Clustering

Initial slides by Eamonn Keogh



What 1s Clustering?

Also called unsupervised learning, sometimes called
classification by statisticians and sorting by
psychologists and segmentation by people in marketing

 Organizing data into classes such that there 1s

* high intra-class similarity
* low inter-class similarity

* Finding the class labels and the number of classes directly
from the data (in contrast to classification).

e More informally, finding natural groupings among objects.



Intuitions behind desirable
distance measure properties

D(A,B) =D(B,A) Symmetry
Otherwise you could claim “Alex looks like Bob, but Bob looks nothing like Alex.”

D(ALA)=0 Constancy of Self-Similarity

Otherwise you could claim “Alex looks more like Bob, than Bob does.”

D(A,B)=01f A=B Positivity (Separation)

Otherwise there are objects in your world that are different, but you cannot tell apart.

D(A.B) = D(A,C) + D(B,C) Triangular Inequality
Otherwise you could claim “Alex is very like Carl, and Bob is very like Carl, but
Alex is very unlike Bob.”



Edit Distance Example

It 1s possible to transform any string Q into
string C, using only Substitution, Insertion
and Deletion.

Assume that each of these operators has a
cost associated with it.

The similarity between two strings can be
defined as the cost of the cheapest
transformation from Q to C.

Note that for now we have ignored the issue of how we can find this cheapest

transformation
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How similar are the names
“Peter” and “Piotr ?

Assume the following cost function
Substitution
Insertion
Deletion

D(Peter,Piotr)is 3

Peter

Piter

|

Pioter

1 Unit
1 Unit
1 Unit



A Demonstration of Hierarchical Clustering using String Edit Distance

Pedro (Portuguese)

Petros (Greek), Peter (English), Piotr (Polish), Peadar
(Irish), Pierre (French), Peder (Danish), Peka
(Hawaiian), Pietro (Italian), Piero (Italian Alternative),
Petr (Czech), Pyotr (Russian)

Cristovao (Portuguese)

Christoph (German), Christophe (French), Cristobal
(Spanish), Cristoforo (Italian), Kristoffer
(Scandinavian), Krystof (Czech), Christopher (English)

Miguel (Portuguese)
Michalis (Greek), Michael (English), Mick (Irish!)
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Since we cannot test all possible trees
we will have to use heuristic search of
all possible trees. We could do this..

Bottom-Up (agglomerative): Starting
with each item in its own cluster, find
the best pair to merge into a new
cluster. Repeat until all clusters are
fused together.

Top-Down (divisive): Starting with all
the data in a single cluster, consider
every possible way to divide the cluster
into two. Choose the best division and

recursively operate on both sides. s
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We can look at the dendrogram to determine the “correct” number of
clusters. In this case, the two highly separated subtrees are highly
suggestive of two clusters. (Things are rarely this clear cut, unfortunately)
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One potential use of a dendrogram 1s to detect outliers

The single 1solated branch 1s suggestive of a
data point that is very different to all others
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Partitional Clustering

* Nonhierarchical, each instance 1s placed in
exactly one of K nonoverlapping clusters.

* Since only one set of clusters i1s output, the user

normally has to imnput the desired number of
clusters K.



Squared Error
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Algorithm k-means

1. Decide on a value for k.

2. Imtialize the £ cluster centers (randomly, 1f
necessary).

3. Decide the class memberships of the N objects by
assigning them to the nearest cluster center.

4. Re-estimate the k cluster centers, by assuming the
memberships found above are correct.

5. If none of the N objects changed membership in
the last iteration, exit. Otherwise goto 3.



K-means Clustering: Step 1

Algorithm: k-means, Distance Metric: Euclidean Distance
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K-means Clustering: Step 2

Algorithm: k-means, Distance Metric: Euclidean Distance

9]
< <
. o o
1 ¢ ®
3

0 \ T T T u
0 1 2 3 4 S

Sitz{xj : “xj — k|| < |lxj —kEl| forallr = 1..k,r¢i}




K-means Clustering: Step 3

Algorithm: k-means, Distance Metric: Euclidean Distance
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K-means Clustering: Step 4

Algorithm: k-means, Distance Metric: Euclidean Distance
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K-means Clustering: Step 5

Algorithm: k-means, Distance Metric: Euclidean Distance
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Comments on the K-Means Method

Strength

— Relatively efficient: O(tkn), where n is # objects, k is # clusters, and t
is # iterations. Normally, k, t << n.

