
Web-Mining Agents
Agents and Rational Behavior
Decision-Making under Uncertainty

Ralf Möller
Universität zu Lübeck

Institut für Informationssysteme

Decision Networks

• Extend BNs to handle actions and
utilities

• Also called influence diagrams
• Use BN inference methods to solve
• Perform Value of Information

calculations

Decision Networks cont.

• Chance nodes: random variables, as
in BNs

• Decision nodes: actions that decision
maker can take

• Utility/value nodes: the utility of the
outcome state.

Umbrella Network

weather

forecast

umbrella

happiness

take/don’t take

f w p(f|w)
sunny rain 0.3
rainy rain 0.7
sunny no rain 0.8
rainy no rain 0.2

P(rain) = 0.4

U(have,rain) = -25
U(have,~rain) = 0
U(~have, rain) = -100
U(~have, ~rain) = 100

have umbrella

P(have|take) = 1.0
P(~have|~take)=1.0

Evaluating Decision Networks

• Set the evidence variables for current state
• For each possible value of the decision node:

w Set decision node to that value
w Calculate the posterior probability of the parent nodes of

the utility node, using BN inference
w Calculate the resulting utility for action

• Return the action with the highest utility

Decision Making: Umbrella Network

weather

forecast

umbrella

happiness

take/don’t take

f w p(f|w)
sunny rain 0.3
rainy rain 0.7
sunny no rain 0.8
rainy no rain 0.2

P(rain) = 0.4

U(have,rain) = -25
U(have,~rain) = 0
U(~have, rain) = -100
U(~have, ~rain) = 100

have umbrella

P(have|take) = 1.0
P(~have|~take)=1.0

Should I take my umbrella??

Value of information

General formula

Properties of VPI

Qualitative behaviors

Three generic cases for the value of information. In (a), a1 will almost certainly remain superior
to a2, so the information is not needed. In (b), the choice is unclear and the information is
crucial. In (c), the choice is unclear, but because it makes little difference, the information is
less valuable. (Note: The fact that U2 has a high peak in (c) means that its expected value is
known with higher certainty than U1.)

Information Gathering Agent

• Ask questions Request(Ej) in a reasonable order
• Avoid irrelevant questions
• Take into account imporance of piece of

information j in relation to Cost(Ej)

Literature

• Chapter 17

Material from Lise Getoor, Jean-Claude
Latombe, Daphne Koller, and
Stuart Russell

Simple Robot Navigation Problem

• In each state, the possible actions are U, D, R, and L

Probabilistic Transition Model

• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8 the robot moves up one square (if the
robot is already in the top row, then it does not move)

Probabilistic Transition Model

• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8 the robot moves up one square (if the
robot is already in the top row, then it does not move)

• With probability 0.1 the robot moves right one square (if the
robot is already in the rightmost row, then it does not move)

Probabilistic Transition Model

• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8 the robot moves up one square (if the
robot is already in the top row, then it does not move)

• With probability 0.1 the robot moves right one square (if the
robot is already in the rightmost row, then it does not move)

• With probability 0.1 the robot moves left one square (if the
robot is already in the leftmost row, then it does not move)

Markov Property

The transition properties depend only
on the current state, not on previous
history (how that state was reached)

Sequence of Actions

• Planned sequence of actions: (U, R)

2

3

1

4321

[3,2]

Sequence of Actions

• Planned sequence of actions: (U, R)
• U is executed

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

Histories

• Planned sequence of actions: (U, R)
• U has been executed
• R is executed

• There are 9 possible sequences of states
– called histories – and 6 possible final states
for the robot!

4321

2

3

1

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

Probability of Reaching the Goal

•P([4,3] | (U,R).[3,2]) =
P([4,3] | R.[3,3]) x P([3,3] | U.[3,2])

+ P([4,3] | R.[4,2]) x P([4,2] | U.[3,2])

2

3

1

4321

Note importance of Markov property
in this derivation

•P([3,3] | U.[3,2]) = 0.8
•P([4,2] | U.[3,2]) = 0.1

•P([4,3] | R.[3,3]) = 0.8
•P([4,3] | R.[4,2]) = 0.1
•P([4,3] | (U,R).[3,2]) = 0.65

Utility Function

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape

-1

+1

2

3

1

4321

Utility Function

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape
• The robot needs to recharge its batteries

-1

+1

2

3

1

4321

Utility Function

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape
• The robot needs to recharge its batteries
• [4,3] or [4,2] are terminal states

