
Initial slides by Eamonn Keogh

Clustering

•  Organizing data into classes such that there is
•  high intra-class similarity

•  low inter-class similarity

•  Finding the class labels and the number of classes directly
from the data (in contrast to classification).

•  More informally, finding natural groupings among objects.

What is Clustering?
Also called unsupervised learning, sometimes called
classification by statisticians and sorting by
psychologists and segmentation by people in marketing

Intuitions behind desirable
distance measure properties

D(A,B) = D(B,A) Symmetry
Otherwise you could claim “Alex looks like Bob, but Bob looks nothing like Alex.”

D(A,A) = 0 Constancy of Self-Similarity
Otherwise you could claim “Alex looks more like Bob, than Bob does.”

D(A,B) = 0 If A=B Positivity (Separation)
Otherwise there are objects in your world that are different, but you cannot tell apart.

D(A,B) ≤ D(A,C) + D(B,C) Triangular Inequality
Otherwise you could claim “Alex is very like Carl, and Bob is very like Carl, but
Alex is very unlike Bob.”

Peter

Piter

Pioter

Piotr

Substitution (i for e)

Insertion (o)

Deletion (e)

Edit Distance Example
It is possible to transform any string Q into
string C, using only Substitution, Insertion
and Deletion.
Assume that each of these operators has a
cost associated with it.

The similarity between two strings can be
defined as the cost of the cheapest
transformation from Q to C.
 Note that for now we have ignored the issue of how we can find this cheapest

transformation

How similar are the names
“Peter” and “Piotr”?
Assume the following cost function

Substitution 1 Unit
Insertion 1 Unit
Deletion 1 Unit

D(Peter,Piotr) is 3

Pedro (Portuguese)
Petros (Greek), Peter (English), Piotr (Polish), Peadar
(Irish), Pierre (French), Peder (Danish), Peka
(Hawaiian), Pietro (Italian), Piero (Italian Alternative),
Petr (Czech), Pyotr (Russian)

Cristovao (Portuguese)
Christoph (German), Christophe (French), Cristobal
(Spanish), Cristoforo (Italian), Kristoffer
(Scandinavian), Krystof (Czech), Christopher (English)

Miguel (Portuguese)
Michalis (Greek), Michael (English), Mick (Irish!)

A Demonstration of Hierarchical Clustering using String Edit Distance

Since we cannot test all possible trees
we will have to use heuristic search of
all possible trees. We could do this..

Bottom-Up (agglomerative): Starting
with each item in its own cluster, find
the best pair to merge into a new
cluster. Repeat until all clusters are
fused together.

Top-Down (divisive): Starting with all
the data in a single cluster, consider
every possible way to divide the cluster
into two. Choose the best division and
recursively operate on both sides.

We can look at the dendrogram to determine the “correct” number of
clusters. In this case, the two highly separated subtrees are highly
suggestive of two clusters. (Things are rarely this clear cut, unfortunately)

Outlier

One potential use of a dendrogram is to detect outliers

The single isolated branch is suggestive of a
data point that is very different to all others

Partitional Clustering
•  Nonhierarchical, each instance is placed in

exactly one of K nonoverlapping clusters.
•  Since only one set of clusters is output, the user

normally has to input the desired number of
clusters K.

Squared Error

10

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

Objective Function

Algorithm k-means
1. Decide on a value for k.

