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Structures (ordinal, interval, ratio scale)
• Temporal structures
• Sentence structures
• …
• Genomic structures
• …



Temporal Probabilistic Agent

environment

agent

?

sensors

actuators

t1, t2, t3, …
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Probabilistic Temporal Models

• Dynamic Bayesian Networks (DBNs)
• Hidden Markov Models (HMMs)
• Kalman Filters
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Time and Uncertainty

• The world changes, we need to track and predict it
• Examples: diabetes management, traffic monitoring
• Basic idea: copy state and evidence variables for each time 

step
• Xt – set of unobservable state variables at time t

– e.g., BloodSugart, StomachContentst

• Et – set of evidence variables at time t
– e.g., MeasuredBloodSugart, PulseRatet, FoodEatent

• Assumes discrete time steps
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States and Observations

• Process of change viewed as series of snapshots, 
each describing the state of the world at a particular time

• Time slice involves a set of random variables indexed by t:
– the set of unobservable state variables Xt

– the set of observable evidence variable Et

• The observation at time t is Et = et for some set of values et

• The notation Xa:b denotes the set of variables from Xa to Xb

6



Dynamic Bayesian Networks

• How can we model dynamic situations with a 
Bayesian network?

• Example: Is it raining today?
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tt

UE
RX

=

=

next step: specify dependencies among the variables.

The term “dynamic” means we are modeling a dynamic system, not that
the network structure changes over time.
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• Problem:

1. Necessity to specify an unbounded number of conditional 
probability tables, one for each variable in each slice,

2. Each one might involve an unbounded number of parents.

• Solution:

1. Assume that changes in the world state are caused by a 
stationary process (unmoving process over time).

))(/( tt UParentUP
is the same for all t

DBN - Representation
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Generalization of DBNs

• Time is just one sequential structures
• Can generalize to any dynamic structure "expansion"

– Sentences
– Spatial structures
– …
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• Solution cont.:

)/()/( 11:0 −− = tttt XXPXXP

2.  Use Markov assumption - The current state depends on only 
in a finite history of previous states. 

Using the first-order Markov process:

Transition 
Model

In addition to restricting the parents of the state variable  Xt, we must 
restrict the parents of the evidence variable Et

)/(),/( 1:0:0 ttttt XEPEXEP =−
Sensor 
Model

DBN - Representation
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Stationary Process/Markov Assumption

• Markov Assumption: Xt depends on some previous Xis
• First-order Markov process: 

P(Xt|X0:t-1) = P(Xt|Xt-1)

– kth order: depends on previous k time steps
• Sensor Markov assumption:

P(Et|X0:t, E0:t-1) = P(Et|Xt)

• Assume stationary process: transition model:
– P(Xt|Xt-1) and sensor model P(Et|Xt) are the same for all t
– Changes in the world state governed by 

laws not changing over time
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Dynamic Bayesian Networks

• There are two possible fixes if the approximation is too 
inaccurate:

– Increasing the order of the Markov process model. For 
example, adding as a parent of , which might 
give slightly more accurate predictions.

– Increasing the set of state variables. For example, adding
to allow to incorporate historical records of rainy 

seasons, or adding                       ,                  and Pressure
to allow to use a physical model of rainy conditions.

2−tRain

tSeason
teTemperatur ttHumidity

tRain
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Dynamic Bayesian Network

2−tX 1−tX 2+tX1+tXtX

2−tX 1−tX 2+tX1+tXtX

A second order of Markov process

Bayesian network structure corresponding to a first-order of Markov process 
with state defined by the variables Xt.
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Complete Joint Distribution

• Given:
– Transition model: P(Xt|Xt-1)
– Sensor model: P(Et|Xt)
– Prior probability: P(X0)

• Then we can specify complete joint distribution:

∏
=

−=
t

1i
ii1ii0t1t10 )X|E(P)X|X(P)X(P)E,...,E,X,...,X,X(P
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Example

Raint-1

Umbrellat-1

Raint

Umbrellat

Raint+1

Umbrellat+1

Rt-1 P(Rt|Rt-1)
T
F

0.7
0.3

Rt P(Ut|Rt)
T
F

0.9
0.2
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Inference Tasks

• Filtering: What is the probability that it is raining today, 
given all the umbrella observations up through today?

• Prediction: What is the probability that it will rain the day 
after tomorrow, given all the umbrella observations up 
through today?

• Smoothing: What is the probability that it rained yesterday, 
given all the umbrella observations through today?

