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Agents for Information Retrieval (on the web)
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Information Retrieval

• Slides taken 
from presentation
material for
the following book: 
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Text-based queries

• Agents are asked to return documents most likely 
to be useful to the searcher (w/ ordering)

• How can we rank order the docs 
in a corpus with respect to a query?

• Assign a score – say in [0,1]
– for each doc on each query
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Linear zone combinations

• First generation of scoring methods: use a linear 
combination of occurrence queries (boolean):
– E.g., Score = 

0.6*<“sorting “in Title> + 0.3*<“sorting” in Abstract> + 
0.05*<“sorting” in Body> + 0.05*<“sorting” in Boldface>

– Each expression such as <sorting in Title>
takes on a value in {0,1}

– Then the overall score is in [0,1]

For this example the scores can only take
on a finite set of values – what are they?
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Inverted index – Postings lists

• On the query bill OR rights suppose that we retrieve the 
following docs from the various zone indexes:

bill
rights

bill
rights

bill
rights

Author

Title

Body

1

5

2

83

3 5 9

2 51

5 83

9

9

Compute the 
score

for each doc 
based on the 
weightings 
0.6,0.3,0.1
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General idea

• We are given a weight vector whose components 
sum up to 1.
– There is a weight for each zone/field.

• Given a Boolean query, we assign a score to each doc by 
adding up the weighted contributions of the 
zones/fields

• Typically users want to see 
k highest-scoring docs (top-k query)
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Index support for zone combinations

• In the simplest version we have a separate inverted index for 
each zone

• Variant: have a single index with a separate dictionary entry 
for each term and zone

• E.g.,
bill.author

bill.title

bill.body

1 2

5 83

2 51 9

Of course, compress zone names
like author/title/body.
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Zone combinations index

• The above scheme is still wasteful: each term is potentially 
replicated for each zone

• In a slightly better scheme, we encode the zone in the 
postings:

• At query time, accumulate contributions to the total score of 
a document from the various postings, e.g.,

bill 1.author, 1.body 2.author, 2.body 3.title

As before, the zone names get compressed.
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bill 1.author, 1.body 2.author, 2.body 3.title

rights 3.title, 3.body 5.title, 5.body

Score accumulation

• As we walk the postings for the query bill OR rights, we 
accumulate scores for each doc in a linear merge as before.

• Note: we get both bill and rights in the Title field of doc 3, 
but score it no higher.

• Should we give more weight to more hits?

1
2
3
5

0.7
0.7
0.4
0.4
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Where do these weights come from?

• Machine learned relevance
• Given

– A test corpus
– A suite of test queries
– A set of relevance judgments

• Learn a set of weights such that relevance 
judgments matched

• Can be formulated as an optimization problem
(see lecture part on data mining/machine learning)

11



Full text queries

• We just scored the Boolean query bill OR rights
• Most users more likely to type bill rights or bill of 

rights
– How do we interpret these full text queries?
– No Boolean connectives
– Of several query terms some may be missing in a doc
– Only some query terms may occur in the title, etc.
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Full text queries

• To use zone combinations for free text queries, we 
need
– A way of assigning a score to a pair <free text query, 

zone>
– Zero query terms in the zone should mean a zero score
– More query terms in the zone should mean a higher 

score
– Scores don’t have to be Boolean

• Will look at some alternatives now
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Incidence matrices

• Bag-of-words model
• Document (or a zone in it) is binary vector X in {0,1}v

• Query is a vector Y
• Score: Overlap measure:

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

YX Ç
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Example

• On the query ides of march, Shakespeare’s Julius Caesar
has a score of 3

• All other Shakespeare plays have a score of 2 (because 
they contain march) or 1

• Thus in a rank order, Julius Caesar would come out tops
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Overlap matching

• What’s wrong with the overlap measure?
• It doesn’t consider:

– Term frequency in document
– Term scarcity in collection 

(document mention frequency)
• of is more common than ides or march

– Length of documents
• (and queries: score not normalized)
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Overlap matching

• One can normalize in various ways:
– Jaccard coefficient:

– Cosine measure:

• What documents would score best using Jaccard against a 
typical query?