-1

+1

2

3

1

4321

Utility of a History

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape
• The robot needs to recharge its batteries
• [4,3] or [4,2] are terminal states
• The utility of a history is defined by the utility of the last

state (+1 or –1) minus n/25, where n is the number of moves

-1

+1

2

3

1

4321

Utility of an Action Sequence

-1

+1

• Consider the action sequence (U,R) from [3,2]

2

3

1

4321

Utility of an Action Sequence

-1

+1

• Consider the action sequence (U,R) from [3,2]
• A run produces one among 7 possible histories, each with some

probability

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

Utility of an Action Sequence

-1

+1

• Consider the action sequence (U,R) from [3,2]
• A run produces one among 7 possible histories, each with some

probability
• The utility of the sequence is the expected utility of the histories:

U = ShUh P(h)

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

Optimal Action Sequence

-1

+1

• Consider the action sequence (U,R) from [3,2]
• A run produces one among 7 possible histories, each with some

probability
• The utility of the sequence is the expected utility of the histories
• The optimal sequence is the one with maximal utility

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

Optimal Action Sequence

-1

+1

• Consider the action sequence (U,R) from [3,2]
• A run produces one among 7 possible histories, each with some

probability
• The utility of the sequence is the expected utility of the histories
• The optimal sequence is the one with maximal utility
• But is the optimal action sequence what we want to

compute?

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

only if the sequence is executed blindly!

Accessible or
observable stateRepeat:

w s ß sensed state
w If s is terminal then exit
w a ß choose action (given s)
w Perform a

Reactive Agent Algorithm

Policy (Reactive/Closed-Loop Strategy)

• A policy P is a complete mapping from states to actions

-1

+1

2

3

1

4321

Repeat:
w s ß sensed state
w If s is terminal then exit
w a ß P(s)
w Perform a

Reactive Agent Algorithm

Optimal Policy

-1

+1

• A policy P is a complete mapping from states to actions
• The optimal policy P* is the one that always yields a

history (ending at a terminal state) with maximal
expected utility

2

3

1

4321

Makes sense because of Markov property

Note that [3,2] is a “dangerous”
state that the optimal policy

tries to avoid

Optimal Policy

-1

+1

• A policy P is a complete mapping from states to actions
• The optimal policy P* is the one that always yields a

history with maximal expected utility

2

3

1

4321

This problem is called a
Markov Decision Problem (MDP)

How to compute P*?

Additive Utility

• History H = (s0,s1,…,sn)
• The utility of H is additive iff:

U(s0,s1,…,sn) = R(0) + U(s1,…,sn) = S R(i)

Reward

Web-Mining Agents
Agents and Rational Behavior
Decision-Making under Uncertainty

Ralf Möller
Universität zu Lübeck

Institut für Informationssysteme

Additive Utility

• History H = (s0,s1,…,sn)
• The utility of H is additive iff:

U(s0,s1,…,sn) = R(0) + U(s1,…,sn) = S R(i)

• Robot navigation example:
w R(n) = +1 if sn = [4,3]

w R(n) = -1 if sn = [4,2]

w R(i) = -1/25 if i = 0, …, n-1

Principle of Max Expected Utility

• History H = (s0,s1,…,sn)
• Utility of H: U(s0,s1,…,sn) = S R(i)

First-step analysis à

• U(i) = R(i) + maxa SjP(j | a.i) U(j)

• P*(i) = arg maxa SkP(k | a.i) U(k)

-1

+1

Some authors use
a so-called
discounting factor
𝛾∈ [0, 1] in front
of the summation

Value Iteration

• Initialize the utility of each non-terminal state si

to U0(i) = 0

• For t = 0, 1, 2, …, do:
Ut+1(i) ß R(i) + maxa SkP(k | a.i) Ut(k)

-1

+1

2

3

1

4321

Value Iteration

• Initialize the utility of each non-terminal state si

to U0(i) = 0

• For t = 0, 1, 2, …, do:
Ut+1(i) ß R(i) + maxa SkP(k | a.i) Ut(k)

Ut([3,1])

t0 302010

0.611
0.5

0
-1

+1

2

3

1

4321

0.705 0.655 0.3880.611

0.762

0.812 0.868 0.918

0.660

Note the importance
of terminal states and
connectivity of the
state-transition graph

Policy Iteration

• Pick a policy P at random

Policy Iteration

• Pick a policy P at random
• Repeat:

w Compute the utility of each state for P
Ut+1(i) ß R(i) + SkP(k | P(i).i) Ut(k)