• Most likely explanation / most probable explanation:
if the umbrella appeared the first three days but not on the 
fourth, what is the most likely weather sequence to produce 
these umbrella sightings?
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DBN – Basic Inference 

• Filtering or Monitoring: 

Compute the belief state - the posterior distribution over the current state, 
given all evidence to date.

)/( :1 tt eXP

Filtering is what a rational agent needs to do in order to keep track of 
the current state so that the rational decisions can be made.
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DBN – Basic Inference 

• Filtering cont.

))/(()/( 1:1,11:11 ++++ = ttttt eXPefeXP

)/()/(
)/()/(

)/(

:1111

:11:1,11

1,:11

tttt
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=
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α

Given the results of filtering up to time t, one can easily compute the result 
for t+1 from the new evidence        1+te

(dividing up the evidence)

(for some function f)

(using Bayes’ Theorem)

(by the Markov property
of evidence)

α is a normalizing constant used to make probabilities sum up to 1.
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DBN – Basic Inference 

• Filtering cont.

)/()/()/( :1:1111 tt
X

tttt exPxXPXeP
t

∑ +++=α

)/( :11 tt eXP +
The second term                   represents a one-step prediction of the 
next step, and the first term                   updates this with the new 
evidence.

Now we obtain the one-step prediction for the next step by 
conditioning on the current state Xt:

)/( 11 ++ tt XeP

∑ +++++ =
tX

ttttttttt exPexXPXePeXP )/(),/()/()/( :1:11111:11 α

(using the Markov property)
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Forward Messages
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Example

Raint-1

Umbrellat-1

Raint

Umbrellat

Raint+1

Umbrellat+1

Rt-1 P(Rt|Rt-1)
T
F

0.7
0.3

Rt P(Ut|Rt)
T
F

0.9
0.2

21



DBN – Basic Inference 

∑=
0

)()/()( 0011
r

rPrRPRP

)()/()/( 11111 RPRuPuRP α=

Illustration for two steps in the Umbrella example:  

• On day 1, the umbrella appears so U1=true. The prediction from t=0 to t=1 is

and updating it with the evidence for t=1 gives

∑=
1

)/()/()/( 111212
r

urPrRPuRP

)/()/(),/( 1222212 uRPRuPuuRP α=

• On day 2, the umbrella appears so U2=true. The prediction from t=1 to t=2 is

and updating it with the evidence for t=2 gives
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Example cntd.
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DBN – Basic Inference 

• Prediction: 

Compute the posterior distribution over the future state, 
given all evidence to date.

)/( :1 tkt eXP +
for some k>0

The task of prediction can be seen simply as filtering 
without the addition of new evidence.
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DBN – Basic Inference 

• Smoothing or hindsight: 

Compute the posterior distribution over the past state, 
given all evidence up to the present.

)/( :1 tk eXP for some k such that 0 ≤ k < t.

Hindsight provides a better estimate of the state than 
was available at the time, because it incorporates more 
evidence.
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Smoothing
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Example contd.
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DBN – Basic Inference 

• Most likely explanation: 

Compute the sequence of states that is most likely to have generated a given 
sequence of observation.

argmaxx1:t P(X1:t | e1:t )

Algorithms for this task are useful in many applications, including, e.g., 
speech recognition.
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Most-likely explanation
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Rain/Umbrella Example
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The occasionally dishonest casino

• A casino uses a fair die most of the time, but 
occasionally switches to a loaded one
– Fair die: Prob(1) = Prob(2) = . . . = Prob(6) = 1/6
– Loaded die: Prob(1) = Prob(2) = . . . = Prob(5) = 1/10, 

Prob(6) = ½
– These are the emission probabilities

• Transition probabilities
– Prob(Fair ® Loaded) = 0.01
– Prob(Loaded ® Fair) = 0.2
– Transitions between states modeled by

a Markov process 

Slide by Changui Yan 32



Transition model for the casino

Slide by Changui Yan 33



The occasionally dishonest casino

• Known:
– The structure of the model
– The transition probabilities

• Hidden:  What the casino did
– FFFFFLLLLLLLFFFF...

• Observable:  The series of die tosses
– 3415256664666153... 

• What we must infer:
– When was a fair die used?
– When was a loaded one used?

• The answer is a sequence
FFFFFFFLLLLLLFFF...

