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Probabilistic Temporal Models

- Dynamic Bayesian Networks (DBNs)
Hidden Markov Models (HMMs)
Kalman Filters
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Time and Uncertainty

- The world changes, we need to track and predict it
- Examples: diabetes management, traffic monitoring

- Basicidea: copy state and evidence variables for each time
step

- X, -set of unobservable state variables at time t
- e.g., BloodSugar,, StomachContents,

- E, - set of evidence variables at time t
- e.g., MeasuredBloodSugar,, PulseRate,, FoodEaten,

- Assumes discrete time steps
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States and Observations
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Process of change viewed as series of snapshots,
each describing the state of the world at a particular time

Time slice involves a set of random variables indexed by t:
the set of unobservable state variables X,
the set of observable evidence variable E,

The observation at time tis E, = e, for some set of values e,
The notation X_,, denotes the set of variables from X, to X,
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Dynamic Bayesian Networks

- How can we model dynamic situations with a
Bayesian network?

 Example: s it raining today?
Xt = {Rt}
Et = {Ut}

—)next step: specify dependencies among the variables.

The term “dynamic” means we are modeling a dynamic system, not that
the network structure changes over time.
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DBN - Representation

« Problem:

1. Necessity to specify an unbounded number of conditional
probability tables, one for each variable in each slice,

2. Each one might involve an unbounded number of parents.

Solution:

1. Assume that changes in the world state are caused by a
stationary process (unmoving process over time).

is the same for all ¢

P(U, / Parent(U,))
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Generalization of DBNs

- Time is just one sequential structures

- Can generalize to any dynamic structure "expansion”
— Sentences
— Spatial structures
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DBN - Representation

« Solution cont.:

2. Use Markov assumption - The current state depends on only
in a finite history of previous states.

Using the first-order Markov process:
Transition
P(Xt/XO:t—l)=P(Xt/Xt—l) Model

In addition to restricting the parents of the state variable Xt, we must
restrict the parents of the evidence variable Et

P(Et /XO:taEO:t—l) = P(Et /Xl‘) i/\ec?(j(e)lr
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Stationary Process/Markov Assumption

« Markov Assumption: X, depends on some previous X;s
« First-order Markov process:

P(Xt|XO:t—1) - P(Xt|Xt—1)

— kth order: depends on previous k time steps
. Sensor Markov assumption:

|X0t’ EOt 1 t|X

.« Assume stationary process: transition model:
— P(X|X.,) and sensor model P(E,|X,) are the same for all t

— Changes in the world state governed by
laws not changing over time
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Dynamic Bayesian Networks

. There are two possible fixes if the approximation is too
Inaccurate:

- Increasing the order of the Markov process model. For
example, adding Rain,_, as a parent of Rain,, which might
give slightly more accurate predictions.

- Increasing the set of state variables. For example, adding
Season, to allow to incorporate historical records of rainy
seasons, or adding  Temperature, , Humidity, —and Pressure,

to allow to use a physical model of rainy conditions.
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Dynamic Bayesian Network

Bayesian network structure corresponding to a first-order of Markov process
with state defined by the variables Xt.

A second order of Markov process
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Complete Joint Distribution

- Given:
— Transition model: P(X|X, ;)
— Sensor model: P(E,|X,)
— Prior probability: P(X,)

- Then we can specify complete joint distribution:

t
P(X,,X,,....X,E,...E,) = P(XO)H P(X.|X. ,)P(E. | X))
1=1
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Example

Rii | PRilR:1)
T 0.7
F 0.3

*(Rain, g @ “(Rainy,

= @

R, P(U:IRy)
T 0.9
F 0.2
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Inference Tasks

- Filtering: What is the probability that it is raining today,
given all the umbrella observations up through today?

- Prediction: What is the probability that it will rain the day
after tomorrow, given all the umbrella observations up
through today?

- Smoothing: What is the probability that it rained yesterday,
given all the umbrella observations through today?

