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Decision Networks

Extend BNs to handle actions and
utilities

Also called influence diagrams
Use BN inference methods to solve

Perform Value of Information
calculations



Decision Networks cont.

D Chance nodes: random variables, as
in BNs

' Decision nodes: actions that decision
maker can take

Utility/value nodes: the utility of the
outcome state.




Umbrella Network

take/don’t take

P(rain) = 0.4

umbrella

have umbrella
P(have|take) = 1.0

P(~have|~take)=1.0

f W p(flw)
U(have,rain) = -25 sunny rain | 0.3
U(have,~rain) = 0 rainy rain | 0.7
U(~have, rain) = -100 sunny no rain| 0.8
U(~have, ~rain) = 100 rainy no rain| 0.2



Evaluating Decision Networks

e« Set the evidence variables for current state

* For each possible value of the decision node:
+ Set decision node to that value

+ Calculate the posterior probability of the parent nodes of
the utility node, using BN inference

+ Calculate the resulting utility for action
* Return the action with the highest utility



Decision Making: Umbrella Network

Should | take my umbrella??

take/don’t take

P(rain) = 0.4

umbrella

have umbrella
P(have|take) = 1.0
P(~have|~take)=1.0 happiness

f w p(flw)
U(have,rain) = -25 sunny rain | 0.3
U(have,~rain) = 0 rainy rain | 0.7
U(~have, rain) = -100 sunny no rain| 0.8
U(~have, ~rain) = 100 rainy no rain| 0.2



Value of information

ldea: compute value of acquiring each possible piece of evidence
Can be done directly from decision network

Example: buying oil drilling rights
Two blocks A and B, exactly one has oil, worth £
Prior probabilities 0.5 each, mutually exclusive
Current price of each block is /& /2
“Consultant” offers accurate survey of A. Fair price?

Solution: compute expected value of information
— expected value of best action given the information
minus expected value of best action without information
Survey may say “oil in A" or “no oil in A", prob. 0.5 each (given!)
= [0.5 x value of “buy A" given “oil in A"
+ 0.5 x value of “buy B" given “no oil in A"]
-0
= (05x k/2)+(05x k/2)—0=F/2



General formula

Current evidence £, current best action o
Possible action outcomes \5;, potential new evidence £

EU(a|E) = max 2 U(S;) P(S;|E, a)
Suppose we knew £ = ¢, then we would choose Qe 8.t
E(/r((_l"ejk|E, EJ — GJ'k) — 111(‘%1)-{ El LT(S,) P(S1|E a. EJ — ij)

E; is a random variable whose value is currently unknown
—  must compute expected gain over all possible values:

VPIp(E)) = (S P(Ej= et E)EU (v, |E. E;=ej)) — EU(o| E)

(VPI = value of perfect information)



Properties of VPI

Nonnegative—in expectation
¥j,E VPIg(E;) >0
Nonadditive—consider, e.g., obtaining £ ; twice
VPIg(E;, E) # VPIg(E;) + VPIg(Ey)
Order-independent
VPIp(Ej, Ey) = VPIp(E;) + V PIg p(Ey) = VPIp(Ey) + VPl g, (Ej)

Note: when more than one piece of evidence can be gathered,
maximizing VPI for each to select one is not always optimal
— evidence-gathering becomes a sequential decision problem



Qualitative behaviors

a) Choice is obvious, information worth little
b) Choice is nonobvious, information worth a lot
c) Choice is nonobvious, information worth little

P(UIE;) P(UIE;) P(UIE;)
A i A

| o T LI
U, U, U. 0, U, U,

() ®) (c)

i’

Three generic cases for the value of information. In (a), awill almost certainly remain superior
to a., so the information is not needed. In (b), the choice is unclear and the information is
crucial. In (c), the choice is unclear, but because it makes little difference, the information is
less valuable. (Note: The fact that U.has a high peak in (c) means that its expected value is
known with higher certainty than U..)



