Web-Mining Agents Cooperating Agents for Information Retrieval

Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme

Tanya Braun (Übungen)

Presentation is based on the following talk:

Relational Macros for Transfer in Reinforcement Learning

Lisa Torrey, Jude Shavlik, Trevor Walker University of Wisconsin-Madison, USA

> Richard Maclin University of Minnesota-Duluth, USA

Transfer Learning Scenario

Goals of Transfer Learning

Learning curves in the target task:

Reinforcement Learning

The RoboCup Domain

Transfer in Reinforcement Learning

Representing a Multi-step Strategy

- A relational macro is a finite-state machine
- Nodes represent internal states of agents in which limited independent policies apply
- Conditions for transitions and actions are in first-order logic

Our Proposed Method

- Learn a relational macro that describes a successful strategy in the source task
- Execute the macro in the target task to demonstrate the successful strategy
- Continue learning the target task with standard RL after the demonstration

Learning a Relational Macro

- We use ILP to learn macros
- We learn a macro in two phases
 - The action sequence (node structure)
 - The rule sets for actions and transitions

Learning Macro Structure

 Objective: find an action pattern that separates good and bad games

macroSequence(Game) ←

actionTaken(Game, StateA, move, ahead, StateB), actionTaken(Game, StateB, pass, _, StateC), actionTaken(Game, StateC, shoot, _, gameEnd).

Learning Macro Conditions

Objective: describe when transitions and actions should be taken

Examples for Actions

Examples for Transitions

Transferring a Macro

- Demonstration
 - Execute the macro strategy to get Q-value estimates
 - Infer low Q-values for actions not taken by macro
 - Compute an initial Q-function with these examples
 - Continue learning with standard RL
- Advantage: potential for large immediate jump in performance
- Disadvantage: risk that agent will blindly follow an inappropriate strategy

Advice in RL

- Advice provides constraints on Q values under specified conditions
 - IF an opponent is near meAND a teammate is open
 - THEN Q(pass(teammate)) > Q(move(ahead))
- Apply as *soft* constraints in optimization

Model size + C × Data misfit + μ × Advice misfit

Sample Advice-Taking Results

Conclusions

- This transfer method can significantly improve initial target-task performance
- It can handle new elements being added to the target task, but not new objectives
- It is an aggressive approach that is a good choice for tasks with similar strategies
- Advice taking as a specific kind of transfer learning