Slide by Changui Yan 34



Making the inference

• Model assigns a probability to each explanation of the observation:
P(326|FFL) 
= P(3|F)·P(F®F)·P(2|F)·P(F®L)·P(6|L)
= 1/6 · 0.99 · 1/6 · 0.01 · ½

• Maximum Likelihood: Determine which explanation is most likely 
– Find the path most likely to have produced the observed sequence

• Total probability: Determine probability that observed sequence was 
produced by the model

– Consider all paths that could have produced the observed sequence

Slide by Changui Yan 35



Notation

• x is the sequence of symbols emitted by model
– xi is the symbol emitted at time i

• A path, p, is a  sequence of states
– The i-th state in p is pi

• akr is the probability of making a transition from state k to 
state r:

• ek(b) is the probability that symbol b is emitted when in 
state k

akr = Pr(π i = r |π i−1 = k)

ek (b) = Pr(xi = b |π i = k)

Slide by Changui Yan 36



A “parse” of a sequence

1

2

K

…

1

2

K

…

1

2

K

…

…

…

…

1

2

K

…

x1 x2 x3 xL

2

1

K

2

Pr(x,π ) = a0π1 eπ i (xi ) ⋅aπ iπ i+1
i=1

L

∏

00
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The occasionally dishonest casino

Pr(x,π (1) ) = a0FeF (6)aFFeF (2)aFFeF (6)

= 0.5× 1
6
×0.99× 1

6
×0.99× 1

6
≈ 0.00227

Pr(x,π (2) ) = a0LeL (6)aLLeL (2)aLLeL (6)
= 0.5×0.5×0.8×0.1×0.8×0.5
= 0.008

Pr(x,π (3) ) = a0LeL (6)aLFeF (2)aFLeL (6)aL0

= 0.5×0.5×0.2× 1
6
×0.01×0.5

≈ 0.0000417

FFF=)1(p

LLL=)2(p

LFL=)3(p

x = x1, x2, x3 = 6,2, 6

Slide by Changui Yan 38



The most probable path

The most likely path p* satisfies

π * = argmax
π

Pr(x,π )

To find p*, consider all possible ways the last symbol 
of x could have been emitted

vk (i) = ek (xi )maxr vr (i−1)ark( )

Let

Then

vk (i) = Prob. of path π1,!,π i  most likely  

to emit x1,…, xi  such that π i = k

Slide by Changui Yan 39



The Viterbi Algorithm

• Initialization (i = 0)

• Recursion (i = 1, . . . , L): For each state k

• Termination:

vk (i) = ek (xi )maxr vr (i−1)ark( )

Pr(x,π *) =max
k

vk (Length)ak0( )

v0 (0) =1,    vk (0) = 0 for k > 0

To find p*, use trace-back, as in dynamic programming

Slide by Changui Yan 40



Viterbi: Example

1

p

x

0

0

6 2 6 e

(1/6)´(1/2)
= 1/12

0

(1/2)´(1/2)
= 1/4

(1/6)´max{(1/12)´0.99,
(1/4)´0.2}

= 0.01375

(1/10)´max{(1/12)´0.01,
(1/4)´0.8}

= 0.02

B

F

L

0 0

(1/6)´max{0.01375´0.99,
0.02´0.2}

= 0.00226875

(1/2)´max{0.01375´0.01,
0.02´0.8}

= 0.08

vk (i) = ek (xi )maxr vr (i−1)ark( )

Slide by Changui Yan 41



Viterbi gets it right more often than not

Slide by Changui Yan 42



• Learning requires the full smoothing inference, rather 
than filtering, because it provides better estimates of 
the state of the process.

• Learning the parameters of a BN is done using 
Expectation – Maximization (EM) Algorithms. Iterative 
optimization method to estimate some unknowns 
parameters.

Dynamic Bayesian Networks

43
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Application 1: Part Of Speech Tagging

• Annotate each word in a sentence with a part-of-
speech marker.

• Lowest level of syntactic analysis.

• Useful for subsequent syntactic parsing and word 
sense disambiguation.

John  saw  the  saw  and  decided  to  take  it     to   the   table.
NNP VBD DT  NN  CC  VBD     TO VB  PRP IN DT    NN
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English Parts of Speech

• Noun (person, place or thing)
– Singular (NN):  dog, fork
– Plural (NNS):  dogs, forks
– Proper (NNP, NNPS): John, Springfields
– Personal pronoun (PRP): I, you, he, she, it
– Wh-pronoun  (WP): who, what

• Verb (actions and processes)
– Base, infinitive (VB):  eat
– Past tense (VBD):  ate
– Gerund (VBG):  eating
– Past participle (VBN):  eaten
– Non 3rd person singular present tense (VBP): eat
– 3rd person singular present tense: (VBZ): eats
– Modal (MD): should, can
– To (TO): to (to eat)
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English Parts of Speech (cont.)

