
Web-Mining Agents

Prof. Dr. Ralf Möller
Universität zu Lübeck

Institut für Informationssysteme

Tanya Braun (Übungen)

Agents for Information Retrieval (on the web)

2

Information Retrieval

• Slides taken
from presentation
material for
the following book:

3

Text-based queries

• Agents are asked to return documents most likely
to be useful to the searcher (w/ ordering)

• How can we rank order the docs
in a corpus with respect to a query?

• Assign a score – say in [0,1]
– for each doc on each query

4

Linear zone combinations

• First generation of scoring methods: use a linear
combination of occurrence queries (boolean):
– E.g., Score =

0.6*<“sorting “in Title> + 0.3*<“sorting” in Abstract> +
0.05*<“sorting” in Body> + 0.05*<“sorting” in Boldface>

– Each expression such as <sorting in Title>
takes on a value in {0,1}

– Then the overall score is in [0,1]

For this example the scores can only take
on a finite set of values – what are they?

5

Inverted index – Postings lists

• On the query bill OR rights suppose that we retrieve the
following docs from the various zone indexes:

bill
rights

bill
rights

bill
rights

Author

Title

Body

1

5

2

83

3 5 9

2 51

5 83

9

9

Compute the
score

for each doc
based on the
weightings
0.6,0.3,0.1

6

General idea

• We are given a weight vector whose components
sum up to 1.
– There is a weight for each zone/field.

• Given a Boolean query, we assign a score to each doc by
adding up the weighted contributions of the
zones/fields

• Typically users want to see
k highest-scoring docs (top-k query)

7

Index support for zone combinations

• In the simplest version we have a separate inverted index for
each zone

• Variant: have a single index with a separate dictionary entry
for each term and zone

• E.g.,
bill.author

bill.title

bill.body

1 2

5 83

2 51 9

Of course, compress zone names
like author/title/body.

8

Zone combinations index

• The above scheme is still wasteful: each term is potentially
replicated for each zone

• In a slightly better scheme, we encode the zone in the
postings:

• At query time, accumulate contributions to the total score of
a document from the various postings, e.g.,

bill 1.author, 1.body 2.author, 2.body 3.title

As before, the zone names get compressed.

9

bill 1.author, 1.body 2.author, 2.body 3.title

rights 3.title, 3.body 5.title, 5.body

Score accumulation

• As we walk the postings for the query bill OR rights, we
accumulate scores for each doc in a linear merge as before.

• Note: we get both bill and rights in the Title field of doc 3,
but score it no higher.

• Should we give more weight to more hits?

1
2
3
5

0.7
0.7
0.4
0.4

10

Where do these weights come from?

• Machine learned relevance
• Given

– A test corpus
– A suite of test queries
– A set of relevance judgments

• Learn a set of weights such that relevance
judgments matched

• Can be formulated as an optimization problem
(see lecture part on data mining/machine learning)

11

Full text queries

• We just scored the Boolean query bill OR rights
• Most users more likely to type bill rights or bill of

rights
– How do we interpret these full text queries?
– No Boolean connectives
– Of several query terms some may be missing in a doc
– Only some query terms may occur in the title, etc.

12

Full text queries

• To use zone combinations for free text queries, we
need
– A way of assigning a score to a pair <free text query,

zone>
– Zero query terms in the zone should mean a zero score
– More query terms in the zone should mean a higher

score
– Scores don’t have to be Boolean

• Will look at some alternatives now

13

Incidence matrices

• Bag-of-words model
• Document (or a zone in it) is binary vector X in {0,1}v

• Query is a vector Y
• Score: Overlap measure:

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

YX Ç

14

… … … … … … …

Example

• On the query ides of march, Shakespeare’s Julius Caesar
has a score of 3

• All other Shakespeare plays have a score of 2 (because
they contain march) or 1

• Thus in a rank order, Julius Caesar would come out tops

15

Overlap matching

• What’s wrong with the overlap measure?
• It doesn’t consider:

– Term frequency in document
– Term scarcity in collection

(document mention frequency)
• of is more common than ides or march

– Length of documents
• (and queries: score not normalized)

16

Overlap matching

• One can normalize in various ways:
– Jaccard coefficient:

– Cosine measure:

• What documents would score best using Jaccard against a
typical query?