Information Gathering Agent

 Ask questions Request(E;) in a reasonable order
* Avoid irrelevant questions

 Take into account imporance of piece of
information j in relation to Cost(E)

function INFORMATION-GATHERING-AGENT( percept) returns an action
persistent: D, a decision network

integrate percept into D
j «— the value that maximizes VPI(E;) / Cost(E};)
if VPI(E;) > Cost(E;)
return REQUEST(£)
else return the best action from D
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Simple Robot Navigation Problem

A

e In each state, the possible actions are U, D, R, and L




Probabilistic Transition Model

A

e In each state, the possible actions are U, D, R, and L
e The effect of U is as follows (transition model):
e With probability 0.8 the robot moves up one square (if the
robot is already in the top row, then it does not move)




Probabilistic Transition Model

A

e In each state, the possible actions are U, D, R, and L
e The effect of U is as follows (transition model):
o With probability 0.8 the robot moves up one square (if the
robot is already in the top row, then it does not move)
o With probability 0.1 the robot moves right one square (if the
robot is already in the rightmost row, then it does not move)



Probabilistic Transition Model

A

e In each state, the possible actions are U, D, R, and L
e The effect of U is as follows (transition model):
o With probability 0.8 the robot moves up one square (if the
robot is already in the top row, then it does not move)
e With probability 0.1 the robot moves right one square (if the
robot is already in the rightmost row, then it does not move)
o With probability 0.1 the robot moves left one square (if the
robot is already in the leftmost row, then it does not move)



Markov Property

The transition properties depend only
on the current state, not on previous
history (how that state was reached)



Sequence of Actions

[3,2]

2 A

1 2 3 4
e Planned sequence of actions: (U, R)



Sequence of Actions

[3,2]

A
A A [3,21] [3,31 | [4,2]

1 2 3 4

e Planned sequence of actions: (U, R)
e U is executed



Histories

[3,2]

A [3,21|13,31][4,2]

D> | D> | D>

A T AN

[3,11][3,2]][3,3] | [41]][4,2] | [4,3]

2 3 4

e Planned sequence of actions: (U, R)
* U has been executed
e R is executed

e There are 9 possible sequences of states
— called histories — and 6 possible final states
for the robot!



Probability of Reaching the Goal

, N .

Note importance of Markov property

in this derivation

1 A | A

1 2 3 4

*P([4,3] | (UR).[3,2]) =

OP(
.P(

OP(

4,3]
4,3]

4,3]

P([4,3] | R.[3,3]) x P([3,3] | U.[3,2])

+ P([4,3] | R.[4,2]) x P([4,2] | U.[3,2])
R.[3,3]) = 0.8  P([3,3] | U.[3,2]) = 0.8
R.[4,2]) = 0.1  «P([4,2] | U.[3,2]) = 0.1

(U,R).[3,2]) = 0.65



Utility Function

3 +1
2 -1
1

1 2 3 4

e [4,3] provides power supply
e [4,2] is a sand area from which the robot cannot escape



Utility Function

3 +1
2 -1
1

1 2 3 4

e [4,3] provides power supply
e [4,2] is a sand area from which the robot cannot escape
e The robot needs to recharge its batteries



Utility Function

The

4,3
4,2

3 +1
2 -1
1

1 2 4

provides power supply

is a sand area from which the robot cannot escape

robot needs to recharge its batteries

4,3 ]

or [4,2] are terminal states




Utility of a History

3 +1
2 -1
1

1 2 3 4

4,3] provides power supply

4,2] is a sand area from which the robot cannot escape

The robot needs to recharge its batteries

4,3] or [4,2] are terminal states

e The utility of a history is defined by the utility of the last

state (+1 or —1) minus n/25, where n is the number of moves




Utility of an Action Sequence

3 +1

1 2 3 4

e Consider the action sequence (U,R) from [3,2]



Utility of an Action Sequence

[3,2]

[3,2]

[3,3]

[4,2]

T

3 +1
) -1
1

1 2 3 4

[3/1]

[3,2]

[3,3]

[4,1]

[4,2]

[4,3]

e Consider the action sequence (U,R) from [3,2]
e A run produces one among 7 possible histories, each with some

probability




Utility of an Action Sequence

3 +1
) -1
1

1 2 3 4

[3,2]

[3,2]

[3,3]

[4,2]

I Vi——

[3,1]

[3,2]

[3,3]

[4/1]

[4,2]

[4,3]

e Consider the action sequence (U,R) from [3,2]
e A run produces one among 7 possible histories, each with some

probability

e The utility of the sequence is the expected utility of the histories:

U =2 u,P(h)




Optimal Action Sequence

3 +1 [312]

2 - 3,21 | [3,31 | [4,2]

1 T ——

[3,1]][3,2] | [3,3]] [41]][4,2] | [4,3]

1 2 3 4

e Consider the action sequence (U,R) from [3,2]

e A run produces one among 7 possible histories, each with some
probability

e The utility of the sequence is the expected utility of the histories

e The optimal sequence is the one with maximal utility



Optimal Action Sequence

3 +1 [312]

