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Clustering 



•  Organizing data into classes such that there is 
•  high intra-class similarity 

•  low inter-class similarity  

•   Finding the class labels and the number of classes directly 
from the data (in contrast to classification). 

•  More informally, finding natural groupings among objects.  

What is Clustering? 
Also called unsupervised learning, sometimes called 
classification by statisticians and sorting by 
psychologists and segmentation by people in marketing 



Intuitions behind desirable 
distance measure properties 

D(A,B) = D(B,A)    Symmetry  
Otherwise you could claim “Alex looks like Bob, but Bob looks nothing like Alex.” 
 
D(A,A) = 0     Constancy of Self-Similarity 
Otherwise you could claim “Alex looks more like Bob, than Bob does.” 
 
D(A,B) = 0 If A=B   Positivity (Separation) 
Otherwise there are objects in your world that are different, but you cannot tell apart. 
 
D(A,B) ≤ D(A,C) + D(B,C)   Triangular Inequality 
Otherwise you could claim “Alex is very like Carl, and Bob is very like Carl, but 
Alex is very unlike Bob.” 

 



Peter 
 

Piter 
 

Pioter 
 

Piotr 

Substitution (i for e)  

Insertion  (o)  

Deletion  (e)  

Edit Distance Example 
It is possible to transform any string Q into 
string C, using only Substitution, Insertion 
and Deletion. 
Assume that each of these operators has a 
cost associated with it. 
 
The similarity between two strings can be 
defined as the cost of the cheapest 
transformation from Q to C. 
 Note that for now we have ignored the issue of how we can find this cheapest 

transformation   
  

How similar are the names 
“Peter” and “Piotr”? 
Assume the following cost function  

Substitution  1 Unit 
Insertion   1 Unit 
Deletion   1 Unit 

 
D(Peter,Piotr) is 3 



Pedro  (Portuguese) 
Petros (Greek), Peter  (English), Piotr  (Polish), Peadar 
(Irish), Pierre (French), Peder  (Danish), Peka 
(Hawaiian), Pietro (Italian), Piero (Italian Alternative), 
Petr (Czech), Pyotr (Russian) 
 

Cristovao (Portuguese) 
Christoph (German), Christophe (French), Cristobal 
(Spanish), Cristoforo (Italian), Kristoffer 
(Scandinavian), Krystof (Czech), Christopher (English) 
 
 

Miguel (Portuguese) 
Michalis (Greek), Michael (English), Mick (Irish!)  

A Demonstration of Hierarchical Clustering using String Edit Distance  

Since we cannot test all possible trees 
we will have to use heuristic search of 
all possible trees. We could do this.. 
 
Bottom-Up (agglomerative): Starting 
with each item in its own cluster, find 
the best pair to merge into a new 
cluster. Repeat until all clusters are 
fused together.  
 
Top-Down (divisive): Starting with all 
the data in a single cluster, consider 
every possible way to divide the cluster 
into two. Choose the best division and 
recursively operate on both sides. 
 
 



We can look at the dendrogram to determine the “correct” number of 
clusters. In this case, the two highly separated subtrees are highly 
suggestive of two clusters. (Things are rarely this clear cut, unfortunately) 



Outlier 

One potential use of a dendrogram is to detect outliers 

The single isolated branch is suggestive of a 
data point that is very different to all others 



Partitional Clustering 
•  Nonhierarchical, each instance is placed in 

exactly one of K nonoverlapping clusters. 
•  Since only one set of clusters is output, the user 

normally has to input the desired number of 
clusters K. 



Squared Error 
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Algorithm k-means   
1. Decide on a value for k.   

2. Initialize the k cluster centers (randomly, if 
necessary).   

3. Decide the class memberships of the N objects by 
assigning them to the nearest cluster center.   

4. Re-estimate the k cluster centers, by assuming the 
memberships found above are correct.  

5. If none of the N objects changed membership in 
the last iteration, exit. Otherwise goto 3.   
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K-means	Clustering:	Step	1	
Algorithm: k-means, Distance Metric: Euclidean Distance 

k1 

k2 

k3 



0 

1 

2 

3 

4 

5 

0 1 2 3 4 5 

K-means	Clustering:	Step	2	
Algorithm: k-means, Distance Metric: Euclidean Distance 
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K-means	Clustering:	Step	3	
Algorithm: k-means, Distance Metric: Euclidean Distance 
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K-means	Clustering:	Step	4	
Algorithm: k-means, Distance Metric: Euclidean Distance 

k1 

k2 

k3 



K-means	Clustering:	Step	5	
Algorithm: k-means, Distance Metric: Euclidean Distance 

k1 

k2 k3 



Comments	on	the	K-Means	Method	
•  Strength		

–  Rela*vely	efficient:	O(tkn),	where	n	is	#	objects,	k	is	#	clusters,	and	t		
is	#	iteraDons.	Normally,	k,	t	<<	n.	

