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Recap

• Agents
– Task/goal: Information retrieval
– Environment: Document repository
– Means: 

• Vector space (bag-of-words)
– Dimension reduction (LSI)

• Probability based retrieval (binary)
– Language models

• Today: Topic models as special language models
– Probabilistic LSI (pLSI)
– Latent Dirichlet Allocation (LDA)

• Soon: What agents can take with them
– What agents can leave at the repository (win-win)
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Objectives

• Topic Models: statistical methods that analyze the 
words of texts in order to:
– Discover the themes that run through them (topics)
– How those themes are connected to each other
– How they change over time
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Probabilistic topic models
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Topic Modeling Scenario

• Each topic is a distribution over words
• Each document is a mixture of corpus-wide topics
• Each word is drawn from one of those topics
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Topic Modeling Scenario

• In reality, we only observe the documents
• The other structures are hidden variables
• Topic modeling algorithms infer these variables from data
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Latent Dirichlet allocation (LDA)

Topics Documents
Topic proportions and

assignments

• In reality, we only observe the documents

• The other structure are hidden variables

• Topic modeling algorithms infer these variables from data.



Plate Notation

• Naïve Bayes Model: Compact representation
– C = topic/class (name for a word distribution)
– N = number of words in considered document
– Wi one specific word in corpus
– M documents, W now words in document

– Idea: Generate doc from P(W, C)
7
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Generative vs. Descriptive Models

• Generative models: Learn P(x, y)
– Tasks: 

• Transform P(x,y) into P(y | x) for classification
• Use the model to predict (infer) new data

– Advantages
• Assumptions and model are explicit
• Use well-known algorithms (e.g., MCMC, EM)

• Descriptive models: Learn P(y | x)
– Task: Classify data
– Advantages

• Fewer parameters to learn
• Better performance for classification
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Earlier Topic Models: Topics Known

• Unigram
– No context information
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Earlier Topic Models: Topics Known

• Unigram
– No context information

• Mixture of Unigrams
– One topic per document

– How to specify 𝑃(𝑐.)?
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Mixture of Unigrams: Known Topics

• Multinomial Naïve Bayes
– For each document d = 1, …, M

• Generate cd ~ Mult( . | p)

• For each position i = 1, ... , Nd

– Generate wi ~ Mult( . | b, cd)
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Multinomial Distribution

• Generalization of binomial distribution
– K possible outcomes instead of 2
– Probability mass function

• n = number of trials
• xj = count for how often class j occurring
• pj = probability of class j occurring

• Here, the input to Γ @ is a positive integer, so
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Mixture of Unigrams: Unknown Topics
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Mixture of Unigrams: Learning

• Learn parameters 𝜋 and 𝛽

• Use likelihood

• Solve

– Not a concave/convex function
– Note: a non-concave/non-convex function 

is not necessarily convex/concave
– Possibly no unique max, many saddle or turning points

No easy way to find roots of derivative
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Trick: Optimize Lower Bound
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Mixture of Unigrams: Learning

• The problem

• Optimize w.r.t. each document
• Derive lower bound

H(g)
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Mixture of Unigrams: Learning

• For each document d

• Chicken-and-egg problem:
– If we knew 𝛾.> we could find 𝜋> and 𝛽>,78 with ML

– If we knew 𝜋> and 𝛽>,78 we could find 𝛾.> with ML

• Finally we need 𝜋𝑧>	and 𝛽M>,78
• Solution: Expectation Maximization

– Iterative algorithm to find local optimum
– Guaranteed to maximize a lower bound on the log-

likelihood of the observed data
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Graphical Idea of the EM Algorithm
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Mixture of Unigrams: Learning

• For each document d

• EM solution
– E step

– M step
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Back to Topic Modeling Scenario
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Latent Dirichlet allocation (LDA)

Topics Documents
Topic proportions and

assignments

• In reality, we only observe the documents

• The other structure are hidden variables

• Topic modeling algorithms infer these variables from data.



Probabilistic LSI

• Select a document d with 
probability P(d)

• For each word of d in the training set
– Choose a topic z with probability 

P(z | d)
– Generate a word with probability

P(w | z)

• Documents can have multiple topics
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pLSI

• Joint probability for all documents, words

• Distribution for document d, word wi

• Reformulate 𝑃(𝑧>|𝑑)with Bayes’ Rule
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pLSI: Learning Using EM

• Model

• Likelihood

• Parameters to learn (M step)

• (E step)
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pLSI: Learning Using EM

• EM solution
– E step

– M step
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pLSI: Overview

• More realistic than mixture model
– Documents can discuss multiple topics!