— Often terminates at a local optimum. The global optimum may be
found using techniques such as: deterministic annealing and genetic
algorithms

Weakness

— Applicable only when mean is defined, then what about categorical
data? Need to extend the distance measurement.

 Ahmad, Dey: A k-mean clustering algorithm for mixed numeric and
categorical data, Data & Knowledge Engineering, Nov. 2007

— Need to specify k, the number of clusters, in advance

— Unable to handle noisy data and outliers

— Not suitable to discover clusters with non-convex shapes
— Tends to build clusters of equal size




EM Algorithm

Initialization: Choose means at random, etc.

E step: For all examples x:

P(uiln) = P(pi)P(wi|pi) _ P(pi) P(xx|ps)
P(z) >y Plpir) P(ze|pir)

M step: For all components ¢;:
1

P(c;) = — P(ui|zr)
€ k=1

P b1 Tk Ppi|zr)
7 Zne P,u,z\xk)
2 _ oy (@r — pi)® P(pilz)

2 oy Pluilzi)



Processing : EM Initialization

— Initialization :
e Assign random value to parameters




Mixture of Gaussians

Processing : the E-Step

— Expectation :

* Pretend to know the parameter
* Assign data point to a component

o o o P(A)=02
P(B)=0.8




Mixture of Gaussians

Processing : the M-Step (1/2)

— Maximization :

* Fit the parameter to its set of points

oy,

P(A)=0.6
P(B)=0.4 4

o P(A) =02
P(B)=0.8
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i Likelihog B240034091007

Iteration 1

The cluster
means are
randomly
assigned

. 0.322580645161290

[Gaussmix =] RingPts | Randompts | ClearPts | InitKemeIs||3 =l [Em1 step =]




Iteration 2

| |
ean Likelihood =-12.501 213295068318

0.23199g096a03228:

[Gaussntic =] RingPts | Randompts | ClearPts InitKernels||3 = [Em1 step =]




Iteration 5

Mean Likelihood =-41.879896828880106

pO035848418)¥34

[Gausshtic =] RingPtsl RandomPtsl CIearPtsl InitKernels||3 =l [em1step =




Iteration 25

Mean Likelihood =-11.13453288 8] 6779

Lol lf;w‘ 5692965
Wl

737329874

[Gaussnic =] RingPts | Randompts | ClearPts InitKernels||3 =l [Emstop =]




Comments on the EM

K-Means is a special form of EM

EM algorithm maintains probabilistic assignments to clusters,
instead of deterministic assignments, and multivariate Gaussian
distributions instead of means

Does not tend to build clusters of equal size

Different cluster analysis results on "mouse"” data set:
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Source: http://en.wikipedia.org/wiki/K-means algorithm




What happens if the data 1s streaming...

Nearest Neighbor Clustering

Not to be confused with Nearest Neighbor Classification

 [tems are 1teratively merged into the
existing clusters that are closest.

 Incremental

* Threshold, t, used to determine 1f 1items are
added to existing clusters or a new cluster 1s
created.
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New data point arrives...

It 1s within the threshold for
cluster 1, so add it to the
cluster, and update cluster
center.
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New data point arrives...

It 1s not within the threshold
for cluster 1, so create a new
cluster, and so on..

Algorithm 1s highly order
dependent. ..

It 1s difficult to determine t in
advance. ..
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How can we tell the right number of clusters?

In general, this 1s a unsolved problem. However there are many
approximate methods. In the next few slides we will see an example.
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For our example, we will use the
familiar katydid/grasshopper
dataset.

However, 1n this case we are
imagining that we do NOT
know the class labels. We are
only clustering on the X and Y
axis values.