–  OJen	terminates	at	a	local	op*mum.	The	global	op*mum	may	be	
found	using	techniques	such	as:	determinis*c	annealing	and	gene*c	
algorithms	

•  Weakness	
–  Applicable	only	when	mean	is	defined,	then	what	about	categorical	
data?	Need	to	extend	the	distance	measurement.	
•  Ahmad,	Dey:	A	k-mean	clustering	algorithm	for	mixed	numeric	and	
categorical	data,	Data	&	Knowledge	Engineering,	Nov.	2007	

–  Need	to	specify	k,	the	number	of	clusters,	in	advance	
–  Unable	to	handle	noisy	data	and	outliers	
–  Not	suitable	to	discover	clusters	with	non-convex	shapes	
–  Tends	to	build	clusters	of	equal	size	



EM Algorithm 
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Processing	:	EM	IniDalizaDon	
–  IniDalizaDon	:	

•  Assign	random	value	to	parameters	
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Processing	:	the	E-Step	
–  ExpectaDon	:		

•  Pretend	to	know	the	parameter	
•  Assign	data	point	to	a	component	

Mixture of Gaussians	
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Processing	:	the	M-Step	(1/2)	
–  MaximizaDon	:	

•  Fit	the	parameter	to	its	set	of	points	

Mixture of Gaussians	









Iteration 1 
 
The cluster 
means are 
randomly 
assigned  



Iteration 2 



Iteration 5 



Iteration 25 



Comments	on	the	EM	
•  K-Means	is	a	special	form	of	EM	
•  EM	algorithm	maintains	probabilisDc	assignments	to	clusters,	

instead	of	determinisDc	assignments,	and	mulDvariate	Gaussian	
distribuDons	instead	of	means	

•  Does	not	tend	to	build	clusters	of	equal	size	

Source: http://en.wikipedia.org/wiki/K-means_algorithm 



Nearest Neighbor Clustering 
Not to be confused with Nearest Neighbor Classification 

•  Items are iteratively merged into the 
existing clusters that are closest. 

•  Incremental 
•  Threshold, t, used to determine if items are 

added to existing clusters or a new cluster is 
created. 

What happens if the data is streaming… 
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New data point arrives… 
 
It is within the threshold for 
cluster 1, so add it to the 
cluster, and update cluster 
center. 
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New data point arrives… 
 
It is not within the threshold 
for cluster 1, so create a new 
cluster, and so on.. 
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Algorithm is highly order 
dependent… 
 
It is difficult to determine t in 
advance… 
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How can we tell the right number of clusters? 
 
In general, this is a unsolved problem. However there are many 
approximate methods. In the next few slides we will see an example. 

For our example, we will use the 
familiar katydid/grasshopper 
dataset. 
 
However, in this case we are 
imagining that we do NOT 
know the class labels. We are 
only clustering on the X and Y 
axis values.  
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 When k = 1, the objective function is 873.0 
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 When k = 2, the objective function is 173.1 
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 When k = 3, the objective function is 133.6 
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We can plot the objective function values for k equals 1 to 6… 
 
The abrupt change at k = 2, is highly suggestive of two clusters 
in the data. This technique for determining the number of 
clusters is known as “knee finding” or “elbow finding”. 