• Does the cosine measure fix this problem?

YXYX ÈÇ /

YXYX ´Ç /

17

(X . Y)

Scoring: density-based

• Thus far: position and overlap of terms in a doc –
title, author etc.

• Obvious next idea: If a document talks more about a
topic, then it is a better match

• This applies even when we only have a single query
term.

• Document is relevant if it has a lot of the terms
• This leads to the idea of term weighting.

18

Term-document count matrices

• Consider the number of occurrences of a term in a
document:
– Bag of words model
– Document is a vector in ℕv: a column below

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

19

Bag of words view of a doc

• Thus the doc
– John is quicker than Mary.

is indistinguishable from the doc
– Mary is quicker than John.

Which of the indexes discussed
so far distinguish these two docs?

20

Counts vs. frequencies

• Consider again the ides of march query.
– Julius Caesar has 5 occurrences of ides
– No other play has ides
– march occurs in over a dozen
– All the plays contain of

• By this scoring measure, the top-scoring play is likely to
be the one with the most ofs

21

Term frequency tf

• Long docs are favored because they’re more
likely to contain query terms

• Can fix this to some extent by normalizing for
document length (term frequency, tf)

• But is raw tf the right measure?

22

Digression: terminology

• WARNING: In a lot of IR literature, “frequency” is
used to mean “count”
– Thus term frequency in IR literature is used to mean

number of occurrences in a doc
– Not divided by document length (which would actually

make it a frequency)

23

Weighting term frequency: tf

• What is the relative importance of
– 0 vs. 1 occurrence of a term in a doc
– 1 vs. 2 occurrences
– 2 vs. 3 occurrences …

• Unclear: While it seems that more is better,
a lot isn’t proportionally better than a few

– Can just use raw tf
– Another option commonly used in practice:

otherwise log1 ,0 if 0 ,,, dtdtdt tftfwf +==

24

Score computation

• Score for a query q = sum over terms t in q:

• [Note: 0 if no query terms in document]
• This score can be zone-combined
• Can use wf instead of tf in the above
• Still doesn’t consider term scarcity in collection

(ides is rarer than of)

åÎ
=

qt dttf ,

25

Weighting should depend on the term overall

• Which of these tells you more about a doc?
– 10 occurrences of hernia?
– 10 occurrences of the?

• Would like to attenuate the weight of a common
term
– But what is “common”?

• Suggest looking at collection frequency (cf)
– The total number of occurrences of the term in the entire

collection of documents

26

Document frequency

• But document frequency (df) may be better:
• df = number of docs in the corpus containing the term

Word cf df
ferrari 10422 17
insurance 10440 3997

• Document/collection frequency weighting is only possible
in known (static) collection.

• So how do we make use of df ?

27

tf x idf term weights

• tf x idf measure combines:
– term frequency (tf)

• or wf, some measure of term density in a doc
– inverse document frequency (idf)

• measure of informativeness of a term: its rarity across the whole corpus
• could just be raw count of number of documents the term occurs in (idfi

= n/dfi)
• but by far the most commonly used version is:

• See Kishore Papineni, NAACL 2, 2002 for theoretical justification

idfi = log n
idf

⎛
⎝
⎜

⎞
⎠
⎟

28

K. Spärck Jones. A Statistical Interpretation of Term
Specificity and Its Application in Retrieval. Journal of
Documentation 28: 11–21, 1972

Summary: tf x idf (or tf.idf)

• Assign a tf.idf weight to each term i in each
document d

• Increases with the number of occurrences within a doc
• Increases with the rarity of the term across the whole corpus

wi,d = tfi,d × log(n / dfi)

€

tf i,d = frequency of term i in document d
n = total number of documents
dfi = the number of documents that contain term i

What is the wt
of a term that
occurs in all
of the docs?