Policy Iteration

• Pick a policy P at random
• Repeat:

w Compute the utility of each state for P
Ut+1(i) ß R(i) + SkP(k | P(i).i) Ut(k)

w Compute the policy P’ given these
utilities
P’(i) = arg maxa SkP(k | a.i) U(k)

Policy Iteration

• Pick a policy P at random
• Repeat:

w Compute the utility of each state for P
Ut+1(i) ß R(i) + SkP(k | P(i).i) Ut(k)

w Compute the policy P’ given these
utilities
P’(i) = arg maxa SkP(k | a.i) U(k)

w If P’ = P then return P

Or solve the set of linear equations:
U(i) = R(i) + SkP(k | P(i).i) U(k)
(often a sparse system)

New Problems

• Uncertainty about the action outcome
• Uncertainty about the world state due

to imperfect (partial) information

POMDP (Partially Observable Markov Decision Problem)

• A sensing operation returns multiple
states, with a probability distribution

• Choosing the action that maximizes the
expected utility of this state distribution
assuming “state utilities” computed as
above is not good enough, and actually
does not make sense (is not rational)

Literature

• Chapter 17

Material from Xin Lu

Outline

• POMDP agent
w Constructing a new MDP in which the current probability

distribution over states plays the role of the state variable

• Decision-theoretic Agent Design for
POMDP
w A limited lookahead using the technology of decision

networks

Decision cycle of a POMDP agent

• Given the current belief state b, execute the
action

• Receive observation o
• Set the current belief state to SE(b,a,o) and repeat

(SE = State Estimation)

)(* ba π=

SE π

Agent

World

Observation

Action

b

Belief state

• b(s) is the probability
assigned to the actual
state s by belief state b.

0.111 0.111 0.111 0.000

0.111 0.111 0.000

0.111 0.111 0.111 0.111

()0,0,,,,,,,,, 9
1

9
1

9
1

9
1

9
1

9
1

9
1

9
1

9
1

Belief MDP

• A belief MDP is a tuple <B, A, r, P>:
B = infinite set of belief states
A = finite set of actions
r(b) = ∑s b(s)R(s) (reward function)

P(b’|b, a) = (transition function) (see SE(b,a,o))

Where P(b’|b, a, o) = 1 if SE(b, a, o) = b’, P(b’|b, a, o) = 0 otherwise;

(' | , ,) (| ,)
o O
P b b a o P o a b

∈
∑

0.111 0.111 0.111 0.000

0.111 0.111 0.000

0.111 0.111 0.111 0.111

0.222 0.111 0.000 0.000

0.111 0.111 0.000

0.222 0.111 0.111 0.000

Move West onceb b’

Example Scenario

Detailed view

• Probability of an observation e
P(e|a,b) = ∑s’ P(e|a,s’,b) P(s’|a,b)

= ∑s’ P(e|s’) P(s’|a,b)
= ∑s’ P(e|s’) ∑s P(s’|s,a) b(s)

• Probability of reaching b’ from b, given action a
P(b’|b,a) = ∑e P(b’|e,a,b) P(e|a,b)

= ∑e P(b’|e,a,b) ∑s’ P(e|s’) ∑s P(s’|s,a) b(s)
Where P(b’|e,a,b) = 1 if SE(b, a, e) = b’ and

P(b’|b, a, e) = 0 otherwise
• P(b’|b,a) and r(b) define an observable MDP on the space of

belief states.
• Solving a POMDP on a physical state space is reduced to

solving an MDP on the corresponding belief-state space.

Conditional Plans

• Example: Two state world 0,1
• Example: Two actions: stay(p), go(p)

w Actions achieve intended effect
with some probability p

• One-step plan [go], [stay]
• Two-step plans are conditional

w [a1, IF percept = 0 THEN a2 ELSE a3]
w Shorthand notation: [a1, a2/a3]

• n-step plans are trees with
w nodes attached with actions and
w edges attached with percepts

Value Iteration for POMDPs

• Cannot compute a single utility value for each state
of all belief states.

• Consider an optimal policy π* and its application in
belief state b.

• For this b the policy is a “conditional plan”
w Let the utility of executing a fixed conditional plan p in s be

up(s).
Expected utility Up(b) = ∑s b(s) up(s)
It varies linearly with b, a hyperplane in a belief space

w At any b, the optimal policy will choose the conditional plan
with the highest expected utility
U(b) = U π* (b) π* = argmaxp b*up (summation as dot-prod.)