When k = 1, the objective function i1s 873.0
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When k = 2, the objective function is 173.1

2 3 45 6 7 8 910



3, the objective function is 133.6

When k
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We can plot the objective function values for k equals 1 to 6...

The abrupt change at k = 2, is highly suggestive of two clusters
in the data. This technique for determining the number of
clusters is known as “knee finding”~ or “elbow finding .
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Note that the results are not always as clear cut as 1n this toy example



Goals

e Estimate class-conditional densities

p(x|w,)

e Estimate posterior probabilities

P(w; | x)




Density Estimation
E[K]=nP,

Assume p(x) 1s continuous & R 1s small

PXER) = [ p)dx'= pOOfdx' o v e,

- p(X)Vq{ - PR ) o : '. ® : ‘o.':st:
Randomly take n samples, let K denote "o , e %o
the number of samples inside R, ° O % R Le° o° °

==) X ~ B(n,P,)

L k n—k
P(K =k)= P (1-P
( ) (k) e 125 n samples



Density Estimation

Let kq{denote the number of

samples in R,

#E[K]zkﬁ
Pq{zkﬁ/n

k. /nl

R
X)=
p(X) ”

R,

E[K]=nP,
Assume p(x) 1s continuous & R 1s small

P(XER) = [ p(X')dx'= p()[dx
= p(X)VR = PR

o o ° X oo °
e o (] .+ @ ® .".'.'

'. q{) .... LR ®e

n samples



Density Estimation

What items can be controlled?
How?

Use subscript 7 to take sample size into account.

We hope |lim p, (X) = P(X)I et M.
e ool X% ..
To this, we should have A .. ..:'::..'
) llmI/n =O ° "o '.Q{ ..0' .:.' ..

limk, = k /n|
e p,(X) =
Climk /n=0 V

—— i n samples




Two Approaches

What items can be controlled?
How?

e Parzen Windows

— Control V, o ° o ) o2
* k -Nearest-Neighbor . . .'.. ..°: ; oo O
_ Control kn : e ., ot ® ° ..:0;:..0
. llmm — O ° .° ° '. Q{ ..0. 0.'
limk, = o0 k,/n{f .-+ = .

- p,(X) = L
limk /n=0 V

n—>00




Two Approaches

Parzen Windows

n=1 n=4 n=9 n=10 n=100
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Parzen Windows

! @(u)du = 1|

1 Ju,|<1/2, j=12,...d

0 otherwise

@(u) =




Window Function

! @(u)du = ll

1 Ju,|<1/2, j=12,....d

0 otherwise

p(u) = -

X 1 |xj|shn/2
4 h, 10 otherwise




Window Function

! @(u)du = ll

1 Ju,|<1/2, j=12,....d

0 otherwise

p(u) = -

X 1 |xj|shn/2
4 h, 10 otherwise

X—X I |x, =X, |<h,/2
v h, 10 otherwise /




Parzen-Window Estimation

:qﬂ(u)du =1I v _ {1 | x, =x,|=h,/2

0 otherwise
D =4{X;,X,,...,X }

k . # samples inside hypercube centered at x.

V =h' 2 h
Vo gj




Generalization

0 otherwise

={1 | x, =X |<h,/2

Requirement f P, (x)dx =1 Set x/h,=u.

f 5 (x X)dx=%zlf; ¢(X;lnxi)dx=%2f¢(u)g’u

The window is not
necessarily a hypercube.

h, 1s a important parameter.

It depends on sample size.




Interpolation Parameter

h,— 0
0,(x) 1s a Dirac delta function.
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Convergence Conditions

pn(X)=l§ :

n =

To assure convergence, 1.€.,

;%EEE[P”(X)]=P(X) and EEVW[P,@(X)]=OI

we have the following additional constraints:

sup @(u) < © lm/V, =0

Nn—00

HHH% qp(u)nu = lmnV, =

1]—>00



Illustrations

X ~ N(0,D);

One dimension case:

1
¢(u)=\/ﬂe .

l K 1 X—X.
xX) = — T i
P, (%) nEh cﬂ( " ) |

=1

h =h/ nl




Illustrations

One dimension case:

1 —u?/2

qﬂ(u) = \/ﬂ €

] &K 1 X — X.
X)=— ) — ’
pn()n§h¢(h)

n=256

=1

h =h/ nl

n

A

' m M
a 1 2 3 4

J
7] 1 2 3 4




Illustrations

Two dimension
case:

(x)—lni X-X; || =
P, nZh,f(p A

hn=h/\/2|




Classification Example

Smaller window Larger window




Choosing the Window Function

* V must approach zero when n—, but at a
rate slower than 1/n, e.g.,

V, =V,/\n|

* The value of nitial volume ¥, 1s important.

* In some cases, a cell volume 1s proper for one
region but unsuitable 1n a different region.



k -Nearest-Neighbor Estimation

* Let the cell volume depend on the training
data.

* To estimate p(x), we can center a cell about x
and let it grow until 1t captures &, samples,
where 1s some specified function of n, e.g.,
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n=16
k=

n=256

k.=i6
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Estimation of A Posteriori Probabilities

P, (%)=



Estimation of A Posteriori Probabilities

P, (%)=

Epn(x,wj) n .. | P @ .A
j=1 m " . o m
Xo: ¥ &
A m, .AX °
kl/n AAAAAA.III. u °
A




Estimation of A Posteriori Probabilities

})n(a)i|x)= cpn(xﬁa)i) — ki

N p,(nw)
7=l

k./n
pn (‘xn 3 wz) =
V, The value of V, or k, can be
determined base on Parzen window

\ k /n . .

2 p(x ,w)=—" or k -nearest-neighbor technique.
n n’-"j

- V

J=1 n J



Classification:
The Nearest-Neighbor Rule

D = {Xl 5 X5seees X } - A set of labeled prototypes
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The Nearest-Neighbor Rule

Voronoi Tessellation




Error Rate

Optimum: P’ (error |x) =1-P(w, | X)

. P (error) = [P (error J
Baysian (optimum): (error) = [P (error | X) p(x)dx

@, =argmax (e, | X)

P(err07'|X) =1_P(wm |X) . ‘X@A A'. o
AAA AA A.. ".n... )
A Aa N A _ -~
P(error) =fp(err0r,x)dx R

A

= f P(error | x) p(x)dx L



Error Rate

1-NN

Suppose the true class for x 1s 0

P(error|x,x")

=1- ) PO =w,0 =w, |x,X)

_1- 2P<wi )P, |X)

P(error|x) = f P(error x,x' ) p(x'| X)dx’



Error Rate

I-NN  Asn—>x, x=X'
p(x'|x) = 3(x' - x)

Plerror|x,x)=1- 3 P(@ [0P(@|xX) =z [ie .
i= m " 7 =
=1—CP6(). X2 R A XACQ:%..'

izl ( l| ) A A A AA.I "I.... - ®

P(error|x) = f P(error K, x)p(x'|x)dx’ * *= * \ « °
=1—SP(a)i|x)2 ) Tl
i=1



Error Rate

1-NN

P(error) = f P(error | xX)p(x)dx

. 2 g ... .: [ ) |
- f[l— > P ]p<x>dx Ll .
A. AXA@. ..
L et
4 AA AA A AA " ..

P(error |X) =1- E P(w, | x)’ N
i=1



Error Bounds

Consider the most complex classification case:

Bayesian 1-NN P(w, | x) = I/CI

P'(error) = ﬂl—P(a)m %) [p(x)dx | Perror) = f_1- Ep(wi |x)2] p(x)dx
- f[1—1/c)]p(x)dx - fr 1-1/¢)|p(x)dx

=1-1/c =1-1/¢’

P (error) < P(error) <?