2. Initialize the k cluster centers (randomly, if
necessary).

3. Decide the class memberships of the N objects by
assigning them to the nearest cluster center.

4. Re-estimate the k cluster centers, by assuming the
memberships found above are correct.

5. If none of the N objects changed membership in
the last iteration, exit. Otherwise goto 3.

0

1

2

3

4

5

0 1 2 3 4 5

K-means	Clustering:	Step	1	
Algorithm: k-means, Distance Metric: Euclidean Distance

k1

k2

k3

0

1

2

3

4

5

0 1 2 3 4 5

K-means	Clustering:	Step	2	
Algorithm: k-means, Distance Metric: Euclidean Distance

k1

k2

k3

0

1

2

3

4

5

0 1 2 3 4 5

K-means	Clustering:	Step	3	
Algorithm: k-means, Distance Metric: Euclidean Distance

k1

k2

k3

0

1

2

3

4

5

0 1 2 3 4 5

K-means	Clustering:	Step	4	
Algorithm: k-means, Distance Metric: Euclidean Distance

k1

k2

k3

K-means	Clustering:	Step	5	
Algorithm: k-means, Distance Metric: Euclidean Distance

k1

k2 k3

Comments	on	the	K-Means	Method	
•  Strength		

–  Rela*vely	efficient:	O(tkn),	where	n	is	#	objects,	k	is	#	clusters,	and	t		
is	#	iteraDons.	Normally,	k,	t	<<	n.	

–  OJen	terminates	at	a	local	op*mum.	The	global	op*mum	may	be	
found	using	techniques	such	as:	determinis*c	annealing	and	gene*c	
algorithms	

•  Weakness	
–  Applicable	only	when	mean	is	defined,	then	what	about	categorical	
data?	Need	to	extend	the	distance	measurement.	
•  Ahmad,	Dey:	A	k-mean	clustering	algorithm	for	mixed	numeric	and	
categorical	data,	Data	&	Knowledge	Engineering,	Nov.	2007	

–  Need	to	specify	k,	the	number	of	clusters,	in	advance	
–  Unable	to	handle	noisy	data	and	outliers	
–  Not	suitable	to	discover	clusters	with	non-convex	shapes	
–  Tends	to	build	clusters	of	equal	size	

EM Algorithm

18

Processing	:	EM	IniDalizaDon	
–  IniDalizaDon	:	

•  Assign	random	value	to	parameters	

19

Processing	:	the	E-Step	
–  ExpectaDon	:		

•  Pretend	to	know	the	parameter	
•  Assign	data	point	to	a	component	

Mixture of Gaussians	

20

Processing	:	the	M-Step	(1/2)	
–  MaximizaDon	:	

•  Fit	the	parameter	to	its	set	of	points	

Mixture of Gaussians	

Iteration 1

The cluster
means are
randomly
assigned

Iteration 2

Iteration 5

Iteration 25

Comments	on	the	EM	
•  K-Means	is	a	special	form	of	EM	
•  EM	algorithm	maintains	probabilisDc	assignments	to	clusters,	

instead	of	determinisDc	assignments,	and	mulDvariate	Gaussian	
distribuDons	instead	of	means	

•  Does	not	tend	to	build	clusters	of	equal	size	

Source: http://en.wikipedia.org/wiki/K-means_algorithm

Nearest Neighbor Clustering
Not to be confused with Nearest Neighbor Classification

•  Items are iteratively merged into the
existing clusters that are closest.

•  Incremental
•  Threshold, t, used to determine if items are

added to existing clusters or a new cluster is
created.

What happens if the data is streaming…

10

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

Threshold t

t 1

2

10

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

New data point arrives…

It is within the threshold for
cluster 1, so add it to the
cluster, and update cluster
center.

1

2

3

10

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

New data point arrives…

It is not within the threshold
for cluster 1, so create a new
cluster, and so on..

1

2

3

4

Algorithm is highly order
dependent…

It is difficult to determine t in
advance…

10

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

How can we tell the right number of clusters?

In general, this is a unsolved problem. However there are many
approximate methods. In the next few slides we will see an example.

For our example, we will use the
familiar katydid/grasshopper
dataset.

However, in this case we are
imagining that we do NOT
know the class labels. We are
only clustering on the X and Y
axis values.