• Adjective (modify nouns)
– Basic (JJ): red, tall
– Comparative (JJR): redder, taller
– Superlative (JJS): reddest, tallest

• Adverb (modify verbs)
– Basic (RB): quickly
– Comparative (RBR): quicker
– Superlative (RBS): quickest

• Preposition (IN): on, in, by, to, with
• Determiner:

– Basic (DT) a, an, the
– WH-determiner (WDT): which, that

• Coordinating Conjunction (CC): and, but, or,
• Particle (RP): off (took off), up (put up)
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In General: Sequence Labeling Problem

• Many NLP problems can viewed as sequence 
labeling.

• Each token in a sequence is assigned a label.
• Labels of tokens are dependent on the labels of 

other tokens in the sequence, particularly their 
neighbors (not i.i.d).

foo        bar         blam zonk       zonk            bar           blam
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Application 2: Information Extraction

• Identify phrases in language that refer to specific types 
of entities and relations in text.

• Named entity recognition is the task of identifying 
names of people, places, organizations, etc. in text.
people organizations places
– Michael Dell is the CEO of  Dell Computer Corporation and lives 

in Austin Texas. 

• Extract pieces of information relevant to a specific  
application, e.g. used car ads:
make model year mileage price
– For sale, 2002 Toyota Prius,  20,000 mi, $15K or best offer. 

Available starting July 30, 2006.
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Semantic Role Labeling

• For each clause, determine the semantic role played by 
each noun phrase that is an argument to the verb.
agent patient source destination instrument
– John drove Mary from Austin to Dallas in his Toyota Prius.
– The hammer broke the window.

• Also referred to a “case role analysis,” “thematic 
analysis,” and “shallow semantic parsing”
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Application 3: Bioinformatics

• Sequence labeling also valuable in labeling genetic 
sequences in genome analysis.
extron intron
– AGCTAACGTTCGATACGGATTACAGCCT
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Back to App1: Sequence Labeling as Classification

• Classify each token independently but use as input 
features, information about the surrounding tokens 
(sliding window).

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

NNP
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Sequence Labeling as Classification

• Classify each token independently but use as input 
features, information about the surrounding tokens 
(sliding window).

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

VBD
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Sequence Labeling as Classification

• Classify each token independently but use as input 
features, information about the surrounding tokens 
(sliding window).

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

DT
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Sequence Labeling as Classification

• Classify each token independently but use as input 
features, information about the surrounding tokens 
(sliding window).

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

NN
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Sequence Labeling as Classification

• Classify each token independently but use as input 
features, information about the surrounding tokens 
(sliding window).

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

CC
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Sequence Labeling as Classification

• Classify each token independently but use as input 
features, information about the surrounding tokens 
(sliding window).

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

VBD
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Sequence Labeling as Classification

• Classify each token independently but use as input 
features, information about the surrounding tokens 
(sliding window).

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

TO

58



Sequence Labeling as Classification

• Classify each token independently but use as input 
features, information about the surrounding tokens 
(sliding window).

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

VB
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Sequence Labeling as Classification

• Classify each token independently but use as input 
features, information about the surrounding tokens 
(sliding window).

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

PRP
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Sequence Labeling as Classification

• Classify each token independently but use as input 
features, information about the surrounding tokens 
(sliding window).

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

IN
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Sequence Labeling as Classification

• Classify each token independently but use as input 
features, information about the surrounding tokens 
(sliding window).

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

DT
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Sequence Labeling as Classification

• Classify each token independently but use as input 
features, information about the surrounding tokens 
(sliding window).

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

NN
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Sequence Labeling as Classification

Using Outputs as Inputs
• Better input features are usually the categories of the 

surrounding tokens, but these are not available yet.
• Can use category of either the preceding or succeeding 

tokens by going forward or back and using previous 
output.
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Forward Classification

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

NNP
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Forward Classification

NNP
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

VBD
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Forward Classification

NNP  VBD
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

DT
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Forward Classification

NNP VBD DT
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

NN
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Forward Classification

NNP VBD DT  NN
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

CC
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Forward Classification

NNP VBD DT NN  CC
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

VBD
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Forward Classification

NNP VBD DT NN  CC    VBD
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

TO
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Forward Classification

NNP VBD DT NN  CC    VBD   TO
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

VB
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Forward Classification

NNP VBD DT NN  CC    VBD   TO  VB
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

PRP
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Forward Classification

NNP VBD DT NN  CC    VBD   TO  VB PRP
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

IN
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Forward Classification

NNP VBD DT NN  CC    VBD   TO  VB PRP  IN
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

DT
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Forward Classification

NNP VBD DT NN  CC    VBD   TO  VB PRP  IN  DT
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

NN
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Backward Classification

• Disambiguating “to” in this case would be even easier 
backward.