- Most likely explanation / most probable explanation:
if the umbrella appeared the first three days but not on the
fourth, what is the most likely weather sequence to produce
these umbrella sightings?
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DBN - Basic Inference

. Filtering or Monitoring:

Compute the belief state - the posterior distribution over the current state,
given all evidence to date.

P(X,/e,)

Filtering is what a rational agent needs to do in order to keep track of
the current state so that the rational decisions can be made.
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DBN - Basic Inference

- Filtering cont.

Given the results of filtering up to time t, one can easily compute the result
for t+1 from the new evidence e, ,

(for some function f)
P(Xt+1 /el:t+1) = f(et+1,P(Xt /elzt+1 ))
(dividing up the evidence)
= P(Xt+1 /elzt,et+1) )
D % Y (using Bayes' Theorem)
= Qor\e e,. e,.
( t+1 t+1, l.t) ( t+1 l.t) (by the Markov property
= aP(eHl /Xt+1 )P(Xt+1 /el:z‘) of evidence)

a is a normalizing constant used to make probabilities sum up to 1.
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DBN - Basic Inference

- Filtering cont.

The second term P(X, , /e ) represents a one-step prediction of the

next step, and the first term P(e,,, / X,,,) updates this with the new
evidence.

Now we obtain the one-step prediction for the next step by
conditioning on the current state Xt:

P(Xt+1 /elzt+1) = aP(eHl /Xt+1)2 P(Xt+1 /xt9elzt)P(xt /el:t)
Xl‘

= aP(eHl /Xt+1)2 P(Xt+1 /xt )P('xt /elif)
X (using the Markov property)
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Forward Messages

fi..y1 = FORWARD(f), €,4+1) where f1., =P (X;|e1)
Time and space constant (independent of 7)
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Example

Rii | PRilR:1)
T 0.7
F 0.3

*(Rain, g @ “(Rainy,

= @

R, P(U:IRy)
T 0.9
F 0.2
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DBN - Basic Inference

lllustration for two steps in the Umbrella example:
- On day 1, the umbrella appears so U1=true. The prediction from t=0 to t=1 is
P(R,) = EP(Rl/ro)P(ro)
and updatir:Og it with the evidence for t=1 gives
P(R /u,)=aP(u,/R)P(R)
- On day 2, the umbrella appears so U2=true. The prediction from t=1to t=2 is

P(Rz/u1)=EP(R2/r1)P(7”1/u1)

and updating it with the evidence for t=2 gives

PR, lu,,u,) = aP(u,/ R)P(R, /u,)
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Example cntd.

0.500 0.627
0.500 0.373
True 0.500 0.41 8 0.8'83
False 0.500 0.182 0.117

D s G o &I
Clnbretiay - Clmbrelia
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DBN - Basic Inference

« Prediction:

Compute the posterior distribution over the future state,
given all evidence to date.

P(X / eu ) for some k>0

[+k

The task of prediction can be seen simply as filtering
without the addition of new evidence.
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DBN - Basic Inference

- Smoothing or hindsight:

Compute the posterior distribution over the past state,
given all evidence up to the present.

P(Xk / elzt ) for some k suchthat0 <k < t.

Hindsight provides a better estimate of the state than
was available at the time, because it incorporates more
evidence.

25

JJJJJJJ
3858 ¢ INSTITUT FUR INFORMATIONSSYSTEME



Smoothing

Divide evidence €1+ into e1., €p.1.¢
P(Xiler:) = P(Xilerr, erit)
= aP(Xj|err)Pleri1:¢| Xk, e1:x)
= aP(X}|err)Plepi14| Xy)
— Cl"flzkbk+1:t
Backward message computed by a backwards recursion:
Pleps1:4/Xe) = 2xy,  Plers1e X, Xp1) P (xpes1| X)
= Yixp oy Plerrexrr) P (x| Xe)
= Exk+lp(ek+1|Xk+1)P(ek+2:t|xk+1)P(Xk+1|Xk)

Forward—backward algorithm: cache forward messages along the way
Time linear in 7 (polytree inference), space O(f|f])
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Example contd.