• Does the cosine measure fix this problem?

YXYX ÈÇ /

YXYX ´Ç /
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Scoring: density-based

• Thus far: position and overlap of terms in a doc –
title, author etc.

• Obvious next idea: If a document talks more about a 
topic, then it is a better match

• This applies even when we only have a single query 
term.

• Document is relevant if it has a lot of the terms
• This leads to the idea of term weighting.
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Term-document count matrices

• Consider the number of occurrences of a term in a 
document: 
– Bag of words model
– Document is a vector in ℕv: a column below 

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0
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Bag of words view of a doc

• Thus the doc
– John is quicker than Mary.

is indistinguishable from the doc
– Mary is quicker than John.

Which of the indexes discussed
so far distinguish these two docs?
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Counts vs. frequencies

• Consider again the ides of march query.
– Julius Caesar has 5 occurrences of ides
– No other play has ides
– march occurs in over a dozen
– All the plays contain of

• By this scoring measure, the top-scoring play is likely to 
be the one with the most ofs
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Term frequency tf

• Long docs are favored because they’re more 
likely to contain query terms

• Can fix this to some extent by normalizing for 
document length (term frequency, tf)

• But is raw tf the right measure?
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Digression: terminology

• WARNING: In a lot of IR literature, “frequency” is 
used to mean “count”
– Thus term frequency in IR literature is used to mean 

number of occurrences in a doc
– Not divided by document length (which would actually 

make it a frequency)
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Weighting term frequency: tf

• What is the relative importance of
– 0 vs. 1 occurrence of a term in a doc
– 1 vs. 2 occurrences
– 2 vs. 3 occurrences …

• Unclear: While it seems that more is better, 
a lot isn’t proportionally better than a few

– Can just use raw tf
– Another option commonly used in practice:

otherwise log1  ,0 if 0 ,,, dtdtdt tftfwf +==
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Score computation

• Score for a query q = sum over terms t in q:

• [Note: 0 if no query terms in document]
• This score can be zone-combined
• Can use wf instead of tf in the above
• Still doesn’t consider term scarcity in collection 

(ides is rarer than of)

åÎ
=

qt dttf ,
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Weighting should depend on the term overall

• Which of these tells you more about a doc?
– 10 occurrences of hernia?
– 10 occurrences of the?

• Would like to attenuate the weight of a common 
term
– But what is “common”?

• Suggest looking at collection frequency (cf )
– The total number of occurrences of the term in the entire 

collection of documents
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Document frequency

• But document frequency (df ) may be better:
• df = number of docs in the corpus containing the term

Word cf df
ferrari 10422 17
insurance 10440 3997

• Document/collection frequency weighting is only possible 
in known (static) collection.

• So how do we make use of df ?
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tf x idf term weights

• tf x idf measure combines:
– term frequency (tf )

• or wf, some measure of term density in a doc
– inverse document frequency (idf ) 

• measure of informativeness of a term: its rarity across the whole corpus
• could just be raw count of number of documents the term occurs in (idfi

= n/dfi)
• but by far the most commonly used version is:

• See Kishore Papineni, NAACL 2, 2002 for theoretical justification

idfi  = log n
idf

⎛
⎝
⎜

⎞
⎠
⎟
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Summary: tf x idf (or tf.idf)

• Assign a tf.idf weight to each term i in each 
document d

• Increases with the number of occurrences within a doc
• Increases with the rarity of the term across the whole corpus

wi,d = tfi,d × log(n / dfi )

€ 

tf i,d = frequency of term i in document d
n =  total number of documents
dfi = the number of documents that contain term i  

What is the wt
of a term that
occurs in all
of the docs?
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Real-valued term-document matrices

• Function (scaling) of count of a word in a document: 
– Bag of words model
– Each is a vector in ℝv

– Here log-scaled tf.idf

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 13.1 11.4 0.0 0.0 0.0 0.0
Brutus 3.0 8.3 0.0 1.0 0.0 0.0
Caesar 2.3 2.3 0.0 0.5 0.3 0.3