Note that the results are not always as clear cut as in this toy example 
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Goals	
•  EsDmate	class-condiDonal	densiDes	

•  EsDmate	posterior	probabiliDes	
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Density	EsDmaDon	
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Density	EsDmaDon	
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Density	EsDmaDon	
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How? 
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Two	Approaches	

•  Parzen Windows 
–  Control Vn 

•  kn-Nearest-Neighbor 
–  Control kn 
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Two	Approaches	

Parzen Windows 

kn-Nearest-Neighbor 



Parzen	Windows	
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Window	FuncDon	
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Window	FuncDon	
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Parzen-Window	EsDmaDon	
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GeneralizaDon	
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InterpolaDon	Parameter	
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Example	

Parzen-window estimations for five samples 
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Convergence	CondiDons	
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IllustraDons	
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IllustraDons	
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IllustraDons	

Two dimension 
case: 
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ClassificaDon	Example	

Smaller window Larger window 



Choosing	the	Window	FuncDon	

•  Vn must approach zero when n→∞, but at a 
rate slower than 1/n, e.g., 

•  The value of initial volume V1 is important. 
•  In some cases, a cell volume is proper for one 

region but unsuitable in a different region. 

nVVn /1=



kn-Nearest-Neighbor	EsDmaDon	
•  Let the cell volume depend on the training 

data. 
•  To estimate p(x), we can center a cell about x 

and let it grow until it captures kn samples, 
where is some specified function of n, e.g., 

nkn =



Example	

kn=5 



Example	

nkn =



EsDmaDon	of	A	Posteriori	ProbabiliDes	

x 

Pn(ωi|x)=? 



EsDmaDon	of	A	Posteriori	ProbabiliDes	
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EsDmaDon	of	A	Posteriori	ProbabiliDes	
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  The value of Vn or kn can be  
  determined base on Parzen window 
  or kn-nearest-neighbor technique. 



ClassificaDon:	
The	Nearest-Neighbor	Rule	

x 
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x’ 
Classify           as  



The	Nearest-Neighbor	Rule	

Voronoi Tessellation 



Error	Rate	

x 

Baysian (optimum): 

)|(maxarg xmim P ωω =

)|(1)|( xx mPerrorP ω−=

∫= xx derrorperrorP ),()(

∫= xxx dperrorP )()|(

Optimum: )|(1)|(* xx mPerrorP ω−=

∫= xxx dperrorPerrorP )()|()( **



Error	Rate	
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Error	Rate	
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Error	Rate	
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Error	Bounds	
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Error	Bounds	
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Error	Bounds	
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Error	Bounds	
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The nearest-neighbor rule is a suboptimal procedure. 

The error rate is never worse than twice the Bayes rate. 



Error	Bounds	



ClassificaDon:	
The	k-Nearest-Neighbor	Rule	

k = 5 

Assign pattern to the 
class wins the majority. 



Error	Bounds	



ComputaDon	Complexity	

•  The computation complexity of the nearest-neighbor 
algorithm (both in time and space) has received a great 
deal of analysis. 

•  Require O(dn) space to store n prototypes in a training set. 
–  Editing, pruning or condensing 

•  To search the nearest neighbor for a d-dimensional test 
point x, the time complexity is O(dn).  
–  Partial distance 
–  Search tree 



ParDal	Distance	

Using the following fact to early throw far-away prototypes  
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EdiDng	Nearest	Neighbor	

Given a set of points, a Voronoi diagram is a partition of space 
into regions, within which all points are closer to some 
particular node than to any other node. 



Delaunay	TriangulaDon	

If two Voronoi regions share a boundary, the nodes of these 
regions are connected with an edge. Such nodes are called 
the Voronoi neighbors (or Delaunay neighbors).  



The	Decision	Boundary	

The circled prototypes are redundant. 



The	Edited	Training	Set	



EdiDng:	
The	Voronoi	Diagram	Approach	

•  Compute	the	Delaunay	triangula*on	for	the	training	set.	
	
•  Visit	each	node,	marking	it	if	all	its	Delaunay	neighbors	

are	of	the	same	class	as	the	current	node.	
		
•  Delete	all	marked	nodes,	exiDng	with	the	remaining	ones	

as	the	edited	training	set.	



Spectral	Clustering	

Acknowledgements	for	subsequent	slides	to	
	
Xiaoli	Fern	
CS	534:	Machine	Learning	2011	
	
hdp://web.engr.oregonstate.edu/~xfern/
classes/cs534/	



Spectral	Clustering	



How	to	Create	the	Graph?	





MoDvaDons	/	ObjecDves	



Graph	Terminologies	



Graph	Cut	



Min	Cut	ObjecDve	



Normalized	Cut	



OpDmizing	Ncut	ObjecDve	



Solving	Ncut	



2-way	Normalized	Cuts	



CreaDng	Bi-ParDDon		
Using	2nd	Eigenvector	



K-way	ParDDon?	



Spectral	Clustering	