0.500 0.627
0.500 0.373
True  0.500 0.318 0.6'83 orward
False 0.500 0.182 0.117 K
0 !83 o.e!ea
0117 0.117 Sinogihea
0.690 1.000
0.410 1.000 BacKwaI

Umbrella | Umbrella,
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DBN - Basic Inference

- Most likely explanation:

Compute the sequence of states that is most likely to have generated a given
sequence of observation.

argmax, P(X,, le.)

Algorithms for this task are useful in many applications, including, e.g.,
speech recognition.
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Most-likely explanation

Most likely sequence # sequence of most likely states!!!!

Most likely path to each x;.
= most likely path to some x; plus one more step

Jnax P(x1,....x¢, X¢r1lere+1)
=P et+1|Xt+1 Ill}(itiu (P (Xgy1|x¢) max P(x ‘...,xt_l,xt|e1:t))
X1 Xt 1

|dentical to filtering, except f;; replaced by

mp; =  max P(x1,....x¢-1, X¢|ers),

l.e., my.4(7) gives the probability of the most likely path to state :.
Update has sum replaced by max, giving the Viterbi algorithm:

my 1 = Pleq1|Xiy1) Hax (P(Xs1/xe)my )
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Rain/Umbrella Example

state
space
paths

umbrella

most
likely
paths

Rain

Rain 4

Rains

false

false

0361

Rain, Rain,
< false Z false
< 8182 5155

1818 0491

my mj

1237

:
’

m;
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The occasionally dishonest casino

« A casino uses a fair die most of the time, but
occasionally switches to a loaded one
— Fair die: Prob(1) =Prob(2) =...=Prob(6) =1/6

— Loaded die: Prob(1) = Prob(2) =...=Prob(5) = 1/10,
Prob(6) =2

— These are the emission probabilities

- Transition probabilities

— Prob(Fair = Loaded) = 0.01
— Prob(Loaded — Fair) =0.2

— Transitions between states modeled by
a Markov process

RSI
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Transition model for the casino

0.99 0.8
0.01

0.2
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The occasionally dishonest casino

Known:
— The structure of the model
— The transition probabilities

Hidden: What the casino did
— FFFFFLLLLLLLFFFF..

Observable: The series of die tosses
— 3415256664666153...

What we must infer:
— When was a fair die used?

— When was a loaded one used?

- The answer is a sequence
FFFFFFFLLLLLLFFF...

Slide by Changui Yan
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Making the inference

- Model assigns a probability to each explanation of the observation:
P(326|FFL)
= P(3|F)-P(F—F)-P(2|F)-P(F—L)-P(6|L)
=1/6-0.99:1/6-0.01-%

- Maximum Likelihood: Determine which explanation is most likely
— Find the path most likely to have produced the observed sequence

Total probability: Determine probability that observed sequence was
produced by the model

— Consider all paths that could have produced the observed sequence

Slide by Changui Yan 35




Notation

x is the sequence of symbols emitted by model
— X;is the symbol emitted at time j

- Apath, 7, is a sequence of states
— Thej-th statein «is 7,

. a,, isthe probability of making a transition from state k to
stater:

a, =Pr(m, =rlmx,_ =k)

« ¢,(b) is the probability that symbol b is emitted when in
state k

e (b)=Pr(x,=blm, =k)

;%"%ﬁé UNIVERSITAT ZU LUBECK Slide by ChanQUi Yan
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A “parse” of a sequence

1 1 1

X X2 X3

Pr(x,7)=aq,, Heﬂi (X)) a,,.

i=1
Slide by Changui Yan




The occasionally dishonest casino

X = <x1,x2,x3> = <6,2,6>

7\ = FFF
78 = LLL
7% = LFL

JJJJJJJ
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Pr(x, J'L’(l)) =a,.6.(6)ae.(2)a..e.(6)

=O.5xlx0.99xlx0.99xl
6 6 6
=~ (.00227

Pr(x, .717(2)) =a,,e,(6)a, e (2)a, e, (6)
=05x05x0.8x0.1x0.8x0.5
=0.008

Pr(x,7%)=a,, e, (6)a,e.(2)a,e, (6)a,,

=O.5x0.5x0.2xéx0.01x0.5

=~ (0.0000417
Slide by Changui Yan
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The most probable path