29

Real-valued term-document matrices

• Function (scaling) of count of a word in a document:
– Bag of words model
– Each is a vector in ℝv

– Here log-scaled tf.idf

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 13.1 11.4 0.0 0.0 0.0 0.0
Brutus 3.0 8.3 0.0 1.0 0.0 0.0
Caesar 2.3 2.3 0.0 0.5 0.3 0.3

Calpurnia 0.0 11.2 0.0 0.0 0.0 0.0
Cleopatra 17.7 0.0 0.0 0.0 0.0 0.0

mercy 0.5 0.0 0.7 0.9 0.9 0.3

worser 1.2 0.0 0.6 0.6 0.6 0.0

Note: can be >1!

30

Documents as vectors

• Each doc d can now be viewed as a vector of wf´idf
values, one component for each term

• So we have a vector space
– terms are axes
– docs live in this space
– even with stemming, may have 20,000+ dimensions

• (The corpus of documents gives us a matrix, which
we could also view as a vector space in which words
live – transposable data)

31

Recap: tf x idf (or tf.idf)

• Assign a tf.idf weight to each term i in each document d

• Instead of tf, sometimes wf is used:

wi,d = tfi,d * log(n / dfi)

 rmcontain te that documents ofnumber the
documents ofnumber total

document in termoffrequency ,

idf
n

jitf

i

di

=
=
=

otherwise log1 ,0 if 0 ,,, dtdtdt tftfwf +==

32

Web-Mining Agents

Prof. Dr. Ralf Möller
Universität zu Lübeck

Institut für Informationssysteme

Tanya Braun (Übungen)

Documents as vectors

• At the end of the last lecture we said:
• Each doc d can now be viewed as a vector of tf*idf

values, one component for each term
• So we have a vector space

– terms are axes
– docs live in this space
– even with stemming, may have 50,000+ dimensions

• First application: Query-by-example
– Given a doc d, find others “like” it.

• Now that d is a vector, find vectors (docs) “near” it.

34

Intuition

Postulate: Documents that are “close together”
in the vector space talk about the same things.

t1

d2

d1

d3

d4

d5

t3

t2

θ

φ

35

Desiderata for proximity/distance

• If d1 is near d2, then d2 is near d1.
• If d1 near d2, and d2 near d3, then d1 is not far from d3.
• No doc is closer to d than d itself.
• Triangle inequality

36

First cut

• Idea: Distance between d1 and d2 is the length of the vector
d1 – d2.

– Euclidean distance:

• Why is this not a great idea?
• We still haven’t dealt with the issue of length normalization

– Short documents would be more similar to each other by virtue of
length, not topic

• However, we can implicitly normalize by looking at angles
instead

()å =
-=-

n

i kijikj dddd
1

2
,,

37

Cosine similarity

• Distance between vectors d1 and d2 captured by the cosine
of the angle x between them.

• Note – this is similarity, not distance
– No triangle inequality for similarity.

t 1

d 2

d 1

t 3

t 2

θ

38

Cosine similarity

• A vector can be normalized (given a length of 1) by dividing
each of its components by its length – here we use
the L2 norm

• This maps vectors onto the unit sphere:

• Then,

• Longer documents don’t get more weight

€

!
d j = wi, j

2
i=1

n
∑ =1€

x 2 = xi
2

i∑

39

Cosine similarity

• Cosine of angle between two vectors
• The denominator involves the lengths of the vectors.

• For normalized vectors, the cosine is simply the dot
product:

€

sim(d j ,dk) =

!
d j ⋅
!
d k!

d j
!
d k

=
wi, jwi,ki=1

n
∑

wi, j
2

i=1

n
∑ wi,k

2

i=1

n
∑

Normalization

kjkj dddd
!!!!
×=),cos(

40

Queries in the vector space model

Central idea: the query as a vector:
• We regard the query as short document
• We return the documents ranked by the closeness of their

vectors to the query, also represented as a vector.

• Note that dq is very sparse!

åå
å

==

==
×

=
n

i qi
n

i ji

n

i qiji

qj

qj
qj

ww

ww

dd

dd
ddsim

1
2
,1

2
,

1 ,,),(!!

!!

41

What’s the point of using vector spaces?

• A well-formed algebraic space for retrieval
• Key: A user’s query can be viewed as a (very) short document.
• Query becomes a vector in the same space as the docs.
• Can measure each doc’s proximity to it.
• Natural measure of scores/ranking – no longer Boolean.