• Problems
– Very many parameters
– Danger of overfitting
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pLSI Testrun

• PLSI topics (TDT-1 corpus)
– Approx. 7 million words, 15863 documents, K = 128

The two most probable 
topics that generate the 
term “flight” (left) and 
“love” (right).

List of most probable 
words per topic, with 
decreasing probability 
going down the list.
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Relation with LSI

• Difference:
– LSI: minimize Frobenius (L-2) norm
– pLSI: log-likelihood of training data
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This can be demonstrated as a matrix factorization
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Contrast to SVD:
• No orthonormality condition for 𝑈𝑈 and 𝑉𝑉 here.
• The elements of 𝑈𝑈 and 𝑉𝑉 are non-negative.

Probabilistic Latent Sematic Indexing (PLSI)



pLSI with Multinomials

• Multinomial Naïve Bayes
– Select document d ~ Mult( ∙ | p)

• For each position i = 1, ... , Nd

– Generate zi ~ Mult(∙ | d, 𝜃.)
– Generate wi ~ Mult( ∙ | zi, bk)

28

(𝑃 𝑤#,… ,𝑤&3, 𝑑	|	𝛽, 𝜃, 𝜋
0

.1#

=(𝑃(𝑑|	𝜋)
0

.1#

(L𝑃(𝑧* = 𝑘|𝑑, 𝜃.)𝑃 𝑤* 𝛽>	
=

>1#

&3

*1#

=(𝜋.(L𝜃.,>𝛽>,78

=

>1#

&3

*1#

0

.1#

d

z

w

b

M

qd

p

N



Prior Distribution for Topic Mixture

• Goal: topic mixture proportions for each document are 
drawn from some distribution.
– Distribution on multinomials (k-tuples of non-negative 

numbers that sum to one)

• The space is of all of these multinomials can be 
interpreted geometrically as a (k-1)-simplex
– Generalization of a triangle to (k-1) dimensions

• Criteria for selecting our prior:
– It needs to be defined for a (k-1)-simplex
– Should have nice properties

29

In Bayesian probability theory, if the posterior distributions p(θ|x) are in 
the same family as the prior probability distribution p(θ), the prior and 
posterior are then called conjugate distributions, and the prior is 
called a conjugate prior for the likelihood function. [Wikipedia]



Latent Dirichlet Allocation

• Document = mixture of topics (as in pLSI), but according to a 
Dirichlet prior

– When we use a uniform Dirichlet prior, pLSI=LDA

D. Blei, A. Ng, and M. Jordan. Latent Dirichlet Allocation. 
Journal of Machine Learning Research, 3:993-1022, January 2003 30



Dirichlet Distributions

• Defined over a (k-1)-simplex
– Takes K non-negative arguments which sum to one. 
– Consequently it is a natural distribution to use over 

multinomial distributions.
• The Dirichlet parameter ai can be thought of as a prior 

count of the ith class
• Conjugate prior to the multinomial distribution 

– Conjugate prior: if our likelihood is multinomial with a 
Dirichlet prior, then the posterior is also a Dirichlet
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LDA Model
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LDA Model – Parameters

←Proportions parameter
(k-dimensional vector of real numbers)

←Per-document topic distribution
(k-dimensional vector of
probabilities summing up to 1)

←Per-word topic assignment
(number from 1 to k)

←Observed word 
(number from 1 to v, where v is the 
number of words in the vocabulary)

←Word “prior”
(v-dimensional)
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Dirichlet Distribution over a 2-Simplex
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A panel illustrating probability density functions of a few Dirichlet
distributions over a 2-simplex, for the following α vectors (clockwise, 
starting from the upper left corner): (1.3, 1.3, 1.3), (3,3,3), (7,7,7), 
(2,6,11), (14, 9, 5), (6,2,6). [Wikipedia]



LDA Model – Plate Notation

• For each document d,
– Generate qd ~ Dirichlet(∙ | a)
– For each position i = 1, ... , Nd

• Generate a topic zi ~ Mult(∙ | qd)
• Generate a word wi ~ Mult(∙ | zi,b)
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Corpus-level Parameter 𝛼= K-1 𝛴i𝛼𝑖

• Let 𝛼 = 1
• Per-document topic distribution: K = 10, D = 15
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• 𝛼 = 100

Corpus-level Parameter 𝛼

• 𝛼 = 10
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• 𝛼 = 0.01

Corpus-level Parameter 𝛼

• 𝛼 = 0.1
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Back to Topic Modeling Scenario
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Latent Dirichlet allocation (LDA)

Topics Documents
Topic proportions and

assignments

• In reality, we only observe the documents

• The other structure are hidden variables

• Topic modeling algorithms infer these variables from data.