The most likely path 7" satisfies

T = argmax Pr(x,)

To find ©", consider all possible ways the last symbol
of x could have been emitted

Let
v, (i) = Prob. of path (s, --,7r,) most likely

to emit (x,,...,x;) such that 7, =k

Then

v.()=e¢, (xi)max(v,, (i — l)ark)

Slide by Changui Yan
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The Viterbi Algorithm

- Initialization  (i=0)
v,(0)=1, v (0)=0 tork>0

« Recursion(i=1,...,L): Foreach state k

v,(i)=¢, (xi)max(vr (i— l)ark)
« Termination;

Pr(x. ") = m;flx(vk (Length)ako)

To find 7, use trace-back, as in dynamic programming

RSI
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Viterbi: Example

X
g 6 2 6
Bl 1 0 0 0
(1/6)x(1/2) (1/6)xmax{(1/12)x0.99, (1/6)xmax{0.01375x0.99,
F| O =1/12 (1/4)x0.2} 0.02x0.2}
4 =0.01375 =0.00226875
(1/2)x(1/2) (1/10)xmax{(1/12)x0.01, (1/2) xmax{0.01375x0.01,
L| O (1/4)x0.8} 0.02x0.8}
TE L)
<
0.99 0.8
. . 0.01
[ v.(i)=e, (xl.)mrax(vr (i— l)ark) J
0.2

Slide by Changui Yan 41



Viterbi gets it right more often than not

Rolls
Die
Viterbi

315116246446644245321131631164152133625144543631656626566666
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLL
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLL

Rolls
Die
Viterbi

651166453132651245636664631636663162326455235266666625151631
LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLFFFFFFFFF
LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFF

Rolls
Die
Viterbi

222555441666566563564324364131513465146353411126414626253356
FFFFFFFFLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFL

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFL

Rolls
Die

Viterbi

366163666466232534413661661163252562462255265252266435353336
LLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

LLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFF

Rolls
Die
Viterbi

“
[ S UNIVERSITAT ZU LUBECK
g INSTITUT FUR INFORMATIONSSYSTEME

233121625364414432335163243633665562466662632666612355245242
FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF

Slide by Changui Yan
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Dynamic Bayesian Networks

. Learning requires the full smoothing inference, rather
than filtering, because it provides better estimates of
the state of the process.

« Learning the parameters of a BN is done using
Expectation — Maximization (EM) Algorithmes. Iterative
optimization method to estimate some unknowns
parameters.
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Application 1: Part Of Speech Tagging

- Annotate each word in a sentence with a part-of-
speech marker.

- Lowest level of syntactic analysis.

John saw the saw and decided to take it to the table.
NNP VBD DT NN CC VBD TO VB PRPIN DT NN

. Useful for subsequent syntactic parsing and word
sense disambiguation.

RSI
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English Parts of Speech

- Noun (person, place or thing)

Singular (NN): dog, fork

Plural (NNS): dogs, forks

Proper (NNP, NNPS): John, Springfields
Personal pronoun (PRP): |, you, he, she, it
Wh-pronoun (WP): who, what

- Verb (actions and processes)

Base, infinitive (VB): eat

Past tense (VBD): ate

Gerund (VBG): eating

Past participle (VBN): eaten

Non 3" person singular present tense (VBP): eat
3" person singular present tense: (VBZ): eats
Modal (MD): should, can

To (TO): to (to eat)

JJJJJJJ
3858 ¢ INSTITUT FUR INFORMATIONSSYSTEME
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English Parts of Speech (cont.)