– Queries are expressed as bags of words
– Clean metaphor for similar-document queries

• Not a good combination with Boolean, wild-card, positional
query operators

• But …

42
Salton, G., Automatic information organization and retrieval.
New York: McGraw-Hill Book Company. 1968.

Efficient cosine ranking

• Find the k docs in the corpus “nearest” to the query
Þ Compute k best query-doc cosines

– Nearest neighbor problem for a query vector
– Multidimensional Index-Structures (see Non-Standard DBs lecture)

• For a “reasonable” number of dimensions (say 10-100)
• Otherwise space almost empty (curse of dimensionality)

– What about zoning? Keep vectors, no linear combination!
• Compute k best solutions

with different zone-specific vectors for each doc
• Can we do this without testing all combinations w.r.t. all zones?
• Fagin’s algorithm (see Non-Standard Databases lecture)

– What about multiple repositories?

Ronald Fagin: Fuzzy Queries in Multimedia Database Systems.
Proc. PODS-98, 1-10, 1998

Ronald Fagin. Combining Fuzzy Information from Multiple Systems. PODS-96, 216-226., 1996

43

Polysemy and Context

• Document similarity on single word level: polysemy and
context

car
company

•••
dodge

ford

meaning 2

ring
jupiter

•••
space

voyagermeaning 1
…

saturn
...

…
planet

...

contribution to similarity, if
used in 1st meaning, but not if in
2nd

44

Problems with Lexical Semantics

• Ambiguity and association in natural language
– Polysemy: Words often have a multitude of meanings

and different types of usage (more severe in very
heterogeneous collections).

– The vector space model is unable to discriminate
between different meanings of the same word.

45

Problems with Lexical Semantics

– Synonymy: Different terms may have an identical or a
similar meaning (weaker: words indicating the same
topic).

– No associations between words are made in the
simple vector space representation.

46

Dimensionality reduction

• What if we could take our vectors and “pack” them
into fewer dimensions (say 50,000®100) while
preserving distances?

• Two methods:
– Random projection.
– “Latent semantic indexing”.

47

Random projection onto k<<m axes

• Choose a random direction x1 in the vector space.
• For i = 2 to k

choose a random direction xi
that is orthogonal to x1, x2, … xi–1.

• Project each document vector into the subspace
spanned by {x1, x2, …, xk}.

48

E.g., from 3 to 2 dimensions

d2

d1

x1

t 3

x2

t 2

t 1

x1

x2
d2

d1

x1 is a random direction in (t1,t2,t3) space.
x2 is chosen randomly but orthogonal to x1.

Dot product of x1 and x2 is zero.

49

Guarantee

• With high probability, relative distances are
(approximately) preserved by projection

• But: expensive computations

50

Mapping Data

[Wikipedia] 51

• Red arrow
not changed in
shear mapping

• Eigenvector

Eigenvalues & Eigenvectors

• Eigenvectors (for a square m´m matrix S)

• How many eigenvalues are there at most?

only has a non-zero solution if

This is a m-th order equation in λ which can have at most m
distinct solutions (roots of the characteristic polynomial) – can be
complex even though S is real.

eigenvalue(right) eigenvector

Example

52

determinant

Singular Value Decomposition

TVUA S=

m´m m´n V is n´n

For an m´n matrix A of rank r there exists a factorization
(Singular Value Decomposition = SVD) as follows:

The columns of U are left-singular eigenvectors of AAT.

The columns of V are right-singular eigenvectors of ATA.

ii ls =

()rdiag ss ...1=S Singular values.

Eigenvalues l1 … lr of AAT are the eigenvalues of ATA.

53

Shear Mapping Unit Vectors

54[Wikipedia]

• SVD can be used to compute optimal low-rank
approximations for a Matrix A of rank r

• Approximation problem: Find Ak of rank k such that

Ak and X are both m´n matrices
Typically, want k << r

Low-rank Approximation

Frobenius norm
Ak =

X:rank (X)=k
argmin A− X

F

55

• Solution via SVD

Low-rank Approximation

set smallest r-k
singular values to zero

T
kk VUA)0,...,0,,...,(diag 1 ss=

k

56
C. Eckart, G. Young, The approximation of a matrix by another of
lower rank. Psychometrika, 1, 211-218, 1936

SVD Low-rank approximation

• A term-doc matrix A may have m=50000, n=10 million
(and rank close to 50000)

• We can construct an approximation A100 with rank 100.
– Of all rank 100 matrices, it would have the lowest Frobenius

error.

