Web-Mining Agents
Cooperating Agents for Information Retrieval

Prof. Dr. Ralf Möller
Universität zu Lübeck
Institut für Informationssysteme

Tanya Braun (Übungen)
Presentation is based on the following talk:

Relational Macros for Transfer in Reinforcement Learning

Lisa Torrey, Jude Shavlik, Trevor Walker
University of Wisconsin-Madison, USA

Richard Maclin
University of Minnesota-Duluth, USA
Transfer Learning Scenario

1. Agent learns Task A
2. Agent encounters related Task B
3. Agent recalls relevant knowledge from Task A
4. Agent uses this knowledge to learn Task B quickly
Goals of Transfer Learning

Learning curves in the target task:

- **with transfer**
- **without transfer**
Reinforcement Learning

Observe world state

Take an action

Receive a reward

Described by a set of features

Use the rewards to estimate the Q values of actions in states

Policy: choose the action with the highest Q-value in the current state

Choose the action with the highest Q-value in the current state
The RoboCup Domain

- 2-on-1 BreakAway
- 3-on-2 BreakAway
- 4-on-3 BreakAway
Transfer in Reinforcement Learning

• Related work
 – Model reuse (Taylor & Stone 2005)
 – Policy reuse (Fernandez & Veloso 2006)
 – Option transfer (Perkins & Precup 1999)
 – Relational RL (Driessens et al. 2006)

• Our previous work
 – Policy transfer (Torrey et al. 2005)
 – Skill transfer (Torrey et al. 2006)

Copy the Q-function

Learn rules that describe when to take individual actions

Now we learn a strategy instead of individual skills
Representing a Multi-step Strategy

- A relational macro is a finite-state machine
- Nodes represent internal states of agents in which limited independent policies apply
- Conditions for transitions and actions are in first-order logic

```
hold ← true

isClose(Opponent) ← isOpen(Teammate)
allOpponentsFar

pass(Teammate) ← isOpen(Teammate)

The learning agent jumps between players

Really these are rule sets, not just single rules
```
Our Proposed Method

• Learn a relational macro that describes a successful strategy in the source task

• Execute the macro in the target task to demonstrate the successful strategy

• Continue learning the target task with standard RL after the demonstration
Learning a Relational Macro

• We use ILP to learn macros
• We learn a macro in two phases
 – The action sequence (node structure)
 – The rule sets for actions and transitions
Learning Macro Structure

- Objective: find an action pattern that separates good and bad games

macroSequence(Game) ←
 actionTaken(Game, StateA, move, ahead, StateB),
 actionTaken(Game, StateB, pass, _, StateC),
 actionTaken(Game, StateC, shoot, _, gameEnd).

move(ahead) → pass(Teammate) → shoot(GoalPart)
Learning Macro Conditions

- Objective: describe when transitions and actions should be taken

 transition(State) ←
 \[\text{feature(State, distance(Teammate, goal))} < 15.\]

 action(State, pass(Teammate)) ←
 \[\text{feature(State, angle(Teammate, me, Opponent))} > 30.\]
Examples for Actions

scoring

Game 1: move(ahead) pass(a1) shoot(goalRight)

Game 2: move(ahead) pass(a2) shoot(goalLeft)

non-scoring

Game 3: move(right) pass(a1)

Game 4: move(ahead) pass(a1) shoot(goalRight)
Examples for Transitions

scoring

Game 1: move(ahead) pass(a1) shoot(goalRight)

Game 2: move(ahead) move(ahead) shoot(goalLeft)

Game 3: move(ahead) pass(a1) shoot(goalRight)

non-scoring

positive

negative
Transferring a Macro

• Demonstration
 – Execute the macro strategy to get Q-value estimates
 – Infer low Q-values for actions not taken by macro
 – Compute an initial Q-function with these examples
 – Continue learning with standard RL

• Advantage: potential for large immediate jump in performance
• Disadvantage: risk that agent will blindly follow an inappropriate strategy
Advice in RL

- **Advice** provides constraints on Q values under specified conditions

 IF an opponent is near me
 AND a teammate is open
 THEN $Q(\text{pass(teammate)}) > Q(\text{move(ahead)})$

- Apply as *soft* constraints in optimization

 Model size + $C \times \text{Data misfit} + \mu \times \text{Advice misfit}$
Sample Advice-Taking Results

if \(\text{distanceToGoal} \geq 10 \)
and \(\text{shotAngle} \geq 30 \)
then prefer \textit{shoot} over all other actions

\[Q(\text{shoot}) > Q(\text{pass}) \]
\[Q(\text{shoot}) > Q(\text{move}) \]

2 vs 1 BreakAway, rewards +1, -1
Conclusions

• This transfer method can significantly improve initial target-task performance

• It can handle new elements being added to the target task, but not new objectives

• It is an aggressive approach that is a good choice for tasks with similar strategies

• Advice taking as a specific kind of transfer learning