Calpurnia 0.0 11.2 0.0 0.0 0.0 0.0
Cleopatra 17.7 0.0 0.0 0.0 0.0 0.0

mercy 0.5 0.0 0.7 0.9 0.9 0.3

worser 1.2 0.0 0.6 0.6 0.6 0.0

Note: can be >1!
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Documents as vectors

• Each doc d can now be viewed as a vector of wf´idf
values, one component for each term

• So we have a vector space
– terms are axes
– docs live in this space
– even with stemming, may have 20,000+ dimensions

• (The corpus of documents gives us a matrix, which 
we could also view as a vector space in which words 
live – transposable data)
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Recap: tf x idf (or tf.idf)

• Assign a tf.idf weight to each term i in each document d

• Instead of tf, sometimes wf is used:

wi,d = tfi,d * log(n / dfi )

   rmcontain te that documents ofnumber  the
documents ofnumber   total

document in    termoffrequency ,

idf
n

jitf

i

di

=
=
=

otherwise log1  ,0 if 0 ,,, dtdtdt tftfwf +==
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Documents as vectors

• At the end of the last lecture we said:
• Each doc d can now be viewed as a vector of tf*idf

values, one component for each term
• So we have a vector space

– terms are axes
– docs live in this space
– even with stemming, may have 50,000+ dimensions

• First application: Query-by-example
– Given a doc d, find others “like” it.

• Now that d is a vector, find vectors (docs) “near” it.
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Intuition

Postulate: Documents that are “close together” 
in the vector space talk about the same things.

t1

d2

d1

d3

d4

d5

t3

t2

θ

φ
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Desiderata for proximity/distance

• If d1 is near d2, then d2 is near d1.
• If d1 near d2, and d2 near d3, then d1 is not far from d3.
• No doc is closer to d than d itself.
• Triangle inequality
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First cut

• Idea: Distance between d1 and d2 is the length of the vector 
d1 – d2.

– Euclidean distance:

• Why is this not a great idea?
• We still haven’t dealt with the issue of length normalization

– Short documents would be more similar to each other by virtue of 
length, not topic

• However, we can implicitly normalize by looking at angles 
instead

( )å =
-=-

n

i kijikj dddd
1

2
,,
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Cosine similarity

• Distance between vectors d1 and d2 captured by the cosine 
of the angle x between them.

• Note – this is similarity, not distance
– No triangle inequality for similarity.

t 1

d 2

d 1

t 3

t 2

θ
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Cosine similarity

• A vector can be normalized (given a length of 1) by dividing 
each of its components by its length – here we use 
the L2 norm

• This maps vectors onto the unit sphere:

• Then, 

• Longer documents don’t get more weight

  

€ 

! 
d j = wi, j

2
i=1

n
∑ =1€ 

x 2 = xi
2

i∑
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Cosine similarity

• Cosine of angle between two vectors
• The denominator involves the lengths of the vectors.

• For normalized vectors, the cosine is simply the dot 
product:

  

€ 

sim(d j ,dk ) =

! 
d j ⋅
! 
d k! 

d j
! 
d k

=
wi, jwi,ki=1

n
∑

wi, j
2

i=1

n
∑ wi,k

2

i=1

n
∑

Normalization

kjkj dddd
!!!!
×=),cos(
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Queries in the vector space model

Central idea: the query as a vector:
• We regard the query as short document
• We return the documents ranked by the closeness of their 

vectors to the query, also represented as a vector.

• Note that dq is very sparse!

åå
å

==

==
×

=
n

i qi
n

i ji

n

i qiji

qj

qj
qj

ww

ww

dd

dd
ddsim

1
2
,1

2
,

1 ,,),( !!

!!
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What’s the point of using vector spaces?

• A well-formed algebraic space for retrieval
• Key: A user’s query can be viewed as a (very) short document.
• Query becomes a vector in the same space as the docs.
• Can measure each doc’s proximity to it.
• Natural measure of scores/ranking – no longer Boolean.