Adjective (modify nouns)
— Basic (JJ): red, tall
— Comparative (JJR): redder, taller
— Superlative (JJS): reddest, tallest

- Adverb (modify verbs)
— Basic (RB): quickly
— Comparative (RBR): quicker
— Superlative (RBS): quickest
 Preposition (IN): on, in, by, to, with
- Determiner:
— Basic (DT) a, an, the
— WH-determiner (WDT): which, that
. Coordinating Conjunction (CC): and, but, or,
. Particle (RP): off (took off), up (put up)

JJJJJJJ
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In General: Sequence Labeling Problem

- Many NLP problems can viewed as sequence
labeling.

- Each token in a sequence is assigned a label.

. Labels of tokens are dependent on the labels of
other tokens in the sequence, particularly their
neighbors (not i.i.d).

QDQ'A @

ar blam zonk zonk bar blam

RSI
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Application 2: Information Extraction

- Identify phrases in language that refer to specific types
of entities and relations in text.

-  Named entity recognition is the task of identifying
names of people, places, organizations, etc. in text.

people organizations places

— Michael Dell is the CEO of Dell Computer Corporation and lives
in Austin Texas.

- Extract pieces of information relevant to a specific
application, e.g. used car ads:

make year mileage

— For sale, 2002 Toyota , 20,000 mi,
Available starting July 30, 2006.

qqqqqq
i
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Semantic Role Labeling

. For each clause, determine the semantic role played by
each noun phrase that is an argument to the verb.

agent source destination instrument

— John drove Mary from Austin to Dallas in his Toyota Prius.

— The hammer broke the window.

. Also referred to a “case role analysis,” “thematic
analysis,” and “shallow semantic parsing”

3G S UNIVERSITAT ZU LUBECK
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Application 3: Bioinformatics

- Sequence labeling also valuable in l[abeling genetic
sequences in genome analysis.

extron intron
— AGCTAACGTTCGATACGGATTACAGCCT

RSI
GERSIZ,
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Back to App1: Sequence Labeling as Classification

- Classify each token independently but use as input
features, information about the surrounding tokens
(sliding window).

\Jofn ?w the saw and decided to take it to the table.
classifier

l

NNP

52
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Sequence Labeling as Classification

- Classify each token independently but use as input
features, information about the surrounding tokens
(sliding window).

JO}Q salw ye saw and decided to take it to the table.

classifier

VBD

RSI
GERSIZ,
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Sequence Labeling as Classification

- Classify each token independently but use as input
features, information about the surrounding tokens
(sliding window).

John saw tY /W and decided to take it to the table.

cIaSS|f|er

l

RSI
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Sequence Labeling as Classification

- Classify each token independently but use as input
features, information about the surrounding tokens
(sliding window).

John saw % s1w 7d decided to take it to the table.

classifier

l

RSI
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Sequence Labeling as Classification

- Classify each token independently but use as input
features, information about the surrounding tokens
(sliding window).

John saw the saw arld decided to take it to the table.

classifier

l

CC

RSI
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Sequence Labeling as Classification

- Classify each token independently but use as input
features, information about the surrounding tokens
(sliding window).

John saw the saw an%l‘eclde‘d/o take 1t to the table.

classifier

l

VBD

RSI
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Sequence Labeling as Classification

- Classify each token independently but use as input
features, information about the surrounding tokens
(sliding window).

John saw the saw and decided to take it to the table.

N/

classifier

l

TO

RSI
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Sequence Labeling as Classification

- Classify each token independently but use as input
features, information about the surrounding tokens
(sliding window).

John saw the saw and decided titake it to the table.

classifier

l

VB

RSI
GERSIZ,
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Sequence Labeling as Classification

- Classify each token independently but use as input
features, information about the surrounding tokens
(sliding window).

John saw the saw and decided to taie 1lt to the table.

classifier

\

PRP

RSI
GERSIZ,
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Sequence Labeling as Classification

- Classify each token independently but use as input
features, information about the surrounding tokens
(sliding window).

John saw the saw and decided to take t\‘ to the table.

L/

classifier

l

IN

RSI
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Sequence Labeling as Classification

- Classify each token independently but use as input
features, information about the surrounding tokens
(sliding window).

John saw the saw and decided to take it ti tlIe ?ble.

classifier

l

DT

RSI
GERSIZ,
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Sequence Labeling as Classification

- Classify each token independently but use as input
features, information about the surrounding tokens
(sliding window).