2 - 3,21 | [3,31 | [4,2]

1 T

[3,1]][3,2] | [3,3]] [41]][4,2] | [4,3]

1 2 3 4

e Consider the action sequence (U,R) from [3,2]
e A run prod - - - |
Srobabil only if the sequence is executed blindly!
e The utility of the sequence is the expected utility of the histories
e The optimal sequence is th with maximal utility
e But is the optim ion sequence what we want to
compute?

ne




Reactive Agent Algorithm

. Accessible or
Repeat: /observable state
s &(sensed state
If s is terminal then exit
a < choose action (given s)

Perform a



PO“CY (Reactive/Closed-Loop Strategy)

e A policy IT is a complete mapping from states to actions



Reactive Agent Algorithm

Repeat:
s € sensed state
If s is terminal then exit
a < TI1(s)
Perform a



Optimal Policy

e A policy IT is a complet Note that [3,2] is a “"dangerous”

e The optimal policy T1* | state that the optimal policy
history (ending at a te tries to avoid
expected utili

Makes sense because of Markov property>




Optimal Policy

e A policy IT is a comp

e The optimal

— | — | +1

olicy I

This problem is called a
Markov Decision Problem (MDP)

NS

history with meximal expected utilitr

How to compute IT*?




Additive Utility

e History H = (s,,5,,...,S.)

 The utility of H is additive iff:
U(S,,S5,...,5) = =R(0) + U(s,,...,s,) = 2 =)

N

Reward
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Additive Utility

 History H = (s,,S,,...,S,)
 The utility of H is additive iff:
U(GS,,Sy,...,5) = RA0) + UG,...,s) = 2 RU)
 Robot navigation example:
* R(n) =+1if S, =[4,3]
* R(n)=-1if s, =[4,2]
¢® R(G)=-1/25ifi=0, ..., n-1



Principle of Max Expected Utility

e History H = (s,,5,,...,5,)
o Utility of H: Ws,,s,,...,s,) = 2 Ri)

—| — | —| +1

Some authors use

First-step awaLgsLs - a so-called
discounting factor
°  U(i) = =) + max, ZjP(j | a.i) LA() y € [0, 1] in front
of the summation
e [I*(i) = arg max, ZkP(k | a.i) UA(k)



Value lteration

 [|nitialize the utility of each non-terminal state s
to U, () =0

e Fort=0,1, 2, ..., do:
U, () € RA) + max, 25, Pk | a.i) U(k)

3 +1
) -1
1




Value lteration

Note the importance

- Initialize the utility of eac] Of terminal states and |
to U, (i) =0 connectivity of the

. Fort=0.1 2 .. do: state-transition graph

U, () € RA) + max, 25, Pk | a.i) U(k)

U([3,1])4
0.812| 0.868| 0.918
3 — | +1 0 |
0.660 0.5
2 t -1
0
1 0611/ 0.388




Policy Iteration

* Pick a policy IT at random



Policy Iteration

* Pick a policy IT at random

e Repeat:
* Compute the utility of each state for I1
U, () € RA) + 25, Pk | T16).1) LK)



Policy Iteration

Pick a policy IT at random

Repeat:

* Compute the utility of each state for I1
U, () € RA) + 25, Pk | T16).1) LK)

+ Compute the policy IT’ given these
utilities
(i) = arg max, 2., Pk | a.i) LK)



Policy Iteration

* Pick a policy IT at random
e Repeat:

* Compute the utility of each state for I1
U, () € RA) + 25, Pk | T16).1) LK)
+ Compute the pglicy IT' given these

utilities Or solve the set of linear equations:
[T'(i) = arg max, 3| i) = RA) + 2Pk | 11(7).1) (k)

(often a sparse system)

¢ |If IT" = I1 then return I1



New Problems

* Uncertainty about the action outcome

* Uncertainty about the world state due
to imperfect (partial) information



PO M D P (Partially Observable Markov Decision Problem)

e A sensing operation returns multiple
states, with a probability distribution

e Choosing the action that maximizes the
expected utility of this state distribution
assuming “state utilities” computed as
above is not good enough, and actually
does not make sense (is not rational)
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Outline

« POMDP agent

+ Constructing a new MDP in which the current probability
distribution over states plays the role of the state variable

* Decision-theoretic Agent Design for
POMDP

+ A limited lookahead using the technology of decision
networks



Decision cycle of a POMDP agent

T

Observation

SE

Agent

« Given the current belief state b, execute the
action 5
a=m (b)

o Receive observation o

 Set the current belief state to SE(b,a,0) and repeat
(SE = State Estimation)



Belief state

* b(s)is the probability 0.111 | 0.111 | 0.111 | 0.000
assigned to the actual
state s by belief state b. | 9111 0.111 | 0.000

0.111 | 0.111 | O0.111 | 0.111

(LLLLLLLLLO,O)

929%92959%93959295

| P olsj,a)s;P(sj |sl.,a)b(sl.)
’ (Sj )=P(Sj |0,a,b)= ;P(o|sj,a);(P(sj |s,.,a)b(sl.)

