Recap: Inference in Probabilistic Graphical Models

R. Möller
Institute of Information Systems
University of Luebeck
A Simple Example

\[P(A,B,C) = P(A)P(B,C | A) \]
\[= P(A) \ P(B|A) \ P(C|B,A) \]
\[= P(A) \ P(B|A) \ P(C|B) \]

C is conditionally independent of A given B

Graphical Representation ???
Bayesian Network

Directed Graphical Model
U = (V₁, ..., Vₙ)

P(U) = ∏ P(Vᵢ | Pa(Vᵢ))

P(A,B,C) = P(A) P(B | A) P(C | B)
Digression: Polytrees

• A network is *singly connected* (a polynode) if it contains no undirected loops.

Theorem: Inference in a singly connected network can be done in linear time*.

Main idea: in variable elimination, need only maintain distributions over single nodes.

* in network size including table sizes.

© Jack Breese (Microsoft) & Daphne Koller (Stanford)
The problem with loops

The grass is dry only if no rain and no sprinklers.

\[P(\overline{g}) = P(\overline{r}, \overline{s}) \sim 0 \]
The problem with loops contd.

\[
P(\bar{g}) = \frac{0}{P(\bar{g} \mid r, s) P(r, s) + P(\bar{g} \mid r, \bar{s}) P(r, \bar{s})}
+ \frac{0}{P(\bar{g} \mid \bar{r}, s) P(\bar{r}, s) + P(\bar{g} \mid \bar{r}, \bar{s}) P(\bar{r}, \bar{s})}
\]

\[
= P(\bar{r}, \bar{s}) \sim 0
\]

\[
= P(\bar{r}) P(\bar{s}) \sim 0.5 \cdot 0.5 = 0.25
\]
Variable elimination

\[
P(c) = \sum_b P(c \mid b) \sum_a P(b \mid a) P(a)
\]

© Jack Breese (Microsoft) & Daphne Koller (Stanford)
Inference as variable elimination

• A factor over X is a function from $\text{val}(X)$ to numbers in $[0,1]$:
 – A CPT is a factor
 – A joint distribution is also a factor

• BN inference:
 – factors are multiplied to give new ones
 – variables in factors summed out

• A variable can be summed out as soon as all factors mentioning it have been multiplied.
Variable Elimination with loops

- Complexity is exponential in the size of the factors

© Jack Breese (Microsoft) & Daphne Koller (Stanford)
Join trees*

A join tree is a partially precompiled factorization

* aka Junction Tree, Lauritzen-Spiegelhalter, or Hugin algorithm, ...
Background: Markov networks

• **Random variable**: B, E, A, J, M
• **Joint distribution**: Pr(B, E, A, J, M)

• **Undirected graphical models** give another way of defining a compact model of the joint distribution…via potential functions.

• $\phi(a,j)$ is a scalar measuring the “compatibility” of A=a J=j

<table>
<thead>
<tr>
<th>A</th>
<th>J</th>
<th>$\phi(a,j)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>20</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>0.1</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Background

\[\Pr(B = b, E = e, A = a, j, m) = \frac{1}{Z} \phi_{ja}(a, j)\phi_{mA}(a, m)\phi_{AB}(a, b)\phi_{AE}(a, e)\phi_{E}(e)\phi_{B}(b) \]

- \(\varphi(A=a, J=j) \) is a scalar measuring the “compatibility” of \(A=a, J=j \)
Another example

- **Undirected** graphical models

Graph

- Smoking
- Cancer
- Asthma
- Cough

Probability Mass Function

\[
P(x) = \frac{1}{Z} \prod_c \Phi_c(x_c)
\]

\[
Z = \sum_x \prod_c \Phi_c(x_c)
\]

Table

<table>
<thead>
<tr>
<th>Smoking</th>
<th>Cancer</th>
<th>(\Phi(S,C))</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>False</td>
<td>4.5</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>4.5</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>2.7</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>4.5</td>
</tr>
</tbody>
</table>

- \(x = \text{vector}\)
- \(x_c = \text{short vector}\)

H/T: Pedro Domingos
Markov Networks = Markov Random Fields

Undirected Graphical Model
Markov Random Fields

Undirected Graphical Model

\[
P(U) = \prod P(\text{Clique}) / \prod P(\text{Separator})
\]

\[
P(A,B,C) = P(A,B) \cdot P(B,C) / P(B)
\]
Markov Random Fields

A node is conditionally independent of all others given its neighbours.
Factor Graphs

• Example
 – Exponential (joint) parameterization
 – Pairwise parameterization

Factor graph for joint parameterization

Markov network

Factor graph for pairwise parameterization
Because MRF and BN are incomparable, some independence structure is lost in conversion.