• U(b) is the maximum of a collection of hyperplanes
and will be piecewise linear and convex

Example

Utility of two one-step plans
as a function of b(1)

We can compute the utilities for conditional plans of
depth-2 by considering each possible first action, each
possible subsequent percept and then each way of choosing
a depth-1 plan to execute for each percept

Example

• Two state world 0,1. R(0)=0, R(1)=1
• Two actions: stay (0.9), go (0.9)
• The sensor reports the correct state with prob. 0.6
• Consider the one-step plans [stay] and [go]

w u[stay](0)=R(0) + 0.9R(0)+0.1R(1) = 0.1
w u[stay] (1)=R(1) + 0.9R(1)+0.1R(0) = 1.9
w u[go] (0)=R(0) + 0.9R(1)+0.1R(0) = 0.9
w u[go] (1)=R(1) + 0.9R(0)+0.1R(1) = 1.1

• This is just the direct reward function (taken into
account the probabilistic transitions)

u[stay,stay/stay](0)=R(0) + (0.9*(0.6*0.1 + 0.4*0.1) + 0.1*(0.6*1.9 + 0.4*1.9))=0.28
u[stay,stay/stay](1)=R(1) + (0.9*(0.6*1.9 + 0.4*1.9) + 0.1*(0.6*0.1 + 0.4*0.1))=2.72

u[go,stay/stay](0)=R(0) + (0.9*(0.6*1.9 + 0.4*1.9) + 0.1*(0.6*0.1 + 0.4*0.1))=1.72
u[go,stay/stay](1)=R(1) + (0.9*(0.6*0.1 + 0.4*0.1) + 0.1*(0.6*1.9 + 0.4*1.9))=1.28

Example

8 distinct depth-2 plans.
4 are suboptimal across the
entire belief space (dashed lines).

ustay(1) ustay(0)

ustay(1)ustay(0)

Example

Utility of four undominated
two-step plans Utility function for optimal

eight step plans

General formula

• Let p be a depth-d conditional plan whose initial action is a
and whose depth-d-1 subplan for percept e is p.e, then

up(s) = R(s) + ∑s’ P(s’| s,a) ∑e P(e|s’) up.e(s’)

• This gives us a value iteration algorithm
• The elimination of dominated plans is essential for reducing

doubly exponential growth: the number of undominated plans
with d=8 is just 144, otherwise 2255 (|A| O(|E|d-1))

• For large POMDPs this approach is highly inefficient

Solutions for POMDP

• Belief MDP has reduced POMDP to MDP, the MDP obtained
has a multidimensional continuous state space.

• Methods based on value and policy iteration:
A policy can be represented as a set of regions of belief
state space, each of which is associated with a particular
optimal action. The value function associates a distinct linear
function of b with each region. Each value or policy iteration
step refines the boundaries of the regions and may
introduce new regions.

)(bπ

Agent Design: Decision Theory

= probability theory + utility theory

The fundamental idea of decision theory is
that an agent is rational if and only if it
chooses the action that yields the highest
expected utility, averaged over all possible
outcomes of the action.

A Decision-Theoretic Agent

function DECISION-THEORETIC-AGENT(percept) returns action
calculate updated probabilities for current state based on

available evidence including current percept and previous
action

calculate outcome probabilities for actions
given action descriptions and probabilities of current states

select action with highest expected utility
given probabilities of outcomes and utility information

return action

Sense.t

D.t-1

State.t

Sense.t+1

State.t+1

D.t

Sense.t+2

State.t+2

D.t+1

Sense.t+3

State.t+3

D.t+2 U.t+3

Dynamic Bayesian Decision Networks

• The decision problem involves calculating the value of
that maximizes the agent’s expected utility over the
remaining state sequence.

tD

R.t R.t+1 R.t+2

Search Tree of the Lookahead DDN

tD

1+tD

2+tD

10 -4 -6 3

1+tE

2+tE

3+tE

)|(:1 tt EXP

)|(1:11 ++ tt EXP

)|(2:12 ++ tt EXP

)(3+tXU

in

in

in

Discussion of DDNs

• DDNs provide a general, concise
representation for large POMDPs

• Agent systems moved from
w static, accessible, and simple environments to
w dynamic, inaccessible, and complex

environments that are closer to the real world
• However, exact algorithms are

exponential

Perspectives of DDNs to
Reduce Complexity

• Combined with a heuristic estimate for
the utility of the remaining steps

• Incremental pruning techniques
• Many approximation techniques:

w Using less detailed state variables for states in the
distant future.

w Using a greedy heuristic search through the space of
decision sequences.

w Assuming “most likely” values for future percept
sequences rather than considering all possible values

…

Summary

• Decision making under uncertainty
• Utility function
• Optimal policy
• Maximal

expected utility
• Value iteration
• Policy iteration