Error Bounds

Consider the opposite case: | P (a)m | X) == II

P’ (error |x)=1-P(w, | X)I

- A
P'(error) = ﬂl—P(a)m %) [p(x)dx | Perror) = [|1- zp(wi %) | p(x)dx
\ 2 2 - - hd g
Zp(wi 1° - ER Ep(wf %) Maximized this term to

This term A mzmmum i o f nd the upper bound

when all elements have P(w %) _1-P(, |x) _ P (error)
the same value c-1 c-1
P(w, | x)* =[1-P (error |x)]> =1-2P (error | x) + P (error | x)

EP(a) 1x)*=1-2P (err0r|x)+—1P (error|X)’
C_



Error Bounds

Consider the opposite case: | P (a)m | X) == ll
P’ (error |x)=1-P(w, | X)I

Bayesian 1-NN

P (error) = f[l -P(w, | X)]p(x)dx P(error) = f [1 — EP(CUZ. %)’ ] p(x)dx

= f P’ (error | x) p(X)dx < f 2P (error | X)p(x)dx

P (error) < P(error) < 2P’ (error)l

1- 2 P(w, | x)* < 2P (error|x) - LIP* (error|X)’ < 2P  (error | x)
= ¢ =

E P(w,|x)* =1-2P (error|x) + Ll P (error|x)
i=1 ¢ -



Error Bounds

Consider the opposite case: | P (C(Jm | X) == II
P (error |x)=1-P(w, | X)I

Bayesian 1-NN

P (error) = f[l -P(w, | X)]p(x)dx P(error) = f [1 — EP(CUZ. %)’ ] p(x)dx

= f P’ (error | x) p(X)dx < f 2P (error | X)p(x)dx

P (error) < P(error) < 2P’ (error)l

The nearest-neighbor rule 1s a suboptimal procedure.

The error rate 1s never worse than rwice the Bayes rate.



Error Bounds
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Classification:
The k-Nearest-Neighbor Rule

X . b :. o ASSlgn pattem tO the
. @ * class wins the majority.

> X,



Error Bounds
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Computation Complexity

* The computation complexity of the nearest-neighbor
algorithm (both 1n time and space) has received a great
deal of analysis.

* Require O(dn) space to store n prototypes in a training set.
— Editing, pruning or condensing

* To search the nearest neighbor for a d-dimensional test
point X, the time complexity 1s O(dn).
— Partial distance
— Search tree



Partial Distance

Using the following fact to early throw far-away prototypes

r<d

Dr(aﬁb)=(2(ak_bk)2) (Z(ak_bk)z)m




Editing Nearest Neighbor

Given a set of points, a Voronoi diagram 1s a partition of space
into regions, within which all points are closer to some
particular node than to any other node.




Delaunay Triangulation

If two Voronoi regions share a boundary, the nodes of these
regions are connected with an edge. Such nodes are called
the Voronoi neighbors (or Delaunay neighbors).




The Decision Boundary

The circled prototypes are redundant.




The Edited Training Set




Editing:
The Voronoi Diagram Approach

 Compute the Delaunay triangulation for the training set.

* Visit each node, marking it if all its Delaunay neighbors
are of the same class as the current node.

» Delete all marked nodes, exiting with the remaining ones
as the edited training set.



Spectral Clustering

Acknowledgements for subsequent slides to

Xiaoli Fern
CS 534: Machine Learning 2011

http://web.engr.oregonstate.edu/~xfern/
classes/cs534/



Spectral Clustering

* Represent data points as the vertices V of a graph G.
* \ertices are connected by edges E

* Edges have weights described by matrix W

— Large weight W (i, j) mean that the points i and j are very similar;
small weights imply dissimilarity

Methods that use the spectrum of the similarity matrix W to
cluster are known as spectral clustering



How to Create the Graph?

* One could create
— A fully connected graph

— K-nearest neighbor graph (each node is only
connected to its K-nearest neighbors)

— e-neighborhood graph (each node is only connected
to points within € distance)