1 2 3 4 5 6 7 8 9 10

 When k = 1, the objective function is 873.0

1 2 3 4 5 6 7 8 9 10

 When k = 2, the objective function is 173.1

1 2 3 4 5 6 7 8 9 10

 When k = 3, the objective function is 133.6

0.00E+00
1.00E+02
2.00E+02
3.00E+02
4.00E+02
5.00E+02
6.00E+02
7.00E+02
8.00E+02
9.00E+02
1.00E+03

1 2 3 4 5 6

We can plot the objective function values for k equals 1 to 6…

The abrupt change at k = 2, is highly suggestive of two clusters
in the data. This technique for determining the number of
clusters is known as “knee finding” or “elbow finding”.

Note that the results are not always as clear cut as in this toy example

k

O
bj

ec
tiv

e
Fu

nc
tio

n

Goals	
•  EsDmate	class-condiDonal	densiDes	

•  EsDmate	posterior	probabiliDes	

)|(ip ωx

)|(xiP ω

R

Density	EsDmaDon	

n samples

')'()(xxX dpP ∫=∈
R

R

Assume p(x) is continuous & R is small

∫=
R
')(xx dp

+
x

RP=RVp)(x=

Randomly take n samples, let K denote
the number of samples inside R.

knk PP
k
n

kKP −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==)1()(RR

),(~ RPnBK

RnPKE =][

Density	EsDmaDon	

R

n samples

+
x

')'()(xxX dpP ∫=∈
R

R

Assume p(x) is continuous & R is small

∫=
R
')(xx dp

RP=RVp)(x=

RnPKE =][

RkKE ≈][

Let kR denote the number of
samples in R.

nkP /RR ≈ R

R

V
nk

p
/

)(≈x

R

Density	EsDmaDon	

n samples R

R

V
nk

p
/

)(≈x

+
x

What items can be controlled?
How?

Use subscript n to take sample size into account.

n

n
n V

nkp /)(=x

To this, we should have

We hope)()(lim xx ppnn
=

∞→

1. 0lim =
∞→

nn
V

2. ∞=
∞→

nn
klim

3. 0/lim =
∞→

nknn

Two	Approaches	

•  Parzen Windows
–  Control Vn

•  kn-Nearest-Neighbor
–  Control kn

R

n samples

+
x

n

n
n V

nkp /)(=x

1. 0lim =
∞→

nn
V

2. ∞=
∞→

nn
klim

3. 0/lim =
∞→

nknn

What items can be controlled?
How?

Two	Approaches	

Parzen Windows

kn-Nearest-Neighbor

Parzen	Windows	

⎩
⎨
⎧ =≤

=
otherwise0

,,2,1 ,2/1||1
)(

dju j …
uϕ

1

1

1

1)(=∫ uu dϕ

Window	FuncDon	

⎩
⎨
⎧ =≤

=
otherwise0

,,2,1 ,2/1||1
)(

dju j …
uϕ

hn

hn

hn ⎩
⎨
⎧ ≤

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

otherwise0
2/||1 nj

n

hx
h
x

ϕ

1)(=∫ uu dϕ

Window	FuncDon	

⎩
⎨
⎧ =≤

=
otherwise0

,,2,1 ,2/1||1
)(

dju j …
uϕ

hn

hn

hn
x

⎩
⎨
⎧ ≤ʹ−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ʹ−
otherwise0

2/||1 njj

n

hxx
h
xx

ϕ

⎩
⎨
⎧ ≤

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

otherwise0
2/||1 nj

n

hx
h
x

ϕ

1)(=∫ uu dϕ

Parzen-Window	EsDmaDon	

hn

hn

hn
x

⎩
⎨
⎧ ≤ʹ−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ʹ−
otherwise0

2/||1 njj

n

hxx
h
xx

ϕ

},,,{ 21 nxxx …=D
kn: # samples inside hypercube centered at x.