• Great … but why would we??
• Answer: Latent Semantic Indexing

aka Principle Component Analysis
• E.g., Text to Matrix Generator (TMG) as

a MATLAB® toolbox

57

How to deal with queries?

• A query q need to be mapped into this space, by
– Query NOT a sparse vector.

58

LSI: Summary

59

Scott Deerwester, Susan Dumais, George Furnas, Thomas Landauer, Richard
Harshman: Indexing by Latent Semantic Analysis. In: Journal of the American
society for information science. 1990.

Landauer, Thomas; Foltz, Peter W.; Laham, Darrell. "Introduction to Latent
Semantic Analysis". Discourse Processes. 25 (2–3): 259–284, 1998.

Application in Computer Vision

60

Back to IR agents

• Agents make decisions about which documents to
select and report to the agents‘ creators
– Recommend the k top-ranked documents

• How to evaluate an agent‘s performance
– Externally (creator satisfaction)
– Internally (relevance feedback, reinforcement)

61

External evaluation of query results

Precision/Recall

62

Unranked retrieval evaluation

• Precision: fraction of retrieved docs that are
relevant = P(retr&rel|retrieved)

• Recall: fraction of relevant docs that are
retrieved = P(retr&rel|relevant in repos)

• Precision: P = tp/(tp + fp)
• Recall: R = tp/(tp + fn)

Relevant Not Relevant

Retrieved true positives (tp) false positives (fp)

Not Retrieved false negatives (fn) true negatives (tn)

63

Overview on evaluation measures

64[Wikipedia]

Relative operating characteristic (ROC)

• Investigate effects of parameter adjustments
• Compare TP rate and FP rate
• Example w/ three

classifiers

• Measure:
Area under curve
(AUC)

65Wikipedia

Back to IR agents

• Still need
– Test queries
– Relevance assessments

• Test queries
– Must be adequate to docs available
– Best designed by domain experts
– Random query terms generally not a good idea

• Relevance assessments?
– Consider classification results of other agents
– Need a measure to compare different „judges“

66

Web Mining Agents

• Mining in complex networks requires the management of
– Distributed work (problem decomposition)
– Autonomous work (no central control, proactive agents)
– Collaboration between agents

(solution sharing, "collective intelligence in the small")
– Feedback and adaptation (learning by reinforcement)

• Considered here: IR Agents ("Semantic Computation")

67

Cao, Longbing; Weiss, Gerhard; Yu, Philip. "A Brief Introduction
to Agent Mining". Journal of Autonomous Agents and Multi-Agent
Systems. 25: 419–424, 2012.

Weiss, G. "A Multiagent Perspective of Parallel and Distributed
Machine Learning". Agents 98: 226–230, 1998.

Cao, Longbing; Gorodetsky, Vladimir; Mitkas, Pericles A. "Agent
Mining: The Synergy of Agents and Data Mining,". IEEE
Intelligent Systems. 24 (3): 64–72, 2009.

Klusch, M.; Lodi, S.; Moro, G.. "Agent-Based Distributed Data
Mining". LNCS 2586: 104–122, 2003.

Collaboratoin: Measure for inter-judge (dis)agreement

• Kappa measure
• Agreement measure among judges
• Designed for categorical judgments
• Corrects for chance agreement

• 𝜅 = [P(A) – P(E)] / [1 – P(E)]

• P(A) – proportion of time judges agree (observed)
• P(E) – what agreement would be by chance (hypothetical)

• 𝜅 = 0 for chance agreement, 1 for total agreement

• In statistics many other measures are defined

68

Cohen, Jacob, "A coefficient of agreement for nominal scales".
Educational and Psychological Measurement 20 (1): 37–46, 1960

Kappa Measure: Example

Number of docs Judge 1 Judge 2

300 Relevant Relevant

70 Nonrelevant
Nonrelevant

20 Relevant Nonrelevant

10 Nonrelevant Relevant

P(A)? P(E)?