\[\mu(x) = \psi(x_1, x_2)\psi(x_1, x_3)\psi(x_2, x_4)\psi(x_3, x_4) \]

\[x_1 \perp x_4 | (x_2, x_3) \]

\[x_2 \perp x_3 | (x_1, x_4) \]

\[\mu(x) = \mu(x_2)\mu(x_3)\mu(x_1 | x_2, x_3) \]

\[x_2 \perp x_3 \]

\[\text{no independence} \]
Factor Graphs vs. MRFs

Factor graphs are more ‘fine grained’ than undirected graphical models

\[
\psi(x_1, x_2, x_3) \quad \psi_{12}(x_1, x_2)\psi_{23}(x_2, x_3)\psi_{31}(x_3, x_1) \quad \psi_{123}(x_1, x_2, x_3)
\]

all three encodes same independencies, but different factorizations
(in particular the degrees of freedom in the compatibility functions are
\(3|\mathcal{X}|^2\) vs. \(|\mathcal{X}|^3\))

- set of independencies represented by MRF is the same as FG
- but FG can represent a larger set of factorizations
BNs – MRFs – FGs

- undirected graphical models can be represented by factor graphs
 - we can go from MRF to FG without losing any information on the independencies implies by the model

- Bayesian networks are not compatible with undirected graphical models or factor graphs
 - if we go from one model to the other, and then back to the original model, then we will not, in general, get back the same model as we started out with
 - we lose any information on the independencies implies by the model, when switching from one model to the other
Generative vs. Discriminative

Generative ML or MAP Learning: *Naïve Bayes*

\[
p(y, x) = p(y) \prod_{m=1}^{M} p(x_m \mid y)
\]

- Class-specific distributions for each of \(M\) features

Discriminative ML or MAP Learning: *Logistic regression*

\[
p(y = k \mid x, \theta) = \frac{1}{Z(x, \theta)} \prod_{m=1}^{M} \exp \left\{ \theta_k^T \phi(x_m) \right\}
\]

\[
Z(x, \theta) = \sum_{k=1}^{K} \prod_{m=1}^{M} \exp \left\{ \theta_k^T \phi(x_m) \right\}
\]

- Exponential family distribution (maximum entropy classifier)
- Different distribution, and normalization constant, for each \(x\)
Conditional Random Field

• A Conditional random field (CRF) is a Markov random field of unobservables which are globally conditioned on a set of observables (Lafferty et al., 2001)

A Conditional random field is effectively an MRF plus a set of “external” variables X, where the “internal” variables Y of the MRF are the unobservables (\bigcirc) and the “external” variables X are the observables (\bullet):

Thus, we could denote a CRF informally as:

$$C=(M, X) \quad \mathbb{P}(Y \mid X)$$

for MRF M and external variables X, with the understanding that the graph $G_{X \cup Y}$ of the CRF is simply the graph G_Y of the underlying MRF M plus the vertices X and any edges connecting these to the elements of G_Y.

Note that in a CRF we do not explicitly model any direct relationships between the observables (i.e., among the X) (Lafferty et al., 2001).
KLAR SOWEIT?
Augmenting Probabilistic Graphical Models with Ontology Information: Object Classification

R. Möller
Institute of Information Systems
University of Luebeck
Large-Scale Object Recognition using Label Relation Graphs

Jia Deng1,2, Nan Ding2, Yangqing Jia2, Andrea Frome2, Kevin Murphy2, Samy Bengio2, Yuan Li2, Hartmut Neven2, Hartwig Adam2

University of Michigan1, Google2
Object Classification

• Assign semantic labels to objects

![Image of a Corgi puppy]

- Dog: ✔
- Corgi: ✔
- Puppy: ✔
- Cat: ✖
Object Classification

- Assign semantic labels to objects

<table>
<thead>
<tr>
<th>Probabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dog</td>
</tr>
<tr>
<td>Corgi</td>
</tr>
<tr>
<td>Puppy</td>
</tr>
<tr>
<td>Cat</td>
</tr>
</tbody>
</table>
Object Classification

• Assign semantic labels to objects
Object Classification

• Independent binary classifiers: Logistic Regression

• Multiclass classifier: Softmax

No assumptions about relations.

Assumes mutual exclusive labels.
Object labels have rich relations

Softmax: all labels are mutually exclusive 😞
Logistic Regression: all labels overlap 😞
Goal: A new classification model

Respects real world label relations
Visual Model + Knowledge Graph

Assumption in this work: Knowledge graph is given and fixed.
Agenda

• Encoding prior knowledge (HEX graph)
• Classification model
• Efficient Exact Inference
Agenda

- Encoding prior knowledge (HEX graph)
- Classification model
- Efficient Exact Inference
Hierarchy and Exclusion (HEX) Graph

- Hierarchical edges (directed)
- Exclusion edges (undirected)
Examples of HEX graphs

- Mutually exclusive
- All overlapping
- Combination
State Space: Legal label configurations

Each edge defines a constraint.

<table>
<thead>
<tr>
<th>Dog</th>
<th>Cat</th>
<th>Corgi</th>
<th>Puppy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

...
State Space: Legal label configurations

Each edge defines a constraint.