– Queries are expressed as bags of words
– Clean metaphor for similar-document queries

• Not a good combination with Boolean, wild-card, positional 
query operators

• But …

42
Salton, G., Automatic information organization and retrieval. 
New York: McGraw-Hill Book Company. 1968.



Efficient cosine ranking

• Find the k docs in the corpus “nearest” to the query 
Þ Compute k best query-doc cosines

– Nearest neighbor problem for a query vector
– Multidimensional Index-Structures (see Non-Standard DBs lecture)

• For a “reasonable” number of dimensions (say 10-100)
• Otherwise space almost empty (curse of dimensionality)

– What about zoning? Keep vectors, no linear combination!
• Compute k best solutions 

with different zone-specific vectors for each doc
• Can we do this without testing all combinations w.r.t. all zones?
• Fagin’s algorithm (see Non-Standard Databases lecture)

– What about multiple repositories?

Ronald Fagin: Fuzzy Queries in Multimedia Database Systems. 
Proc. PODS-98, 1-10, 1998 

Ronald Fagin. Combining Fuzzy Information from Multiple Systems. PODS-96, 216-226., 1996 
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Polysemy and Context

• Document similarity on single word level: polysemy and 
context

car
company

•••
dodge

ford

meaning 2

ring
jupiter

•••
space

voyagermeaning 1
…

saturn
...

…
planet

...

contribution to similarity, if 
used in 1st meaning, but not if in 
2nd
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Problems with Lexical Semantics

• Ambiguity and association in natural language
– Polysemy: Words often have a multitude of meanings

and different types of usage (more severe in very 
heterogeneous collections).

– The vector space model is unable to discriminate 
between different meanings of the same word.
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Problems with Lexical Semantics

– Synonymy: Different terms may have an identical or a 
similar meaning (weaker: words indicating the same 
topic).

– No associations between words are made in the 
simple vector space representation.
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Dimensionality reduction

• What if we could take our vectors and “pack” them 
into fewer dimensions (say 50,000®100) while 
preserving distances?

• Two methods:
– Random projection.
– “Latent semantic indexing”.
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Random projection onto k<<m axes

• Choose a random direction x1 in the vector space.
• For i = 2 to k

choose a random direction xi
that is orthogonal to x1, x2, … xi–1.

• Project each document vector into the subspace 
spanned by {x1, x2, …, xk}.
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E.g., from 3 to 2 dimensions

d2

d1

x1

t 3

x2

t 2

t 1

x1

x2
d2

d1

x1 is a random direction in (t1,t2,t3) space.
x2 is chosen randomly but orthogonal to x1.

Dot product of x1 and x2 is zero.
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Guarantee

• With high probability, relative distances are 
(approximately) preserved by projection

• But: expensive computations
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Mapping Data

[Wikipedia] 51

• Red arrow 
not changed in 
shear mapping

• Eigenvector



Eigenvalues & Eigenvectors

• Eigenvectors (for a square m´m matrix S)

• How many eigenvalues are there at most?

only has a non-zero solution if

This is a m-th order equation in λ which can have at most m 
distinct solutions (roots of the characteristic polynomial) – can be 
complex even though S is real.

eigenvalue(right) eigenvector

Example
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Singular Value Decomposition

TVUA S=

m´m m´n V is n´n

For an m´n matrix A of rank r there exists a factorization
(Singular Value Decomposition = SVD) as follows:

The columns of U are left-singular eigenvectors of AAT.

The columns of V are right-singular eigenvectors of ATA.

ii ls =

( )rdiag ss ...1=S Singular values.

Eigenvalues l1 … lr of AAT are the eigenvalues of ATA.
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Shear Mapping Unit Vectors

54[Wikipedia]



• SVD can be used to compute optimal low-rank 
approximations for a Matrix A of rank r

• Approximation problem: Find Ak of rank k such that

Ak and X are both m´n matrices
Typically, want k << r

Low-rank Approximation

Frobenius norm
Ak =

X:rank (X )=k
argmin A− X

F
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• Solution via SVD

Low-rank Approximation

set smallest r-k
singular values to zero

T
kk VUA )0,...,0,,...,(diag 1 ss=

k

56
C. Eckart, G. Young, The approximation of a matrix by another of 
lower rank. Psychometrika, 1, 211-218, 1936



SVD Low-rank approximation

• A term-doc matrix A may have m=50000, n=10 million 
(and rank close to 50000)

• We can construct an approximation A100 with rank 100.
– Of all rank 100 matrices, it would have the lowest Frobenius

error.

