider H the set of all Boolean function on n attributesà 

)2(|)H|ln1(ln1 nON =+≥
δε

n

H 22|| =

So the sample complexity grows as 2n  L! 
(same as the number of all possible   examples) 

Not PAC-Learnable! 
 
 

Intuitively what does it say about H? 
Finite H required! 

So, any learning algorithm will do not better than a lookup table 
if it merely returns a hypothesis that is  consistent with all known 

examples! 
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Coping With Learning Complexity 

1.  Force learning algorithm to look for smallest  consistent hypothesis. 
 
We considered that  for Decision Tree Learning, often worst case 

intractable though. 
. 

2.  Restrict  size of hypothesis space. 
e.g., Decision Lists à restricted form of Boolean Functions: 
Hypotheses correspond to a series of tests, each of which   a 

conjunction of literals 
 

 Good news: only a poly size number of examples 
 is required for guaranteeing PAC learning K-DL functions 

and there are efficient algorithms for learning K-DL  
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Decision Lists 

Resemble Decision Trees, but with simpler structure: 
 Series of tests, each test a conjunction of literals; 
 If a test succeeds, decision list specifies value to return; 
 If test fails, processing continues with the next test in the list. 

 
 No 

Note: if we allow arbitrarily many literals per test , decision list can express all Boolean functions. 

a=Patrons(x,Some) b=patrons(x,Full) c=Fri/Sat(x) 

   (a)  (b∧c)   
    Y      Y    N 
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a=Patrons(x,None) b=Patrons(x,Some) 

d=Hungry(x) 

e=Type(x,French) f=Type(x,Italian) g=Type(x,Thai) h=Type(x,Burger) 

i=Fri/Sat(x) 

(a) 
No 

(b) 
Yes 

(¬d) 
No 

(e) 
Yes 

(h) 
Yes 

(f) 
No 

(i) 
Yes No 
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K Decision Lists 

Decision Lists with limited expressiveness (K-DL) – at most k literals per test 
 
 
 
 
 
 
 

K-DL is PAC learnable!!! 
 

 For fixed k literals, the number of examples needed for PAC learning a  
K-DL function is polynomial  in the number of attributes n. 

: 
 
 
 

  
There are efficient algorithms for learning K-DL functions.  

2-DL 
   (a)  (b∧c)   
    Y      Y    N 

So how do we show K-DL is PAC-learnable? 
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K-Decision Lists   à set of tests: each test is a conjunct of at most k literals   

(x) 
No 

(y) 
Yes 

(w∧¬v) 
No 

(u∧¬b) 
Yes No 

2-DL 
K Decision Lists: 

Sample Complexity 

|)H|ln1(ln1
+≥

δε
N   What’s the size of the hypothesis space H, 

 i.e, |K-DL(n)|? 

How many possible tests (conjuncts) of length at most k, given n literals, conj(n,k)? 

)()()()(2|),(| 22
3

2
2

kn
k

nn nOnknConj =+++≤ !

A conjunct (or test) can appear in the list as: Yes, No, absent from list 

So we have at  most  3 |Conj(n,k)|  different K-DL lists (ignoring order) 

But the order of the tests (or conjuncts) in a list matters.  

|k-DL(n)| ≤ 3 |Conj(n,k)| |Conj(n,k)|! 
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After some work, we get (useful exercise!; try mathematica or maple) 
 
 
 

))(log( 22|)(|
kk nnOnDLK =−

1 - Sample Complexity of K-DL is: 

)))(log(1(ln1
2

kk nnON +≥
δε

For fixed k literals, the number of examples needed for PAC learning a  
K-DL function is polynomial  in the number of attributes n, J! 

: 

So  K-DL is PAC learnable!!! 

|)H|ln1(ln1
+

δε
≥N

Recall sample complexity formula 

2 – Efficient learning algorithm – a  decision list of length k can be learned in 
polynomial time. 
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Decision-List-Learning Algorithm 
 

àrepeatedly finds a test that agrees with some  subset of the training set;  
 
à adds test to the decision list under construction and removes the corresponding 
examples.  
 
àuses the remaining examples, until there are no examples left, for constructing 
the rest of the decision list. 
 
(see R&N, page 672. for details on algorithm). 
 

