
Non-Standard-Datenbanken
Graphdatenbanken

Prof. Dr. Ralf Möller
Universität zu Lübeck

Institut für Informationssysteme

Dennis Heinrich (Übungen)

Graph Database, think different!

• Nodes
• Edges (directed or not)
• Properties

A general query structure

MATCH [Nodes and relationships]
WHERE [Boolean filter statement]
RETURN [DISTINCT] [statements [AS alias]]
ORDER BY [Properties] [ASC\DESC]
SKIP [Number] LIMIT [Number]

First query

Get all nodes of type Program that have the name Hello
World!:

MATCH (a : Program)
WHERE a.name = ‘Hello World!’
RETURN a

Type = Program
Name = ‘Hello

World!’

Query relationships

Get all relationships of type Author connecting
Programmers and Programs:

MATCH (a : Programmer)-[r : Author]->(b : Program)
RETURN r

Type =
Progra

m

Type =
Programmer

Author

Matching nodes and relationships

Nodes:
(a), (), (:Ntype), (a:Ntype), (a { prop:’value’ }) ,
(a:Ntype { prop:’value’ })

• Relationships:
(a)--(b), (a)-->(b), (a)<--(b), (a)-->(), (a)-[r]->(b),
(a)-[:Rtype]->(b), (a)-[:R1|:R2]->(b),
(a)-[r:Rtype]->(b)

• May have more then 2 nodes:
(a)-->(b)<--(c), (a)-->(b)-->(c)

• Path:
p = (a)-->(b)

More options:

• Relationship distance:
(a)-[:Rtype*2]->(b) – 2 hops of type Rtype.
(a)-[:Rtype*]->(b) – any number of hops of type Rtype.
(a)-[:Rtype*2..10]-> (b) – 2-10 hops of Rtype.
(a)-[:Rtype* ..10]-> (b) – 1-10 hops of Rtype.
(a)-[:Rtype*2..]-> (b) – at least 2 hops of Rtype.

Could be used also as:
(a)-[r*2]->(b) – r gets a sequence of relationships
(a)-[*{prop:val}]->(b)

Operators

• Mathematical
+, -, *, /,%, ^ (power, not XOR)

• Comparison
=,<>,<,>,>=,<=, =~ (Regex), IS NULL , IS NOT

NULL
• Boolean

AND, OR, XOR, NOT
• String

Concatenation through +
• Collection

Concatenation through +
IN to check is an element exists in a collection.

More WHERE options

• WHERE others.name IN ['Andres', 'Peter']

• WHERE user.age IN range (18,30)

• WHERE n.name =~ 'Tob.*‘

• WHERE n.name =~ '(?i)ANDR.*‘ - (case insensitive)

• WHERE (tobias)-->()

• WHERE NOT (tobias)-->()

• WHERE has(b.name)

• WHERE b.name? = 'Bob'
(Returns all nodes where name = 'Bob' plus all nodes without a name
property)

Functions:

• On paths:
– MATCH shortestPath((a)-[*]-(b))
– MATCH allShorestPath((a)-[*]-(b))
– Length(path) – The path length or 0 if not exists.
– RETURN relationships(p) - Returns all relationships in a path.

• On collections:
– RETURN a.array, filter(x IN a.array WHERE length(x)= 3)

FILTER - returns the elements in a collection that comply to a predicate.
– WHERE ANY (x IN a.array WHERE x = "one“) – at least one
– WHERE ALL (x IN nodes(p) WHERE x.age > 30) – all elements
– WHERE SINGLE (x IN nodes(p) WHERE var.eyes = "blue") – Only one
* nodes(p) – nodes of the path p

With

• Manipulate the result sequence before it is passed on to
the following query parts.

• Usage of WITH :
– Limit the number of entries that are then passed on to

other MATCH clauses.
– Introduce aggregates which can then be used in

predicates in WHERE.
– Separate reading from updating of the graph. Every part

of a query must be either read-only or write-only.

With

MATCH (david { name: "David" })--(otherPerson)-->()

WITH otherPerson, count(*) AS foaf

WHERE foaf > 1

RETURN otherPerson

What will be returned?

The person connected to David with the at
least one outgoing relationship.

(2 {name:"Anders"})
* foaf = 2

More collections options

• MATCH (user)

RETURN count(user)

• MATCH (user)

RETURN count(DISTINCT user.name)

• MATCH (user)

RETURN collect(user.name)
Collection from the values, ignores NULL.

• MATCH (user)

RETURN avg(user.age)
Average numerical values. Similar functions are sum, min, max.