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

NN
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Backward Classification

• Disambiguating “to” in this case would be even easier 
backward.

NN
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

DT
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Backward Classification

• Disambiguating “to” in this case would be even easier 
backward.

DT   NN
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

IN
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Backward Classification

• Disambiguating “to” in this case would be even easier 
backward.

IN   DT     NN
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

PRP
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Backward Classification

• Disambiguating “to” in this case would be even easier 
backward.

PRP IN  DT   NN
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

VB
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Backward Classification

• Disambiguating “to” in this case would be even easier 
backward.

VB  PRP IN  DT   NN
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

TO
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Backward Classification

• Disambiguating “to” in this case would be even easier 
backward.

TO  VB  PRP IN  DT   NN 
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

VBD
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Backward Classification

• Disambiguating “to” in this case would be even easier 
backward.

VBD   TO  VB  PRP IN  DT   NN 
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

CC

84



Backward Classification

• Disambiguating “to” in this case would be even 
easier backward.

CC    VBD   TO  VB  PRP IN  DT   NN 
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

NN     
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Backward Classification

• Disambiguating “to” in this case would be even easier 
backward.

VBD  CC   VBD   TO  VB  PRP IN  DT   NN
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

DT
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Backward Classification

• Disambiguating “to” in this case would be even easier 
backward.

DT VBD  CC  VBD   TO  VB  PRP IN  DT   NN
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

VBD
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Backward Classification

• Disambiguating “to” in this case would be even easier 
backward.

VBD DT VBD CC   VBD   TO  VB  PRP IN  DT   NN 
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

NNP
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DBN – Special Cases

• Hidden Markov Model (HMMs):
Temporal probabilistic model in which the state of the process 
is described by a single discrete random variable. (The simplest kind of DBN )

• Kalman Filter Models (KFMs):
Estimate the state of a physical system from noisy observations over time. 
Also known as linear dynamical systems (LDSs).
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DBN – Basic Inference 

• Filtering

• Smoothing

• Most likely sequence

P(Xt+1 / e1:t+1) =αP(et+1 / Xt+1) P(Xt+1 / xt )P(xt / e1:t )
Xt

∑
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Hidden Markov Models

new state

old state

U3 = false O3 =
0.1 0
0 0.8( )
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Country Dance Algorithm
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Country Dance Algorithm
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Country Dance Algorithm
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Country Dance Algorithm
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Country Dance Algorithm

96



Country Dance Algorithm
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Example

(TT)-1 = 

U2 = true O2 =
0.9 0

0 0.2( )
TT =

0.7 0.3

0.3 0.7

(
)

0.7 -0.3

-0.3 0.7 )2.5

(O2
-1 =

0.2 0

0 0.9( )5.5 =

=

1.1 0

0 4.95( )
1.75 -0,75

-0,75 1.75
( )

1,925 -3.7125

-0,825 8.6625( ) 0.883

0.117)( 1.265

0,285)( 0.817

0,183)(= a = 0,64497 →
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0.817

0,183)(
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State View: Hidden Markov models

Set of states: 

Process moves from one state to another generating a 
sequence of states :
Markov chain property:  probability of each subsequent 
state depends only on what was the previous state:

States are not visible, but each state randomly 
generates one of M observations (or visible states)

},,,{ 21 Nsss !
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State View: Hidden Markov models

To define a hidden Markov model, the following 
probabilities  have to be specified: 
• Matrix of transition probabilities A=(aij), aij= P(sj | si) , 
• Matrix of observation probabilities B=(bi (vm )), 

bi(vm ) = P(vm | si) and a 
• Vector of initial probabilities  p=(pi),  pi = P(si) . 

Model is represented by M=(A, B, p).
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Low High

0.70.3

0.2 0.8

DryRain

0.6 0.6
0.4 0.4

Example of Hidden Markov Model



Given some training observation sequences
O=o1 o2 ... oK and general structure of HMM (numbers 
of hidden and visible states), determine HMM 
parameters M=(A, B, p) that best fit training data, 
that is maximizes P(O |M) . 