Smoothed LDA Model

• Give a different word distribution 
to each topic
– 𝛽 is 𝐾×𝑉 matrix (V vocabulary 

size), each row denotes word 
distribution of a topic

• For each document d
– Choose qd ~ Dirichlet(∙ | a)
– Choose 𝛽>~ Dirichlet(𝜂∙ |)
– For each position i = 1, ... , Nd

• Generate a topic zi ~ Mult(∙ | qd)
• Generate a word wi ~ Mult(∙ | zi,bk)

40

z

w

𝜂

M

q

a

N K
𝛽>



Smoothed LDA Model
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Back to Topic Modeling Scenario

• But…

42



Why does LDA “work”?

• Trade-off between two goals
1. For each document, allocate its words to as few topics as possible.
2. For each topic, assign high probability to as few terms as possible.

• These goals are at odds.
– Putting a document in a single topic makes #2 hard: 

All of its words must have probability under that topic. 
– Putting very few words in each topic makes #1 hard:

To cover a document’s words, it must assign many topics to it.

• Trading off these goals finds groups of tightly co-
occurring words 

43



Inference: The Problem (non-smoothed version)

• To which topics does a given document belong?
– Compute the posterior distribution of the hidden 

variables given a document:

44

Inference: The problem

To which topics does a given document belong to? Thus want to
compute the posterior distribution of the hidden variables given a
document:

p(⇤, z|w,�,⇥) =
p(⇤, z,w|�, ⇥)

p(w|�, ⇥)

where
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This not only looks awkward, but is as well computationally intractable in
general. Coupling between ⇤ and ⇥ij . Solution: Approximations.
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LDA Learning

• Parameter learning:
– Variational EM

• Numerical approximation using lower-bounds
• Results in biased solutions
• Convergence has numerical guarantees

– Gibbs Sampling
• Stochastic simulation
• Unbiased solutions
• Stochastic convergence

D. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocation. 
Journal of Machine Learning Research, 3:993-1022, January 2003 45



LDA: Variational Inference

• Replace LDA model with simpler one

• Minimize the Kullback-Leibler divergence between the 
two distributions.

46

Variational inference

• Replace the graphical model of LDA by a simpler one.

� ⇤ z w

⇥

M
N

�

⇥

⇤

z
MN

• Minimize the Kullback-Leibler divergence between the two
distributions. This is a standard-trick in machine learning. Often
equivalent to maximum likelihood. Gradient descent procedure.

• Variational approach in contrast to often used Markov chain Monte
Carlo. Variational is not a sampling approach where one samples
from the posterior distribution, but rather we try to find a tightest
lower bound.

• Problematic coupling between ⇥ and � not present in simpler
graphical model.

KL



LDA: Gibbs Sampling

• MCMC algorithm
– Fix all current values but one and sample that value, 

e.g, for z

– Eventually converges to true posterior

47

𝑃(𝑧* = 𝑘|𝒛t*, 𝒘)



Variational Inference vs. Gibbs Sampling

• Gibbs sampling is slower (takes days for mod.-sized 
datasets), variational inference takes a few hours. 

• Gibbs sampling is more accurate. 
• Gibbs sampling convergence is difficult to test, 

although quite a few machine learning approximate 
inference techniques also have the same problem. 

48



LDA Application: Reuters Data

• Setup
– 100-topic LDA trained on a 16,000 documents corpus of 

news articles by Reuters
– Some standard stop words removed

• Top words from some of the P(w|z)

49

How LDA performs on Reuters data (1/2)

About the experiments

• 100-topic LDA trained on a 16’000 documents corpus of news
articles by Reuters (the news agency).

• Some standard stop words removed.

Top words from some of the p(w |z)

“Arts” “Budgets” “Children” “Education”
new million children school
film tax women students
show program people schools
music budget child education
movie billion years teachers
play federal families high
musical year work public



LDA Application: Reuters Data

• Result

50

How LDA performs on Reuters data (2/2)

Inference on a held-out document
Again: “Arts”, “Budgets”, “Children”, “Education”.