• Great … but why would we??
• Answer: Latent Semantic Indexing

aka Principle Component Analysis
• E.g., Text to Matrix Generator (TMG) as 

a MATLAB® toolbox
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How to deal with queries?

• A query q need to be mapped into this space, by
– Query NOT a sparse vector.
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LSI: Summary

59

Scott Deerwester, Susan Dumais, George Furnas, Thomas Landauer, Richard 
Harshman: Indexing by Latent Semantic Analysis. In: Journal of the American 
society for information science. 1990.

Landauer, Thomas; Foltz, Peter W.; Laham, Darrell. "Introduction to Latent 
Semantic Analysis". Discourse Processes. 25 (2–3): 259–284, 1998.



Application in Computer Vision
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Back to IR agents

• Agents make decisions about which documents to 
select and report to the agents‘ creators
– Recommend the k top-ranked documents

• How to evaluate an agent‘s performance
– Externally (creator satisfaction)
– Internally (relevance feedback, reinforcement)
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External evaluation of query results

Precision/Recall
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Unranked retrieval evaluation

• Precision: fraction of retrieved docs that are 
relevant = P(retr&rel|retrieved)

• Recall: fraction of relevant docs that are 
retrieved = P(retr&rel|relevant in repos)

• Precision: P = tp/(tp + fp)
• Recall:  R = tp/(tp + fn)

Relevant Not Relevant

Retrieved true positives (tp) false positives (fp)

Not Retrieved false negatives (fn) true negatives (tn)
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Overview on evaluation measures

64[Wikipedia]



Relative operating characteristic (ROC)

• Investigate effects of parameter adjustments
• Compare TP rate and FP rate
• Example w/ three 

classifiers

• Measure:
Area under curve
(AUC)

65Wikipedia



Back to IR agents

• Still need
– Test queries
– Relevance assessments

• Test queries
– Must be adequate to docs available
– Best designed by domain experts
– Random query terms generally not a good idea

• Relevance assessments?
– Consider classification results of other agents
– Need a measure to compare different „judges“
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Web Mining Agents

• Mining in complex networks requires the management of
– Distributed work (problem decomposition)
– Autonomous work (no central control, proactive agents)
– Collaboration between agents 

(solution sharing, "collective intelligence in the small")
– Feedback and adaptation (learning by reinforcement)

• Considered here: IR Agents ("Semantic Computation")

67

Cao, Longbing; Weiss, Gerhard; Yu, Philip. "A Brief Introduction 
to Agent Mining". Journal of Autonomous Agents and Multi-Agent 
Systems. 25: 419–424, 2012.

Weiss, G. "A Multiagent Perspective of Parallel and Distributed 
Machine Learning". Agents 98: 226–230, 1998.
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Klusch, M.; Lodi, S.; Moro, G.. "Agent-Based Distributed Data 
Mining". LNCS 2586: 104–122, 2003.



Collaboratoin: Measure for inter-judge (dis)agreement

• Kappa measure
• Agreement measure among judges
• Designed for categorical judgments
• Corrects for chance agreement

• 𝜅 = [ P(A) – P(E) ] / [ 1 – P(E) ]

• P(A) – proportion of time judges agree (observed)
• P(E) – what agreement would be by chance (hypothetical)

• 𝜅 = 0 for chance agreement, 1 for total agreement

• In statistics many other measures are defined

68

Cohen, Jacob, "A coefficient of agreement for nominal scales". 
Educational and Psychological Measurement 20 (1): 37–46, 1960