State View: Learning problem (1)



If training data has information about sequence of hidden 
states, then use maximum likelihood estimation of parameters:

aij= P(sj | si) = Number of transitions from state si to  state sj

Number of transitions out of state si

bi(vm )= P(vm | si)=
Number of times observation vm occurs in state si

Number of times in state si

State View: Learning problem (2)

Otherwise: Use iterative expectation-maximization algorithm 
to find local maximum of  P(O | M):  Baum-Welch Algorithm.



General idea:

aij= P(sj | si) =
Expected number of transitions from state si to  state sj

Expected number of transitions out of state si

bi(vm )= P(vm | si)=
Expected number of times observation vm occurs in state si

Expected number of times in state si

pi = P(si) = Expected frequency in state si at time k=1. 

Baum-Welch algorithm



Define variable xk(i,j) as  the probability of being in state si at 

time k and in state sj at  time k+1, given the observation 

sequence o1 o2 ... oT with k < T

xk(i,j) = P(qk= si ,qk+1= sj |o1 o2 ... oT) 

xk(i,j) =
P(qk= si , qk+1= sj , o1 o2 ... oT)

P(o1 o2 ... oT)
=

P(qk= si , o1 o2 ... ok) aij bj (ok+1 ) P(ok+2  ... oT | qk+1= sj ) 
P(o1 o2 ... oT)

=

a forwardk(i) aij bj (ok+1 ) backwardk+1(j) 

Baum-Welch algorithm: Expectation step(1)



Define variablegk(i) as  the probability of being in state si at 

time k, given the observation sequence o1 o2 ... oT . 

gk(i)= P(qk= si |o1 o2 ... oT) 

gk(i)=
P(qk= si , o1 o2 ... oT)

P(o1 o2 ... oT)
=

a forwardk(i) backwardk(i) 

Baum-Welch algorithm: Expectation step(2)



We calculated xk(i,j) = P(qk= si ,qk+1= sj |o1 o2 ... oT) 
and      gk(i)= P(qk= si |o1 o2 ... oT) 

Expected number of transitions from state si to state sj =

=  Sk  xk(i,j)

Expected number of transitions out of state si = Sk  gk(i)

Expected number of times observation vm occurs in state si =

= Sk  gk(i) , k is such that ok= vm

Expected frequency in state si at time k=1 :  g1(i) . 

Baum-Welch algorithm: Expectation step(3)



aij  = 
Expected number of transitions from state sj to  state si

Expected number of transitions out of state sj

bi(vm ) = Expected number of times observation vm occurs in state si

Expected number of times in state si

pi = (Expected frequency in state si at time k=1) = g1(i). 

=
Sk  xk(i,j)

Sk  gk(i)

=
Sk  xk(i,j)

Sk,ok= vmgk(i)

Baum-Welch algorithm: Maximization step



DBN – Special Cases

• Hidden Markov Model (HMMs):
Temporal probabilistic model in which the state of the process 
is described by a single discrete random variable. (The simplest kind of DBN )

• Kalman Filter Models (KFMs):
Estimate the state of a physical system from noisy observations over time. 
Also known as linear dynamical systems (LDSs).
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Kalman Filters
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Updating Gaussian Distributions
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Simple 1-D Example

113s.d.= standard deviation

z1: first observation



General Kalman Update

Left for your studies
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2-D Tracking: Filtering

115



2-D Tracking: Smoothing

116



Where it breaks

Standard solution: switching Kalman filter

117

Keeping track of many objects: Identity uncertainty
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DBNs vs. HMMs

Consider the transition model
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Learning (1)

• The techniques for learning DBN are mostly straightforward extensions of the 
techniques for learning BNs

• Parameter learning
– The transition model P(Xt | Xt-1)  / The observation model P(Yt | Xt) 
– Offline learning

• Parameters must be tied across time-slices
• The initial state of the dynamic system can be learned independently of the 

transition matrix
– Online learning

• Add the parameters to the state space and then do online inference (filtering)
– The usual criterion is maximum-likelihood(ML) 

• The goal of parameter learning is to compute
– θ*

ML = argmaxθP( Y| θ) = argmaxθlog P( Y| θ) 
– θ*

MAP = argmaxθlog P( Y| θ) + logP(θ)
– Two standard approaches: gradient ascent and EM(Expectation Maximization)

120/29



Learning (2)

• Structure learning
– Intra-slice connectivity: Structural EM
– Inter-slice connectivity: 

For each node in slice t, we must choose its parents from slice t-1
– Given structure is unrolled to a certain extent, 

the inter-slice connectivity is identical for all pairs of slices: 
• Constraints on Structural EM

121/29



Constructing Dynamic Bayesian Networks

Battery-powered robot on x-y plane
Xt = (Xt, Yt), Zt = measurements

122



DBNs transient failure

123

For simplicity we assume that BMetert and Batteryt are taken from 0..5.