Additional Functionality: Mining the link structure

• Centrality (who are the most important nodes?)
• Reach/Influence: coverage of one or more nodes

(facility location, influence maximization)
• Similarity of node pairs (link prediction, targeted ads,

friend/product recommendations, attribute
completion)

• Communities: set of nodes that are more tightly related
to each other than to others

© Edith Cohen

Computing on Very Large Graphs

§ Many applications, platforms, algorithms
§ Clusters (Map Reduce, Hadoop) when applicable
§ iGraph/Pregel better with edge traversals

§ http://igraph.org Pregel is from Google (see also Apache Giraph)

§ (Semi-)streaming : pass(es), keep small info (per-node)

§ General algorithm design principles :
§ settle for approximations
§ keep total computation/ communication/ storage “linear” in the size of

the data
§ Parallelize (minimize chains of dependencies)
§ Localize dependencies

Grzegorz Malewicz et al., Pregel: A System for
Large-Scale Graph Processing, Google, 2010

Node sketches

§ Compute a sketch for each node, efficiently
§ From sketch(es) can estimate properties that are

“harder” to compute exactly

© Edith Cohen

MinHash sketches of reachability sets

Sketching Reachability Sets

© Edith Cohen

Reachability Set of

Size 4
© Edith Cohen

Reachability Set of

Size 5
© Edith Cohen

Reachability Set of

Size 13
© Edith Cohen

Why sketch reachability sets ?

From reachability sketch(es) we can:
§ Estimate cardinality of reachability/influence set of one

or more nodes
§ Get a uniform sample of the reachable nodes
§ Estimate similarity of nodes by relations between

reachability sets (e.g., Jaccard similarity)

ØExact computation is costly: 𝑂(𝑚𝑛) with 𝑛
nodes and 𝑚 edges, representation size is
massive: does not scale to large networks!

© Edith Cohen

Influence of ∪

Size 9
© Edith Cohen

MinHash sketches of all Reachability sets

hash values 𝐡(𝒗) ∼ 𝑼[𝟎, 𝟏]

0.37

0.23 0.85

0.45

0.06

0.95

0.77
0.69

0.93

0.32

0.28

0.34

0.12

© Edith Cohen

MinHash sketches of all
Reachability Sets: 𝑘 = 1

For each 𝑣: 𝐬 𝒗 ← 𝐦𝐢𝐧
𝒗	↝	𝒖

𝒉(𝒖)

Depending on application, may also
want to include node ID in sketch:

𝐚𝐫𝐠𝐦𝐢𝐧
𝒗	↝	𝒖

𝒉(𝒖)

© Edith Cohen

MinHash sketches of all
Reachability Sets: 𝑘 = 1

𝐬 𝒗 ← 𝐦𝐢𝐧
𝒗	↝	𝒖

𝒉(𝒖)

0.37

0.23 0.85

0.45

0.06

0.95

0.77
0.69

0.93

0.32

0.28

0.34

0.12
{0.23}

{0.06} {0.06}

{0.06}
{0.06}

{0.12}

{0.12}

{0.12}

{0.12}

{0.12}{0.23}

{0.23}
{0.23}

© Edith Cohen

Computing MinHash Sketches of all
Reachability Sets: 𝑘 = 1 BFS method

𝐬 𝒗 ← 𝐦𝐢𝐧
𝒗	↝	𝒖

𝒉(𝒖)

Iterate over nodes 𝑢 by increasing ℎ(𝑢):
Visit nodes 𝑣 through a reverse search from 𝑢:
§ IF s 𝑣 = ∅,		

§ 𝑠 𝑣 ← ℎ(𝑢)
§ Continue search on inNeighbors(𝑣)

§ ELSE, truncate search at 𝑣
© Edith Cohen

𝐬 𝒗 ← 𝐦𝐢𝐧
𝒗	↝	𝒖

𝒉(𝒖)

0.37

0.23 0.85

0.45

0.06

0.95

0.77
0.69

0.93

0.32

0.28

0.34

0.12
{0.23}

{0.06} {0.06}

{0.06}
{0.06}

{0.12}

{0.12}

{0.12}

{0.12}

{0.12}{0.23}

{0.23}
{0.23}

Compute MinHash sketches of all
Reachability Sets: 𝑘 = 1, BFS

© Edith Cohen

Computing MinHash sketches of all
reachability sets: 𝑘 = 1 BFS method

Analysis:
Each arc is used exactly once 𝑂(𝑚),
where 𝑚 is the number of arcs

Note: sorting of nodes is not needed.
Random permutation of 𝑛	nodes can be generated in
𝑂(𝑛) time

© Edith Cohen