John saw the saw and decided to take it to tli‘tafle./
classifier

l

NN
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Sequence Labeling as Classification

Using Outputs as Inputs

- Better input features are usually the categories of the
surrounding tokens, but these are not available yet.

- Can use category of either the preceding or succeeding
tokens by going forward or back and using previous

output.

RSI
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Forward Classification

John saw the saw and decided to take it to the table.

classifier

l

NNP
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Forward Classification

saw the saw and decided to take it to the table.

L/

cIa55|f|er

VBD
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Forward Classification

NNP VBD
Johi\ saW the saw and decided to take it to the table.

classifier

l

DT
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Forward Classification

NNP VBD DT
John saw th saw and decided to take it to the table.

L/

cIa55|f|er
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Forward Classification

NNP VBD DT NN
John saw ths sa and decided to take it to the table.

L/

cIa55|f|er

CC
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Forward Classification

NNP VBD DT NN CC
John saw the sawN\and \decided to take 1t to the table.

classifier

l

VBD
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Forward Classification

NNP VBD DT NN C VB
John saw the saw and Yecidsd 10 take it to the table.

classifier

l

TO
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Forward Classification

NNP VBD DT NN CC VRD TO
John saw the saw and decided t ta\:e f to the table.

classifier

l

VB
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Forward Classification

NNPVBD DTNN CC VBD TO V
John saw the saw and decided to\ta lt to the table.

classifier

l

PRP
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Forward Classification

NNP VBD DT NN CC VBD TO VB PRP
John saw the saw and decided to take\it T ?e table.

classifier

l

IN
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Forward Classification

NNP VBD DTNN CC VBD TO VBP
John saw the saw and decided to take it to\ll jable

cIaSS|f|er

DT
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Forward Classification

NNP VBD DT NN CC VBD TO VB PRP IN DT

John saw the saw and decided to take it to\i\ﬁle]

classifier

l

NN
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Backward Classification

. Disambiguating “to” in this case would be even easier
backward.

classifier

l

NN

John saw the saw and decided to take it to thb?//
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Backward Classification

. Disambiguating “to” in this case would be even easier
backward.

John saw the saw and decided to take it Kje b

classifier

l

DT
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Backward Classification

. Disambiguating “to” in this case would be even easier
backward.
DT NN
John saw the saw and decided to take 't\‘io the Aable.

classifier

l

IN
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Backward Classification

. Disambiguating “to” in this case would be even easier
backward.

N DT NN
John saw the saw and decided to %lt to Ahe table.

classifier

l

PRP
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Backward Classification

. Disambiguating “to” in this case would be even easier
backward.

DT NN
John saw the saw and decided to\tike it Ao the table.

cIaSS|f|er

VB
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Backward Classification

. Disambiguating “to” in this case would be even easier
backward.

PRPIN DT NN
John saw the saw and deci ed 0 t ke it to the table.

cIa55|f|er
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Backward Classification

. Disambiguating “to” in this case would be even easier
backward.

TO VB PRPIN DT NN
John saw the saw andﬁclded o/fake it to the table.

classifier

l

VBD
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Backward Classification

. Disambiguating “to” in this case would be even easier
backward.

VBD TO VB PRPIN DT NN
John saw the sxiuid dezided”to take it to the table.
classifier
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Backward Classification

- Disambiguating “to” in this case would be even
easier backward.

CC VBD TO VB PRPIN DT NN

John saw thsiW Z<d/4ided to take it to the table.

classifier

l
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Backward Classification

. Disambiguating “to” in this case would be even easier

backward.
VBD CC VBD TO VB PRPIN DT NN
John s e S d decided to take it to the table.
cIaSS|f|er
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Backward Classification

. Disambiguating “to” in this case would be even easier
backward.

TVBD CC VBD TO VB PRPIN DT NN

Joln\‘al /]Ze aw and decided to take it to the table.

cIa55|f|er

VBD
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Backward Classification

. Disambiguating “to” in this case would be even easier
backward.