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

n

i n

i
n h
k

1

xx
ϕ

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

n

i n

i

n
n hVn
p

1

11)(xxx ϕ

d
nn hV =

1)(=∫ uu dϕ

GeneralizaDon	

⎩
⎨
⎧ ≤ʹ−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ʹ−
otherwise0

2/||1 njj

n

hxx
h
xx

ϕ

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

n

i n

i

n
n hVn
p

1

11)(xxx ϕ

1)(=∫ uu dϕ

Requirement 1)(=∫ xx dpn

1

1 1n
i

i n n

d
n V h

ϕ
=

⎛ ⎞−
⎜ ⎟
⎝ ⎠

∑∫
x x x ()∑∫

=

=
n

i
d

n 1

1 uuϕ

Set x/hn=u.

1)(=∫ uu dϕ The window is not
necessarily a hypercube.

hn is a important parameter.

It depends on sample size.

1

1 1n
i

i n n

d
n V h

ϕ
=

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
∑∫

x x x

InterpolaDon	Parameter	
∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

n

i n

i

n
n hVn
p

1

11)(xxx ϕ1)(=∫ uu dϕ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

nn
n hV

xx ϕδ
1)(

hn → 0

δn(x) is a Dirac delta function.

Example	

Parzen-window estimations for five samples

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

n

i n

i

n
n hVn
p

1

11)(xxx ϕ

Convergence	CondiDons	

To assure convergence, i.e.,
∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

n

i n

i

n
n hVn
p

1

11)(xxx ϕ

)()]([lim xx ppE nn
=

∞→ and 0)]([lim =
∞→

xnn
pVar

we have the following additional constraints:

∞<)(sup u
u
ϕ

0)(lim
1

||||
=∏

=
∞→

d

i
iuu

u
ϕ

0lim =
∞→

nn
V

∞=
∞→

nn
nVlim

IllustraDons	
∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

n

i n

i

n
n hVn
p

1

11)(xxx ϕ

One dimension case:

2/2

2
1)(ue−=
π

ϕ u

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

n

i n

i

n
n hhn
p

1

11)(xxx ϕ

)1,0(~ NX

nhhn /1=

IllustraDons	
∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

n

i n

i

n
n hVn
p

1

11)(xxx ϕ

One dimension case:

2/2

2
1)(ue−=
π

ϕ u

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

n

i n

i

n
n hhn
p

1

11)(xxx ϕ

nhhn /1=

IllustraDons	

Two dimension
case:

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

n

i n

i

n
n hhn
p

1
2

11)(xxx ϕ

nhhn /1=

ClassificaDon	Example	

Smaller window Larger window

Choosing	the	Window	FuncDon	

•  Vn must approach zero when n→∞, but at a
rate slower than 1/n, e.g.,

•  The value of initial volume V1 is important.
•  In some cases, a cell volume is proper for one

region but unsuitable in a different region.

nVVn /1=

kn-Nearest-Neighbor	EsDmaDon	
•  Let the cell volume depend on the training

data.
•  To estimate p(x), we can center a cell about x

and let it grow until it captures kn samples,
where is some specified function of n, e.g.,

nkn =

Example	

kn=5

Example	

nkn =

EsDmaDon	of	A	Posteriori	ProbabiliDes	

x

Pn(ωi|x)=?

EsDmaDon	of	A	Posteriori	ProbabiliDes	

x
∑
=

= c

j
jn

in
in

xp

xpP

1
),(

),()|(
ω

ω
ω x

n

i
inn V

nkxp /),(=ω

n

n
c

j
jnn V

nkxp /),(
1

=∑
=

ω

n

i

k
k

=

Pn(ωi|x)=?

EsDmaDon	of	A	Posteriori	ProbabiliDes	

∑
=

= c

j
jn

in
in

xp

xpP

1
),(

),()|(
ω

ω
ω x

n

i
inn V

nkxp /),(=ω

n

n
c

j
jnn V

nkxp /),(
1

=∑
=

ω

n

i

k
k

=

 The value of Vn or kn can be
 determined base on Parzen window
 or kn-nearest-neighbor technique.