» b'=SE(b,a,o0)



Belief MDP

A belief MDP is a tuple <B, A, p, P>:

B = infinite set of belief states

A = finite set of actions
p(b) = 3, b(s)R(s)

P(b’|b, a) =

E P(b'|b,a,0)P(0]a,b)

=0

Where P(b’|b, a, 0) = 1 if SE(b, a, 0) = b’, P(b’|b, a, 0) = 0 otherwise;

(reward function)

Move West once

(transition function) (see SE(b,a,0))

b (‘ b’
0.111 | 0.111 | 0.111 | 0.000 0.222 | 0.111 | 0.000 | 0.000
0.111 - 0.111 | 0.000 0.111 0.111 | 0.000
0.111|0.111 | 0.111 | 0.111 0.222 1 0.111 | 0.111 | 0.000




Example Scenario

0.111 | 0.111 | 0.111 | (0.000 0.300 0.008 | [0.000 0.622 | 0.221 | 0.071 0.005 | 0.007 } 0.019 | |(0.775
0111 0.111 | [0:000 0221 ] 0.059 0.034
0.111 | 0.111 | 0.111 | 0111 0.371 0.008 | 0.000 0.003 | 0.024 | 0.003 | 0.000 0.005 | 0.006 | 0.008 | 0.030
(@) (b) © (d)
Figure 17.8  (a) The initial probability distribution for the agent’s location. (b) After mov-

ing Left five times. (¢) After moving Up five times. (d) After moving Right five times.




Detailed view

Probability of an observation e
P(ela,b) = 3. P(e|a,s’,b) P(s’|a,b)

= >4 P(els’) P(s’|a,b)

= 3¢ P(e|s’) 3, P(s’|s,a) b(s)

Probability of reaching b’ from b, given action a
P(b’|b,a) = 3. P(b’|e,a,b) P(e|a,b)
= >. P(b’[e,a,b) 3 P(e|s’) 3 P(s’|s,a) b(s)
Where P(b’|e,a,b) = 1 if SE(b, a, ) = b’ and
P(b’|b, a, e) = 0 otherwise
P(b’|b,a) and p(b) define an observable MDP on the space of
belief states.

Solving a POMDP on a physical state space is reduced to
solving an MDP on the corresponding belief-state space.



Conditional Plans

Example: Two state world 0,1

Example: Two actions: stay(p), go(p)

+ Actions achieve intended effect
with some probability p

One-step plan [go], [stay]

Two-step plans are conditional
+ [al, IF percept = O THEN a2 ELSE a3]
* Shorthand notation: [al, a2/a3]

n-step plans are trees with

+ nodes attached with actions and
+ edges attached with percepts




Value Iteration for POMDPs

Cannot compute a single utility value for each state
of all belief states.

Consider an optimal policy t* and its application in
belief state b.

For this b the policy is a “conditional plan”

+ Let the utility of executing a fixed conditional plan p in s be
u,(s).
Expected utility U,(b) = 3 b(s) u,(s)
It varies linearly with b, a hyperplane in a belief space

+ At any b, the optimal policy will choose the conditional plan

with the highest expected utility
U(b) = U . (b) m* = argmax, b*u, (summation as dot-prod.)

U(b) is the maximum of a collection of hyperplanes
and will be piecewise linear and convex



Example

Utility

2.5 4 Utility of two one-step plans
as a function of b(1)

0 0.2 0.4 0.6 0.8 1
Probability of state |

We can compute the utilities for conditional plans of

depth-2 by considering each possible first action, each
possible subsequent percept and then each way of choosing
a depth-1 plan to execute for each percept



Example

Two state world 0,1. R(0)=0, R(1)=1

Two actions: stay (0.9), go (0.9)

The sensor reports the correct state with prob. 0.6
Consider the one-step plans [stay] and [gO]

* Ugseay(0)=R(0) + 0.9R(0)+0.1R(1) = 0.1

* Upgeay (1)=R(1) + 0.9R(1)+0.1R(0) = 1.9

* Upgoy (0)=R(0) + 0.9R(1)+0.1R(0) = 0.9

* Ugge ()=R(1) + 0.9R(0)+0.1R(1) = 1.1

This is just the direct reward function (taken into
account the probabilistic transitions)



Example

8 distinct depth-2 plans.
4 are suboptimal across the
entire belief space (dashed lines).