The William Randolph Hearst Foundation will give $1.25 million to
Lincoln Center, Metropolitan Opera Co., New York Philharmonic and
Juilliard School. “Our board felt that we had a real opportunity to make
a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health,
medical research, education and the social services,” Hearst Foundation
President Randolph A. Hearst said Monday in announcing the grants.



Measuring Performance

• Perplexity of a probability model
• How well a probability distribution or probability model 

predicts a sample
– q: Model of an unknown probability distribution p

based on a training sample drawn from p
– Evaluate q by asking how well it predicts a separate test sample 
𝑥#, … , 𝑥& also drawn from p

– Perplexity of q w.r.t. sample 𝑥#, … , 𝑥&	defined as 

– A better model q will tend to assign higher probabilities to 𝑞 𝑥*
→ lower perplexity (“less surprised by sample”)

51[Wikipedia]
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Perplexity of Various Models

Unigram

LDA
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Use of LDA

• A widely used topic model (Griffiths, Steyvers, 04)
• Complexity is an issue
• Use in IR: 

– Ad hoc retrieval (Wei and Croft, SIGIR 06: TREC benchmarks)
– Improvements over traditional LM (e.g., LSI techniques)
– But no consensus on whether there is any improvement 

over Relevance model, i.e., model with relevance feedback 
(relevance feedback part of the TREC tests)

T. Griffiths, M. Steyvers, Finding Scientific Topics. 
Proceedings of the National Academy of Sciences, 
101 (suppl. 1), 5228-5235. 2004

53

Xing Wei and W. Bruce Croft. LDA-based document models 
for ad-hoc retrieval. In Proceedings of the 29th annual 
international ACM SIGIR conference on Research and 
development in information retrieval (SIGIR '06). ACM, New 
York, NY, USA, 178-185. 2006.

TREC=Text REtrieval Conference



Generative Topic Models for Community 
Analysis 

Pilfered from: Ramesh Nallapati
http://www.cs.cmu.edu/~wcohen/10-802/lda-sep-18.ppt

&

Arthur Asuncion, Qiang Liu, Padhraic Smyth:
Statistical Approaches to Joint Modeling of Text 

and Network Data
54



What if the corpus has network structure? 

55

CORA citation network.  Figure from [Chang, Blei, AISTATS 2009]

J. Chang, and D. Blei. Relational Topic Models for Document Networks.
AISTATS, volume 5 of JMLR Proceedings, page 81-88. JMLR.org, 2009.



Outline

• Topic Models for Community Analysis
– Citation Modeling 

• with pLSI
• with LDA

– Modeling influence of citations
– Relational Topic Models

56



Hyperlink Modeling Using pLSI

• Select document d ~ Mult(π)
– For each position n = 1,…, Nd

• Generate zn ~ Mult(@ |𝜃.)
• Generate wn ~ Mult(@ |𝛽M�)

– For each citation j = 1,…, Ld

• Generate zj ~ Mult(@ |𝜃.)
• Generate cj ~ Mult(@ |𝛾M�)
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D. A. Cohn, Th. Hofmann, The Missing Link - A Probabilistic
Model of Document Content and Hypertext Connectivity, In: 
Proc. NIPS, pp. 430-436, 2000



Hyperlink Modeling Using pLSI

• pLSI likelihood

• New likelihood

• Learning using EM
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Hyperlink Modeling Using pLSI

• Heuristic
– 0 < a < 1 determines the relative importance of content 

and hyperlinks
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Hyperlink Modeling Using pLSI

• Classification performance

60

Hyperlink Content Hyperlink Content



Hyperlink modeling using LDA

• For each document d,
– Generate qd ~ Dirichlet(a)
– For each position i = 1, ... , Nd

• Generate a topic zi ~ Mult(@ |𝜃.)
• Generate a word wi ~ Mult (@ |𝛽M�)

– For each citation j = 1, …, Lc

• Generate zi ~ Mult(qd)
• Generate ci ~ Mult (@ |𝛾M�)

• Learning using variational EM, 
Gibbs sampling
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E. Erosheva, S Fienberg, J. Lafferty, Mixed-membership models of 
scientific publications. Proc National Academy Science U S A. 2004 
Apr 6;101 Suppl 1:5220-7. Epub 2004 Mar 12.