Greedy algorithm for learning decisions lists: 
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Decision-List-Learning Algorithm 
 

Greedy algorithm for learning decisions lists: 
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Decision-List-Learning Algorithm 
 

Restaurant data. 
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Examples 

1.   H space of Boolean functions 
Not PAC Learnable, hypothesis space too big: need too many examples 
(sample complexity not polynomial)! 
2.    K-DL 

 PAC learnable 
3.    Conjunction of literals 

 PAC learnable 
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Probably Approximately Correct Learning 
(PAC)Learning (summary) 

A class of functions is said to be PAC-learnable if there exists an efficient   
learning  algorithm such that for all functions in the class, and for all  
probability distributions on the function's domain, and for any values of  
epsilon and delta (0 < epsilon, delta <1), using a polynomial number of  
examples, the algorithm will produce a  hypothesis whose error  is smaller  
than ε with probability at least δ.  
The error of a hypothesis is the probability that it will differ from the target function on a  

random element from its domain, drawn according to the given probability distribution.  
 
Basically, this means that: 
•  there is some way to learn efficiently  a "pretty good“ approximation of the target 

function.  
•  the probability is as big as you like that the error is as small as you like.  
    (Of course, the tighter you make the bounds, the harder the learning algorithm is likely to have to work).  
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Discussion 

 
 
 
  
 
 
 

Computational Learning Theory studies the tradeoffs between the  
expressiveness of the hypothesis language and the complexity of learning 

Probably Approximately Correct learning  concerns efficient learning  
 

  Sample complexity  --- polynomial  number of examples 
  Efficient Learning Algorithm   

 

Word of caution: 
  PAC learning results à worst case complexity results.  
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Sample Complexity for Infinite Hypothesis 
Spaces I: VC-Dimension 

•  The PAC Learning framework has 2 disadvantages: 
–  It can lead to weak bounds 
–  Sample Complexity bound cannot be established for infinite hypothesis 

spaces 

•  We introduce new ideas for dealing with these problems: 
–  A set of instances S is shattered by hypothesis space H iff for every 

dichotomy of S there exists some hypothesis in H consistent with this 
dichotomy. 

Nathalie Japkowicz 
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VC Dimension: Example 
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Sample Complexity for Infinite Hypothesis 
Spaces I: VC-Dimension 

The Vapnik-Chervonenkis dimension,  VC(H),  
of hypothesis space H defined over instance space X  
is the size of the largest finite subset of X shattered by H.  
 
If arbitrarily large finite sets of X can        
be shattered by H, then VC(H)=∞ 

Nathalie Japkowicz 
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VC Dimension: Example 2 

•  H = Axis parallel rectangles in R2 

•  What is the VC dimension of H 
•  Can we PAC learn? 

whesse@clarkson.edu 
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•  Consider axis parallel rectangles in the real plane 
•  Can we PAC learn it ?  
   (1) What is the VC dimension ? 

•  Some four instances (points on the rectangle) can be shattered  

Learning Rectangles 

whesse@clarkson.edu 

Shows that VC(H)>=4 
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•  Consider axis parallel rectangles in the real plane 
•  Can we PAC learn it ?  
   (1) What is the VC dimension ? 

•  But, no five instances can be shattered 

•  Two points must share a line, and if we take 4 points 
   from different lines, there is no rectangle that separates 
   the 4 points from the remaining one. 
                                                                  

Learning Rectangles 

whesse@clarkson.edu 

Therefore VC(H) = 4 
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•  Consider axis parallel rectangles in the real plane 
•  Can we PAC learn it ?  
   (1) What is the VC dimension ? 
   (2) Can we give an efficient algorithm ?  

Learning Rectangles 

whesse@clarkson.edu 
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•  Consider axis parallel rectangles in the real plane 
•  Can we PAC learn it ?  
   (1) What is the VC dimension ? 
   (2) Can we give an efficient algorithm ?  
 
                                                   Find the smallest rectangle that  
                                                   contains the positive examples  
                                                   (necessarily, it will not contain any  
                                                   negative example, and the hypothesis 
                                                   is consistent. 
    
Axis parallel rectangles are efficiently PAC learnable. 

Learning Rectangles 

whesse@clarkson.edu 
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The Mistake Bound Model of Learning 

•  The Mistake Bound framework is different from the 
PAC framework as it considers learners that receive a 
sequence of training examples and that predict, upon 
receiving each example, what its target value is.  

•  The question asked in this setting is: “How many 
mistakes will the learner make in its predictions before 
it learns the target concept?” 

•  This question is significant in practical settings where 
learning must be done while the system is in actual use. 

Nathalie Japkowicz 



Carla P. Gomes 
CS4700 

39 

Optimal Mistake Bounds 

•  Definition: Let C be an arbitrary nonempty concept class. The optimal 
mistake bound for C, denoted Opt(C), is the minimum over all possible 
learning algorithms A of MA(C).  Opt(C)=minA∈Learning_Algorithms MA(C) 

•  Proposition: For any concept class C, the optimal mistake bound is 
bound as follows: 

VC(C) ≤ Opt(C) ≤  log2(|C|) 

Nathalie Japkowicz 