Hierarchy: (dog, corgi) can’t be (0,1)

<table>
<thead>
<tr>
<th>Dog</th>
<th>Cat</th>
<th>Corgi</th>
<th>Puppy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
State Space: Legal label configurations

Each edge defines a constraint.

<table>
<thead>
<tr>
<th>Dog</th>
<th>Cat</th>
<th>Corgi</th>
<th>Puppy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hierarchy: (dog, corgi) can’t be (0,1)

Exclusion: (dog, cat) can’t be (1,1)
Agenda

• Encoding prior knowledge (HEX graph)
• **Classification model**
• Efficient Exact Inference
HEX Classification Model

- Pairwise Conditional Random Field (CRF)

\[
\Pr(y \mid x) = \frac{1}{Z(x)} \prod_i \phi_i(x_i, y_i) \prod_{i,j} \psi_{i,j}(y_i, y_j)
\]

\(x \in \mathbb{R}^n\)

Input scores

\(y \in \{0,1\}^n\)

Binary Label vector
HEX Classification Model

- Pairwise Conditional Random Field (CRF)

\[
x \in \mathbb{R}^n \\
\text{Input scores}
\]

\[
y \in \{0, 1\}^n \\
\text{Binary Label vector}
\]

\[
\Pr(y \mid x) = \frac{1}{Z(x)} \prod_i \phi_i(x_i, y_i) \prod_{i,j} \psi_{i,j}(y_i, y_j)
\]

\[
\phi_i(x_i, y_i) = \begin{cases}
sigmoid(x_i) & \text{if } y_i = 1 \\
1 - \text{sigmoid}(x_i) & \text{if } y_i = 0
\end{cases}
\]

Unary: same as logistic regression
HEX Classification Model

- Pairwise Conditional Random Field (CRF)

\[
\begin{align*}
\Pr(y \mid x) &= \frac{1}{Z(x)} \prod_i \phi_i(x_i, y_i) \prod_{i,j} \psi_{i,j}(y_i, y_j) \\
\phi_i(x_i, y_i) &= \begin{cases}
\text{sigmoid}(x_i) & \text{if } y_i = 1 \\
1 - \text{sigmoid}(x_i) & \text{if } y_i = 0
\end{cases} \\
\psi_{i,j}(y_i, y_j) &= \begin{cases}
0 & \text{If violates constraints} \\
1 & \text{Otherwise}
\end{cases}
\end{align*}
\]

Unary: same as logistic regression

Pairwise: set illegal configuration to zero
HEX Classification Model

- Pairwise Conditional Random Field (CRF)

\[\Pr(y \mid x) = \frac{1}{Z(x)} \prod_i \phi_i(x_i, y_i) \prod_{i,j} \psi_{i,j}(y_i, y_j) \]

\[Z(x) = \sum_{\bar{y} \in \{0,1\}^n} \prod_i \phi_i(x_i, \bar{y}_i) \prod_{i,j} \psi_{i,j}(\bar{y}_i, \bar{y}_j) \]

Partition function: Sum over all (legal) configurations
HEX Classification Model

- Pairwise Conditional Random Field (CRF)

\[\Pr(y \mid x) = \frac{1}{Z(x)} \prod_i \phi_i(x_i, y_i) \prod_{i,j} \psi_{i,j}(y_i, y_j) \]

Probability of a single label: marginalize all other labels.

\[\Pr(y_i = 1 \mid x) = \frac{1}{Z(x)} \sum_{\bar{y}: \bar{y}_i = 1} \prod_i \phi_i(x_i, \bar{y}_i) \prod_{i,j} \psi_{i,j}(\bar{y}_i, \bar{y}_j) \]
Special Case of HEX Model

- **Softmax**

 ![Graphical representation of mutually exclusive attributes]

 \[
 \Pr(y_i = 1 \mid x) = \frac{\exp(x_i)}{1 + \sum_j \exp(x_j)}
 \]

- **Logistic Regressions**

 ![Graphical representation of all overlapping attributes]

 \[
 \Pr(y_i = 1 \mid x) = \frac{1}{1 + \exp(-x_i)}
 \]
Learning

Maximize marginal probability of observed labels

DNN = Deep Neural Network
Agenda

• Encoding prior knowledge (HEX graph)
• Classification model
• Efficient Exact Inference
Naïve Exact Inference is Intractable

• Inference:
 – Computing partition function
 – Perform marginalization

• HEX-CRF can be densely connected (large treewidth)
Observation 1: Exclusions are good

Number of legal states is $O(n)$, not $O(2^n)$.

- Lots of exclusions \rightarrow Small state space \rightarrow Efficient inference
- Realistic graphs have lots of exclusions.
- Rigorous analysis in paper.
Observation 2: Equivalent graphs
Observation 2: Equivalent graphs

Sparse equivalent
- Small Treewidth 😊
- Dynamic programming

Dense equivalent
- Prune states 😊
- Can brute force
HEX Graph Inference

1. Sparsify (offline)
2. Build Junction Tree (offline)
3. Densify (offline)
4. Prune Clique States (offline)
5. Message Passing on legal states (online)