* |tis common to use a Gaussian Kernel to
compute similarity between objects

—|x; —xj\z
0-2

W(i,j) = exp



kNN graph, k=5 Mutual kNN graph, k = 5




Motivations / Objectives

* There are different ways to interpret the
spectral clustering

* One can view spectral clustering as finding

partitions of the graph that minimizes
Normalized Cut

* Alternatively, we can also view this as
performing a random walk on the graph



Graph Terminologies

* Degree of nodes

 Volume of a set
vol(A):Zd,.,AgV

€A




Graph Cut

* Consider a partition of the graph into two parts A

andB , B - :
""""" 0.1 . ;
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08 © /0.8
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* Cut(A, B): sum of the weights of the set of edges that
connect the two groups cut(A.B) = ZWU' — 0.3

icA.jeB
* An intuitive goal is find the partition that minimizes
the cut



Min Cut Objective

* Mincut: Minimize weight of connections between

groups
min Cut(A,B)
ANB=@,AUB=V
* Problem:
— Prefer degenerate solution (e.g. the red partition)
O o ! |
¢ O o O
O o \
O | S o
O 00 45 7
O o o

— Need to express preference for more balanced
solution



Normalized Cut

* Consider the connectivity between groups
relative to the volume of each group

Ncut(A, B) cut@ B) lcutLA_ ]2) |
| _Vol(A) 1 Vol(B)

—

Neut(A, B) = cut(A, ) 2HA) +Vol(B)

<Oz

Maximized when Vol(A) and Vol(B) are equal.
Thus encourage balanced cut




Optimizing Ncut Objective

* How to minimize Ncut?
Let W be the similarity matrix, W (i, j) =W, ;;
Let D be the diag. matrix, D(i,i) = Zj W, j);
Let x be a vectorin {1,-1}",x(i)) =1 ie A

* With some simplifications, we can show:
y (D-W)y
y' Dy
Rayleigh quotient

min, Ncuf(x) =min,

Subject to: yTDl =0 (y takes discrete values)

NP-Hard!



Solving Ncut

Relax the optimization problem into the continuous domain
by solving generalized eigenvalue system:

miny? (D — W)y subjectto y’ Dy = 1
y

Lagrangian: L(y,A) =y (D — W)y — A(y'Dy — 1)
Taking partial derivative w.r.t. y and set it to zero:

(D —W)y = ADy
Note that (D — W)1 = 0, so the first eigenvectoris y, = 1
with eigenvalue 0.

The second smallest eigenvector is the real valued solution to
this problem!!



2-way Normalized Cuts

1. Compute the affinity matrix W, compute the
degree matrix (D), D is diagonal and D(i,i) =
ZjEV W(,j)

2. Solve (D — W)y = ADy, where D — W is
called the Laplacian matrix

3. Use the eigenvector with the second smallest
eigen-value to bipartition the graph into two
parts.



Creating Bi-Partition
Using 2"9 Eigenvector

Sometimes there is not a clear threshold to split
based on the second vector since it takes
continuous values

How to choose the splitting point?
a) Pick a constant value (0O, or 0.5).
b) Pick the median value as splitting point.

c) Look for the splitting point that has the minimum Ncut
value:
1. Choose n possible splitting points.
2. Compute Ncut value.
3. Pick minimum.



K-way Partition?

* Recursive bi-partitioning

— Recursively apply bi-partitioning algorithm in a
nierarchical divisive manner.

— Disadvantages: Inefficient, unstable

e Cluster using multiple eigenvectors
— Build a reduced space from multiple eigenvectors.
— Commonly used in recent papers

— A preferable approach... its like doing dimension
reduction then k-means




Spectral Clustering
(Ng, Jordan, and Weiss 2001)

* Form the affinity matrix W

. |xi —xj|2 ..
W(i,j) = exp(— o ), W(i,i)=0
* Compute the degree matrix D = diag(W - 1)

e Compute the normalized graph Laplacian
1 1

L=D 2WD 2
* Find the k largest eigenvectors, for new data matrix X,
 Normalize each row(each example) to have unit length

 Treating each row as a data point in k-d space and cluster
the data into k clusters via kmeans

Ng A.Y., Jordan, M.l.,, and Weiss Y
On Spectral Clustering: Analysis and an algorithm
In Proc. Neural Information Processing Systems 2001



twocircles, 2 clusters

Rows of Y (jittered, randomly subsampled) for twocircles
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Spectral embedding of the data



Graph, 20-NN Z Clustering
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Spectral embedding of the data



