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Transfer Learning Scenario 

Agent learns Task A 

Agent encounters related Task B 

Agent recalls relevant knowledge from Task A  

Agent uses this knowledge to learn Task B quickly 



Goals of Transfer Learning 

Learning curves in the target task: 
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with transfer 
without transfer 



Reinforcement Learning 

Take an action Observe world state 

Receive a reward 

Policy: choose the 
action with the 

highest Q-value in 
the current state 

Use the rewards to 
estimate the Q-

values of actions in 
states 

Described by a set 
of features 



The RoboCup Domain 

2-on-1 BreakAway 

3-on-2 BreakAway 

4-on-3 BreakAway 



Transfer in Reinforcement Learning 

•  Related work 
–  Model reuse (Taylor & Stone 2005) 
–  Policy reuse (Fernandez & Veloso 2006) 
–  Option transfer (Perkins & Precup 1999) 
–  Relational RL (Driessens et al. 2006) 

•  Our previous work 
–  Policy transfer (Torrey et al. 2005) 
–  Skill transfer (Torrey et al. 2006) 

 Now we learn a 
strategy instead of 

individual skills 

Copy the  
Q-function 

 Learn rules that 
describe when to 

take individual 
actions 



Representing a Multi-step Strategy 

•  A relational macro is a finite-state machine 
•  Nodes represent internal states of agents in which 

limited independent policies apply 
•  Conditions for transitions and actions are in first-order 

logic 

 Really these are 
rule sets, not just 

single rules 

hold ← true pass(Teammate) ←  
     isOpen(Teammate)  

isClose(Opponent) 

allOpponentsFar 

The learning agent jumps 
between players 



Our Proposed Method 

•  Learn a relational macro that describes a successful 
strategy in the source task 

•  Execute the macro in the target task to demonstrate the 
successful strategy 

•  Continue learning the target task with standard RL after 
the demonstration 



Learning a Relational Macro 

•  We use ILP to learn macros 
•  We learn a macro in two phases 

–  The action sequence (node structure) 
–  The rule sets for actions and transitions 



Learning Macro Structure 

•  Objective: find an action pattern that separates good 
and bad games 

 macroSequence(Game) ← 
      actionTaken(Game, StateA, move, ahead, StateB), 
      actionTaken(Game, StateB, pass, _, StateC), 
      actionTaken(Game, StateC, shoot, _, gameEnd). 

pass(Teammate) move(ahead) shoot(GoalPart) 



Learning Macro Conditions 

•  Objective: describe when transitions and actions should 
be taken 

 For the transition 
from move to pass 

 transition(State) ← 
  feature(State, distance(Teammate, goal)) < 15. 

 For the policy in 
the pass node 

 action(State, pass(Teammate)) ← 
  feature(State, angle(Teammate, me, Opponent)) > 30.   

pass(Teammate) move(ahead) shoot(GoalPart) 



Examples for Actions 

Game 1:       move(ahead)      pass(a1)  shoot(goalRight) 

Game 2:       move(ahead)      pass(a2)  shoot(goalLeft) 

Game 3:      move(right)        pass(a1)   

Game 4:       move(ahead)      pass(a1)  shoot(goalRight) 

scoring 

non-scoring 

 positive 

negative 

pass(Teammate) move(ahead) shoot(GoalPart) 



Examples for Transitions 

Game 1:       move(ahead)      pass(a1)  shoot(goalRight) 

Game 2:       move(ahead)      move(ahead)  shoot(goalLeft) 

Game 3:      move(ahead)        pass(a1)  shoot(goalRight) 

scoring 

non-scoring 

 positive 

negative 

pass(Teammate) move(ahead) shoot(GoalPart) 



Transferring a Macro 

•  Demonstration 
–  Execute the macro strategy to get Q-value estimates 
–  Infer low Q-values for actions not taken by macro 
–  Compute an initial Q-function with these examples 
–  Continue learning with standard RL 

•  Advantage: potential for large immediate jump in 
performance 

•  Disadvantage: risk that agent will blindly follow an 
inappropriate strategy 



Advice in RL 

•  Advice provides constraints on Q values under 
specified conditions 

IF         an opponent is near me 
AND      a teammate is open 
THEN    Q(pass(teammate)) > Q(move(ahead)) 
 

•  Apply as soft  constraints in optimization 

Model size   +   C × Data misfit   +   µ × Advice misfit 



Sample Advice-Taking Results 

if         distanceToGoal � 10 

and     shotAngle ≥ 30 

then    prefer shoot over all other actions 
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Conclusions 

•  This transfer method can significantly improve initial 
target-task performance 

•  It can handle new elements being added to the target 
task, but not new objectives 

•  It is an aggressive approach that is a good choice for 
tasks with similar strategies 

•  Advice taking as a specific kind of transfer learning 