69

Kappa Example

• P(A) = 370/400 = 0.925
• P(nonrelevant) = (10+20+70+70)/800 = 0.2125
• P(relevant) = (10+20+300+300)/800 = 0.7878
• P(E) = 0.21252 + 0.78782 = 0.665
• 𝜅 = (0.925 – 0.665)/(1-0.665) = 0.776

• 𝜅 > 0.8 = good agreement
• 0.67 < 𝜅 < 0.8 -> “tentative conclusions”
• Depends on purpose of study

• For >2 judges: average pairwise 𝜅s

70
Carletta, J. C., Assessing agreement on classification tasks:
The kappa statistic. Computational Linguistics, 22(2), 249-254, 1996

Confusion Matrix

71

Understanding where an agent has deficiencies

(Direct) feedback:
Present confusion matrix to an agent

Reinforcement:
Relevance feedback for retrieval results
(agent might build confusion matrix internally)

Relevance Feedback: Rocchio Algorithm

• The Rocchio algorithm incorporates relevance feedback
information into the vector space model.

• Want to maximize sim(Q, Cr) - sim(Q, Cnr) where Cr and Cnr

denote relevant and non-relevant doc vectors, respectively

• The optimal query vector for separating relevant and non-
relevant documents (with cosine sim.):

Qopt = optimal query; Cr = set of rel. doc vectors in corpus; N = collection size

• Unrealistic definition:
We don’t know relevant documents in corpus

€

!
Q opt =

1
Cr

!
d j

!
d j ∈Cr

∑ −
1

N − Cr

!
d j

!
d j ∉Cr

∑

72

The Theoretically Best Query

x
x

x
x

o
o

o

Optimal
query

x non-relevant documents
o relevant documents

o

o

o

x x

xx
x

x

x

x

x

x

x

x
D

x

x

73

Rocchio 1971 Algorithm (SMART System)

• Used in practice:

• qm = modified query vector; q0 = original query vector; α,β,γ: weights (hand-
chosen or set empirically); Dr = set of known relevant doc vectors; Dnr = set of
known irrelevant doc vectors

• New query moves toward relevant documents and away from
irrelevant documents

• Tradeoff α vs. β/γ : If we have a lot of judged documents, we want a
higher β/γ.

• Term weight can go negative
• Negative term weights are ignored (set to 0)

€

! q m = α
! q 0 + β

1
Dr

!
d j

!
d j ∈Dr

∑ −γ
1

Dnr

!
d j

!
d j ∈Dnr

∑

74

Wikipedia: Gerard Salton, The SMART (System for the Mechanical Analysis and Retrieval of Text or Salton’s Magic Automatic Retriever of
Text) Information Retrieval System is an information retrieval system, developed at Cornell University in the 1960s. Many important
concepts in information retrieval were developed as part of research on the SMART system, including the vector space model, relevance
feedback, and Rocchio algorithm.

Salton, G. (Ed.). The SMART retrieval system: Experiments in automatic
document processing. Englewood Cliffs, NJ: Prentice-Hall. 1971.

Relevance feedback on initial query

x
x

x
x

o
o

o

Revised
query

x known non-relevant documents
o known relevant documents

o

o

o
x

x

x x

x
x

x

x

xx

x

x

D
x

x

Initial
query

D

75

Relevance Feedback in vector spaces

• We can modify the query based on relevance
feedback and apply standard vector space
model.

• Use only the docs that were marked.
• Relevance feedback can

improve recall and precision

76

Positive vs Negative Feedback

Positive feedback is more valuable than
negative feedback (so, set 𝛾 < 𝛽;
e.g. 𝛾 = 0.25, 𝛽 = 0.75).

77

Many systems only allow positive
feedback (𝛾=0).

Multimodal information retrieval

• What about images, videos, audio data?
• Compute feature vectors from data representations in a

data-driven fashion
• Which features?

– Example: MPEG-7 General information descriptors

• Define respective vector spaces
• Use vector space retrieval model with cosine similarity

• Texts, images, videos, audio data are called documents

78