Kappa Measure: Example

Number of docs Judge 1 Judge 2

300 Relevant Relevant

70 Nonrelevant
Nonrelevant

20 Relevant Nonrelevant

10 Nonrelevant Relevant

P(A)? P(E)?
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Kappa Example

• P(A) = 370/400 = 0.925
• P(nonrelevant) = (10+20+70+70)/800 = 0.2125
• P(relevant) = (10+20+300+300)/800 = 0.7878
• P(E) = 0.21252 + 0.78782 = 0.665
• 𝜅 = (0.925 – 0.665)/(1-0.665) = 0.776

• 𝜅 > 0.8 = good agreement
• 0.67 < 𝜅 < 0.8 -> “tentative conclusions”
• Depends on purpose of study 

• For >2 judges: average pairwise 𝜅s 

70
Carletta, J. C., Assessing agreement on classification tasks: 
The kappa statistic. Computational Linguistics, 22(2), 249-254, 1996



Confusion Matrix

71

Understanding where an agent has deficiencies

(Direct) feedback:
Present confusion matrix to an agent

Reinforcement:
Relevance feedback for retrieval results
(agent might build confusion matrix internally)



Relevance Feedback: Rocchio Algorithm

• The Rocchio algorithm incorporates relevance feedback 
information into the vector space model.

• Want to maximize sim(Q, Cr)  - sim(Q, Cnr) where Cr and Cnr

denote relevant and non-relevant doc vectors, respectively

• The optimal query vector for separating relevant and non-
relevant documents (with cosine sim.):

Qopt = optimal query; Cr = set of rel. doc vectors in corpus; N = collection size

• Unrealistic definition: 
We don’t know relevant documents in corpus

  

€ 

! 
Q opt =

1
Cr

! 
d j

! 
d j ∈Cr

∑ −
1

N − Cr

! 
d j

! 
d j ∉Cr

∑
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The Theoretically Best Query 

x
x

x
x

o
o

o

Optimal 
query

x  non-relevant documents
o  relevant documents

o

o

o

x x

xx
x

x

x

x

x

x

x

x
D

x

x
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Rocchio 1971 Algorithm (SMART System)

• Used in practice:

• qm = modified query vector; q0 = original query vector; α,β,γ: weights (hand-
chosen or set empirically); Dr = set of known relevant doc vectors; Dnr = set of 
known irrelevant doc vectors

• New query moves toward relevant documents and away from 
irrelevant documents

• Tradeoff α vs. β/γ : If we have a lot of judged documents, we want a 
higher β/γ.

• Term weight can go negative
• Negative term weights are ignored (set to 0)

  

€ 

! q m = α
! q 0 + β

1
Dr

! 
d j

! 
d j ∈Dr

∑ −γ
1

Dnr

! 
d j

! 
d j ∈Dnr

∑
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Wikipedia: Gerard Salton, The SMART (System for the Mechanical Analysis and Retrieval of Text or Salton’s Magic Automatic Retriever of 
Text) Information Retrieval System is an information retrieval system, developed at Cornell University in the 1960s. Many important 
concepts in information retrieval were developed as part of research on the SMART system, including the vector space model, relevance 
feedback, and Rocchio algorithm.

Salton, G. (Ed.). The SMART retrieval system: Experiments in automatic 
document processing. Englewood Cliffs, NJ: Prentice-Hall. 1971.



Relevance feedback on initial query 

x
x

x
x

o
o

o
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query

x  known non-relevant documents
o  known relevant documents
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query
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Relevance Feedback in vector spaces

• We can modify the query based on relevance 
feedback and apply standard vector space 
model.

• Use only the docs that were marked.
• Relevance feedback can 

improve recall and precision
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Positive vs Negative Feedback

Positive feedback is more valuable than 
negative feedback (so, set  𝛾 < 𝛽; 
e.g. 𝛾 = 0.25, 𝛽 = 0.75).

77

Many systems only allow positive 
feedback (𝛾=0).



Multimodal information retrieval

• What about images, videos, audio data?
• Compute feature vectors from data representations in a 

data-driven fashion
• Which features? 

– Example: MPEG-7 General information descriptors

• Define respective vector spaces
• Use vector space retrieval model with cosine similarity

• Texts, images, videos, audio data are called documents
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