ClassificaDon:	
The	Nearest-Neighbor	Rule	

x

},,,{ 21 nxxx …=D - A set of labeled prototypes

x’
Classify as

The	Nearest-Neighbor	Rule	

Voronoi Tessellation

Error	Rate	

x

Baysian (optimum):

)|(maxarg xmim P ωω =

)|(1)|(xx mPerrorP ω−=

∫= xx derrorperrorP),()(

∫= xxx dperrorP)()|(

Optimum:)|(1)|(* xx mPerrorP ω−=

∫= xxx dperrorPerrorP)()|()(**

Error	Rate	

x x’

},,,{

,,,

21

2

2

1

1

ci

n

n

ωωωθ

θθθ

…

…

∈
⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

xxx
D

1-NN

),|,(1

),|(

1
xx

xx

ʹ=ʹ=−=

ʹ

∑
=

i

c

i
iP

errorP

ωθωθ

Suppose the true class for x is θ

)|()|(1
1

xx ʹ−= ∑
=

i

c

i
i PP ωω

xxxxxx ʹʹʹ= ∫ dperrorPerrorP)|(),|()|(

Error	Rate	

x x’

},,,{

,,,

21

2

2

1

1

ci

n

n

ωωωθ

θθθ

…

…

∈
⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

xxx
D

1-NN

xxxxxx ʹʹʹ= ∫ dperrorPerrorP)|(),|()|(

)|()|(1),|(
1

xxxx ʹ−=ʹ ∑
=

i

c

i
i PPerrorP ωω

?

As n→∞, xx ʹ≈
)()|(xxxx −ʹ≈ʹ δp

∑
=

−=
c

i
iP

1

2)|(1 xω

∑
=

−=
c

i
iP

1

2)|(1 xω

Error	Rate	

x x’

},,,{

,,,

21

2

2

1

1

ci

n

n

ωωωθ

θθθ

…

…

∈
⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

xxx
D

1-NN

∑
=

−=
c

i
iP

1

2)|(1 xω)|(xerrorP

xxx dperrorPerrorP)()|()(∫=

xxx dpP
c

i
i)()|(1

1

2∫ ∑ ⎥
⎦

⎤
⎢
⎣

⎡
−=

=

ω

Error	Bounds	

[]∫ −= xxx dpPerrorP m)()|(1)(* ω

1-NN

xxx dpPerrorP
c

i
i)()|(1)(

1

2∫ ∑ ⎥
⎦

⎤
⎢
⎣

⎡
−=

=

ω

Bayesian

Consider the most complex classification case:

cP i /1)|(≈xω

[]∫ −= xx dpc)()/11

c/11−=

[]∫ −= xx dpc)()/11

21 1/ c= −

)()(* errorPerrorP ≤ ?≤

Error	Bounds	

[]∫ −= xxx dpPerrorP m)()|(1)(* ω

1-NN

xxx dpPerrorP
c

i
i)()|(1)(

1

2∫ ∑ ⎥
⎦

⎤
⎢
⎣

⎡
−=

=

ω

Bayesian

Consider the opposite case: 1)|(≈xmP ω

∑∑
≠=

+=
mi

im

c

i
i PPP 22

1

2)|()|()|(xxx ωωω

)|(1)|(* xx mPerrorP ω−=

Maximized this term to
find the upper bound

2**2*2)|()|(21)]|(1[)|(xxxx errorPerrorPerrorPP m +−=−=ω

This term is minimum
when all elements have

the same value

i.e.,

1
)(

1
)|(1)|(

*

−
=

−

−
=

c
errorP

c
PP m

i
xx ω

ω

2**

1

2)|(
1

)|(21)|(xxx errorP
c
cerrorPP

c

i
i −

+−≥∑
=

ω

Minimized this term

Error	Bounds	

[]∫ −= xxx dpPerrorP m)()|(1)(* ω

1-NN

xxx dpPerrorP
c

i
i)()|(1)(

1

2∫ ∑ ⎥
⎦

⎤
⎢
⎣

⎡
−=

=

ω

Bayesian

Consider the opposite case: 1)|(≈xmP ω

)|(1)|(* xx mPerrorP ω−=

2**

1

2)|(
1

)|(21)|(xxx errorP
c
cerrorPP

c

i
i −

+−≥∑
=

ω

2**

1

2)|(
1

)|(2)|(1 xxx errorP
c
cerrorPP

c

i
i −

−≤−∑
=

ω)|(2 * xerrorP≤

xxx dperrorP)()|(2 *∫≤∫= xxx dperrorP)()|(*

)(2)()(** errorPerrorPerrorP ≤≤

Error	Bounds	

[]∫ −= xxx dpPerrorP m)()|(1)(* ω

1-NN

xxx dpPerrorP
c

i
i)()|(1)(

1

2∫ ∑ ⎥
⎦

⎤
⎢
⎣

⎡
−=

=

ω

Bayesian

Consider the opposite case: 1)|(≈xmP ω

)|(1)|(* xx mPerrorP ω−=

xxx dperrorP)()|(2 *∫≤∫= xxx dperrorP)()|(*

)(2)()(** errorPerrorPerrorP ≤≤

The nearest-neighbor rule is a suboptimal procedure.

The error rate is never worse than twice the Bayes rate.

Error	Bounds	

ClassificaDon:	
The	k-Nearest-Neighbor	Rule	

k = 5

Assign pattern to the
class wins the majority.

Error	Bounds	

ComputaDon	Complexity	

•  The computation complexity of the nearest-neighbor
algorithm (both in time and space) has received a great
deal of analysis.

•  Require O(dn) space to store n prototypes in a training set.
–  Editing, pruning or condensing

•  To search the nearest neighbor for a d-dimensional test
point x, the time complexity is O(dn).
–  Partial distance
–  Search tree

ParDal	Distance	

Using the following fact to early throw far-away prototypes

2/1

1

2
2/1

1

2)()(),(⎟
⎠

⎞
⎜
⎝

⎛
−≤⎟

⎠

⎞
⎜
⎝

⎛
−= ∑∑

==

d

k
kk

r

k
kkr babaD ba

dr ≤

EdiDng	Nearest	Neighbor	

Given a set of points, a Voronoi diagram is a partition of space
into regions, within which all points are closer to some
particular node than to any other node.

Delaunay	TriangulaDon	

If two Voronoi regions share a boundary, the nodes of these
regions are connected with an edge. Such nodes are called
the Voronoi neighbors (or Delaunay neighbors).

The	Decision	Boundary	

The circled prototypes are redundant.

The	Edited	Training	Set	

EdiDng:	
The	Voronoi	Diagram	Approach	

•  Compute	the	Delaunay	triangula*on	for	the	training	set.	
	
•  Visit	each	node,	marking	it	if	all	its	Delaunay	neighbors	

are	of	the	same	class	as	the	current	node.	
		
•  Delete	all	marked	nodes,	exiDng	with	the	remaining	ones	

as	the	edited	training	set.	

Spectral	Clustering	

Acknowledgements	for	subsequent	slides	to	
	
Xiaoli	Fern	
CS	534:	Machine	Learning	2011	
	
hdp://web.engr.oregonstate.edu/~xfern/
classes/cs534/	

Spectral	Clustering	

How	to	Create	the	Graph?	

MoDvaDons	/	ObjecDves	

Graph	Terminologies	

Graph	Cut	

Min	Cut	ObjecDve	

Normalized	Cut	

OpDmizing	Ncut	ObjecDve	

Solving	Ncut	

2-way	Normalized	Cuts	

CreaDng	Bi-ParDDon		
Using	2nd	Eigenvector	

K-way	ParDDon?	

Spectral	Clustering	