Generic gaussian error model
produces “overreaction“

Explicit transient failure model required:



DBNs persistent failure

124

Additional variable required: BMBrokent Upper curve: transient failure
with different observation sequences

Lower curve: persistent failure
with two different observation sequences



Learning DBN pattern structures?

• Difficult
• Need “deep” domain knowledge



Recap: Exact Inference in DBNs

d = possible values for variables
n = number of states

Example:
20 state variables with 4 values each
means 420+1 =4.398.046.511.104

126

for the whole BN

Employ forward chaining (constant per time update but exponential 
in the number of variables per state)



Inference: Algorithms

• Exact Inference algorithms
– Forwards-backwards smoothing algorithm (on any discrete-state DBN)
– Kalman filtering and smoothing (for continuous variables)
– The Frontier Algorithm (sweep a Markov blanket, the frontier set F, across 

the DBN, first forwards and then backwards)
– The Interface Algorithm (use only the set of nodes with outgoing arcs to the 

next time slice to d-separate the past from the future)

• Approximate algorithms:
– The Boyen-Koller (BK) algorithm (approximate the joint distribution over the 

interface as a product of marginals)
– Factored Frontier (FF) Algorithm / Loopy propagation algorithm (LBP)
– Stochastic sampling algorithm: 

• Importance sampling or MCMC (offline inference)
• Particle filtering (PF) (online)



Approximate inference in DBNs

Central idea:
• Create N initial-state examples (from prior dist P(X0))
• Based on the transition model, each sample is 

propagated forward by sampling the next state value 
xt+1 given the current value xt

• Each sample is weighted by the likelihood it assigns to 
the new evidence P(et+1 | xt+1)

• Resample to generate new population of N samples
• Select new sample based on its weight

Samples are called particles (à Particle Filtering)



Particle Filtering
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Example

N(rt+1|e) = S xt P(xt+1|xt) N(xt|e)
For rain = 0.7*8+0.3*2= 6.2 => 6
For not rain = 0.3 *8 + 0.7*2= 3.8 => 4

Suppose no umbrella for t+1
total weight(rain particles) = 0.1 * 6= 0.6
total weight(not rain) = 0.8 * 4= 3.2
Normalized =<0.17, 0.83>

130



Particle Filtering
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Particle Filtering (cntd.)
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Summary
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HMM-LDA

• In traditional topic modeling, such as LDA, we 
remove most syntactic words (e.g., stopwords)
since we are only interested in meaning.  

• In doing so, we discard much of the structure, and 
all of the order the original author intended.

• In topic modeling, we are concerned long-range 
topic dependencies rather document structure.

134
Thomas L. Griffiths, Mark Steyvers, David M. Blei, and Joshua B. Tenenbaum. 
Integrating topics and syntax. In Proc. of NIPS'04, pp. 537-544. 2004.



Introduction
• HMMs are useful for segmenting documents into different 

types of words, regardless of meaning.

• For example, all nouns will be grouped together because 
they play the same role in different passages/documents.

• Syntactic dependencies last at most for a sentence.

• The standardized nature of grammar means that it stays 
fairly constant across different contexts.



Combining syntax and semantics 1
• All words (both syntactic and semantic) exhibit short range 

dependencies.

• Only content words exhibit long range semantic 
dependencies.

• This leads to the HMM-LDA.

• HMM-LDA is a composite model,  in which an HMM decides 
the parts of speech, and a topic model (LDA) extracts topics 
only those words which are deemed semantic.



Generative Process 1

Class assignments for each word, where each      taking one of C word classes

Topic assignments for each word, where each      taking one of T topics 

Words form document d where each word       is one of W words 

Definitions

Multinomial distribution over topics for document d

Multinomial distribution over semantic words for topic indicated by z. 

Multinomial distribution over non-semantic words for class indicated by class c. 