Link-pLSI-LDA: Topic Influence in Blogs

R. Nallapati, A. Ahmed, E. Xing, W.W. Cohen, Joint Latent Topic 
Models for Text and Citations, In: Proc. KDD, 2008. 62

𝛾



63



Modeling Citation Influences - Copycat Model

• Each topic in a citing document is drawn from one of 
the topic mixtures of cited publications

64
L. Dietz, St. Bickel, and T. Scheffer, Unsupervised Prediction of 
Citation Influences, In: Proc. ICML 2007.



Modeling Citation Influences

• Citation influence model: Combination of LDA and 
Copycat model

65
L. Dietz, St. Bickel, and T. Scheffer, Unsupervised Prediction of 
Citation Influences, In: Proc. ICML 2007.



Modeling Citation Influences

• Citation influence graph for LDA paper

66



Modeling Citation Influences

• Words in LDA paper assigned to citations

67



Modeling Citation Influences

• Predictive Performance

68



Relational Topic Model (RTM) [ChangBlei 2009]

• Same setup as LDA, except now we have observed 
network information across documents

69

“Link probability function”

Documents with similar 
topics are more likely to 
be linked.

𝑦.,.�	~	𝜓 𝑦.,.� 𝑧., 𝑧.�, 𝜂)
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J. Chang, and D. Blei. Relational Topic Models for Document Networks.
AISTATS, volume 5 of JMLR Proceedings, page 81-88. JMLR.org, 2009.



Relational Topic Model (RTM) [ChangBlei 2009]

• For each document d
– Draw topic proportions 
𝜃.|𝛼	~	𝐷𝑖𝑟 𝛼

– For each word 𝑤.,e
• Draw assignment 
𝑧.,e|𝜃.	~	𝑀𝑢𝑙𝑡(𝜃.)

• Draw word 
𝑤.,e|𝑧.,e, 𝛽#:=	~	𝑀𝑢𝑙𝑡(𝛽M3,�)

– For each pair of 
documents 𝑑, 𝑑�

• Draw binary link indicator 
𝑦|𝑧., 𝑧.�	~	𝜓(⋅ |𝑧., 𝑧.�)
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Collapsed Gibbs Sampling for RTM

• Conditional distribution of each 𝑧:

• Using the exponential link probability function, it is 
computationally efficient to calculate the “edge” term.

• It is very costly to compute the “non-edge” term 
exactly.
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LDA term

“Edge” term

“Non-edge” term
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Approximating the Non-edges

1. Assume non-edges are “missing” and ignore the term 
entirely (Chang/Blei)

2. Make the following fast approximation:

3. Subsample non-edges and exactly calculate the term 
over subset.

4. Subsample non-edges but instead of recalculating 
statistics for every 𝑧.,e token, calculate statistics once 
per document and cache them over each Gibbs sweep.
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Document networks

# Docs # Links Ave. Doc-
Length

Vocab-Size Link Semantics

CORA 4,000 17,000 1,200 60,000 Paper citation (undirected)

Netflix 
Movies

10,000 43,000 640 38,000 Common actor/director

Enron 
(Undirected)

1,000 16,000 7,000 55,000 Communication between 
person i and person j

Enron 
(Directed)

2,000 21,000 3,500 55,000 Email from person i to 
person j



Link Rank

• “Link rank” on held-out data as evaluation metric
– Lower is better

• How to compute link rank (simplified):
1. Train model with {dtrain}.
2. Given the model, calculate probability that dtest would link 

to each dtrain.  Rank {dtrain} according to these probabilities.  
3. For each observed link between dtest and {dtrain}, find the 

“rank”, and average all these ranks to obtain the “link rank”
74

dtest

{dtrain} Black-box 
predictor

Ranking over {dtrain}
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Results on CORA data

Comparison on CORA, K=20
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Results on CORA data

• Model does better with more topics
• Model does better with more words in each document
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Timing Results on CORA 

“Subsampling (20%) without caching” not shown since it takes 
62,000 seconds for D=1000 and 3,720,150 seconds for D=4000
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Conclusion

• Relational topic modeling provides a useful start for combining text 
and network data in a single statistical framework 

• RTM can improve over simpler approaches for link prediction

• Opportunities for future work:
– Faster algorithms for larger data sets
– Better understanding of non-edge modeling
– Extended models