O (.2 0.4 0.6 0.8
Probability of state 1

Usta y(o) Usta y(1)

) \
( \ ( |

Ustay,stay/stay] (0)=R(0) + (0.9%(0.6*0.1 + 0.4%0.1) + 0.1%(0.6*1.9 + 0.4*1.9))=0.28 ‘
Ufstaystay/stay] (1) =R(1) + (0.9%(0.6*1.9 + 0.4*1.9) + 0.1%(0.6*0.1 + 0.4%0.1))=2.72

\ } \ J
|

|
Ustay( 1) Uy tay( 0)

Ujgo stay/stay](0)=R(0) + (0.9%(0.6*1.9 + 0.4%1.9) + 0.1%(0.670.1 + 0.4%0.1))=1.72 ‘
Ujgo stay/stay](1)=R(1) + (0.9%(0.6*0.1 + 0.4%0.1) + 0.1%(0.6*1.9 + 0.4*1.9))=1.28




Example

158,

Utility
Utility
Utility
=N

‘o

0 DL ORESEE Ol =it0 8 1 0 0:2 '0{‘ 06 08
Probability of state Probability of state 1

Utility of four undominated Utility function for optimal
two-step plans :
eight step plans



General formula

Let p be a depth-d conditional plan whose initial action is a
and whose depth-d-1 subplan for percept e is p.e, then

u,(s) = R(s) + 2 P(s’| s,a) 2. P(e[s’) u,(s")

This gives us a value iteration algorithm

The elimination of dominated plans is essential for reducing
doubly exponential growth: the number of undominated plans
with d=8 is just 144, otherwise 22>> (]A| O(|E|d‘1>)

For large POMDPs this approach is highly inefficient



Solutions for POMDP

Belief MDP has reduced POMDP to MDP, the MDP obtained
has a multidimensional continuous state space.

Methods based on value and policy iteration:

A policy n(b) can be represented as a set of regions of belief
state space, each of which is associated with a particular
optimal action. The value function associates a distinct /inear
function of b with each region. Each value or policy iteration
step refines the boundaries of the regions and may

introduce new regions. N

N

0 ' : 1




Agent Design: Decision Theory

= probability theory + utility theory

The fundamental idea of decision theory is
that an agent is rational if and only if it
chooses the action that yields the highest

expected utility, averaged over all possible
outcomes of the action.



A Decision-Theoretic Agent

function DECISION-THEORETIC-AGENT (percepft) returns action

calculate updated probabilities for current state based on
available evidence including current percept and previous
action

calculate outcome probabilities for actions

given action descriptions and probabilities of current states
select action with highest expected utility

given probabilities of outcomes and utility information
return action




Dynamic Bayesian Decision Networks

(D41 D.t D.t+1 D.t+2

State.t State.t+1 State.t+2 State.t+3

« The decision problem involves calculating the value of D
that maximizes the agent’s expected utility over the
remaining state sequence.




Search Tree of the Lookahead DDN

D, in P(X,|E,,)
E

r+1

Dt+1 in P(Xt+1 | El:t+1)
E

r+2

Df+2 in})()(t+2 | El:t+2) “““

E

r+3

U(Xt+3) _____
10 -4 -6 3



Discussion of DDNs

« DDNs provide a general, concise
representation for large POMDPs

* Agent systems moved from

+ static, accessible, and simple environments to

+ dynamic, inaccessible, and complex
environments that are closer to the real world

 However, exact algorithms are
exponential



Perspectives of DDNs to
Reduce Complexity

Combined with a heuristic estimate for
the utility of the remaining steps

Incremental pruning techniques

Many approximation techniques:

Using less detailed state variables for states in the
distant future.

Using a greedy heuristic search through the space of
decision sequences.

Assuming “most likely” values for future percept
sequences rather than considering all possible values



Summary

Decision making under uncertainty
Utility function

An Introduction to

O pt| m al pQ | | cy Decision Theory

‘ MARTIN PETERSON

Maximal
expected utility

Value iteration
Policy iteration