Transition probability from          to  



Generative Process 2

)(cp

~

~

~

~

Where          is the row of the transition matrix indicated by c.
)(cp

Draw topic 
distribution

Draw a topic 
for word i

Draw a class for 
word i from 
transition matrix

Draw a semantic word Draw a syntactic wordOR

For document d

Semantic class



Graphical Model 1

HMM

LDA



Simple Example 1

• The HMM allocates words which vary across context to the 
semantic class, since grammar is fairly standardized but 
content is not.

Semantic Class

Verb ClassPreposition class



is the number of words in document      assigned to topic 

Model Inference 1

Topic indicators

is the number of words in topic      that are the same as 

All counts include only words for which              and exclude word 

MCMC inference



Model Inference 2

Class indicators

is the number of words in document      assigned to topic 

is the number of words in topic      that are the same as 

All counts exclude transitions to and from 

is the number of words in class       that are the same as 

is the number of transitions from class          to class

is an indicator variable which equals 1 if argument is true



Extreme Cases 1

• If we set the number of semantic topics to T = 1, then the 
model reduces to an HMM parts of speech tagger.

• If we set the number of HMM classes to C = 2, where one 
state is for punctuation, the the model reduces to LDA.



Results 1

LDA only

HMM-LDA Semantic 
Topics

HMM-LDA Syntactic 
Classes

Brown + TASA corpus:  38,151 documents; Vocab Size = 37,202;
number of word tokens = 13,328,397 words



Results 2

NIPS Papers 1713 documents; Vocabulary Size: 17268;
Number of word tokens = 4,321,614

Semantic Words 

Syntactic Words



Results 2 (cont’d)

NIPS Papers 1713 documents; Vocabulary Size: 17268;
Number of word tokens = 4,321,614

Black words are semantic, Graylevel words are syntactic.  Boxed words are semantic on 
one passsage and syntactic in another.  Asterisked words have low frequency and not 
considered.



Results 3

)(log wP)(log wP

Log Marginal probabilities of the data



Results 4

Parts of speech tagging
Black bars indicate performance on a fine tagset (297 word types), white bars indicate 
performance on coarse tagset (10 word types).

Composite ModelHMM



Conclusion

• HMM-LDA is a composite topic model which considers both 
long range semantic dependencies and short range 
syntactic dependencies.

• The model is quite competitive with a traditional HMM parts 
of speech tagger, and outperforms LDA when stopwords
and punctuation are not removed.



Dynamic Topic Models

• In LDA the order of documents does not matter
• Not appropriate for sequential corpora (e.g., that span hundreds of years)
• Further, we may want to track how language changes over time
• Let the topics drift in a sequence. 

150
David M. Blei and John D. Lafferty. Dynamic topic models. 
In Proc. ICML '06. pp. 113-120. 2006.



Recap: Smoothed LDA Model

• Give a different word distribution 
to each topic
– 𝛽 is 𝐾×𝑉 matrix (V vocabulary 

size), each row denotes word 
distribution of a topic

• For each document d
– Choose qd ~ Dirichlet(∙ | a)
– Choose 𝛽&~ Dirichlet(𝜂∙ |)
– For each position i = 1, ... , Nd

• Generate a topic zi ~ Mult(∙ | qd)
• Generate a word wi ~ Mult(∙ | zi,bk)
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Dynamic Topic Models

• Use a logistic normal distribution to model topics 
evolving over time

• Embed it in a state-space model on the log of the topic 
distribution 

• Lets us make inferences about sequences of documents

153



Logit Normal Distribution

154[Wikipedia]



Dynamic Topic Models
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Dynamic Topic Models

156



Dynamic Topic Models
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Dynamic Topic Models

158
Wang, Chong; Blei, David; Heckerman, David. "Continuous Time 
Dynamic Topic Models". Proceedings of ICML'08, 2008.



Dynamic Topic Models

• Time-corrected similarity shows a new way of using the 
posterior. 

• Consider the expected Hellinger distance between the topic 
proportions of two documents, 

• Uses the latent structure to define similarity 
• Time has been factored out because the topics associated to 

the components are different from year to year. 
• Similarity based only on topic proportions 

159[Wikipedia]



Dynamic Topic Models
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Dynamic Topic Models
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Dynamic Topic Models: Summary

• The Dirichlet assumption on topics and topic 
proportions makes strong conditional independence 
assumptions about the data. 

• The dynamic topic model uses a logistic normal in a 
linear dynamic model to capture how topics change 
over time. 
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Gartner Hype Cycle
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Gartner Hype Cycle 2015
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Gartner Hype Cycle
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Gartner Hype Cycle

166