D DTVBD CC VBD TO VB PRPIN DT NN
0 n e saw and decided to take it to the table.

cIaSS|f|er

€<

NNP
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DBN - Special Cases

« Hidden Markov Model (HMMs):

Temporal probabilistic model in which the state of the process
is described by a single discrete random variable. (The simplest kind of DBN )

« Kalman Filter Models (KFMs):

Estimate the state of a physical system from noisy observations over time.
Also known as linear dynamical systems (LDSs).
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DBN - Basic Inference

. Filtering
P(X,,/e,,)=0aP(e,, /XHI)E P(X,, /x)P(x,/e,)

r+1

- Smoothing
P(_XA' el:t) = OP Xh\el k) ek—|—1t’XA
P(ek—i—l:thk) — E

- Most likely sequence

Xy 1P eA+1’XA+1 P(_ek+2:t’XAT+1‘)P(XA-+1|Xk)

Jnax P(x1,...,x¢ Xes1lere+1)
= Ples1|Xi11) max (P(_X,+1x,) m(l\lP(xl ..... x,_l.x,|e1:t'})
!‘
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Hidden Markov Models

Ret | P(RRe1)
T 0.7
X is a single, discrete variable (usually E; is too) F|o2
Domain of X;is {1,....5} S —»_
0.7 0.3
Transition matrix T';; = P(X;=j|X;_1=1i), e.g,, old state
0 3 0 { Umbrella,
: . . . Ri P(URy)
Sensor matrix O; for each time step, diagonal elements P(¢:| Xy =i) [T Tos
ith U, = true, 0y = [ 0 _ (01 0 y==
e.g., wi 1=true, Uy = 0 09 U3 =false 03 — 0 03

Forward and backward messages as column vectors:

-
f1:1t+1 - Qf0t+1T f1:t
bk—f—l:t - T0k+1bk+2:t

Forward-backward algorithm needs time O(5%) and space O(St)
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Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

f1:t—+—1 — O'Ot-i-lTTfl:t
Ot_+11f1:t+1 — Q'TTflzt
o/ (T O e = fug

Algorithm: forward pass computes f;, backward pass does f;, b;
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Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

f1:t-+—1 — O"Ot-i-lTTfl:t
Ot_-{-llflzt+1 — QTTflzt
o/ (TN 'O, fres1 = fia

Algorithm: forward pass computes f;, backward pass does f;, b;
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Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

f1:1‘-—{—1 - O"Ot-i-lTTfl:t
Ot_-}-llflzt-r—l — O"TTflzt
Q'I(TT)_lotg__*_llfl:t+1 = fi

Algorithm: forward pass computes f;, backward pass does f;, b;
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Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

f1:1‘.+1 = O'Ot+1TTf1:t
Ot—-}-llflzt+1 — Q'TTflzt
o/ (T 'O fresr = Fu

Algorithm: forward pass computes f;, backward pass does f;, b;
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Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

f1:1‘-—{—1 — O"Ot-i-lTTfl:t
Ot_-{-llflzt—}-l — Q'TTflzt
a'(TT)_IO;llfl;tH f1.¢

Algorithm: forward pass computes f;, backward pass does f;, b;
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Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

f1:t—+—1 - O"Ot-l-lTTfl:t
Ot—+11f1:t+1 — a'TTflzt
o/ (TH 'O e = fue

Algorithm: forward pass computes f;, backward pass does f;, b,
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True 0.500 f d

False 0.500 e
smoothed
backward

Umbrella | Umbrella,

UNIVERSITAT ZU LUBECK
INSTITUT FUR INFORMATIONSSYSTEME

0.817
0,183
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State View: Hidden Markov models

Set of states:  {s,,5,,...,8}

Process moves from one state to another generating a
sequence of states: 8,,8,5,..-58;,--.

Markov chain property: probability of each subsequent
state depends only on what was the previous state:

P(Sik |Si1?Si29“’9Sik—1) — P(Sik |Sik—1)

States are not visible, but each state randomly
generates one of M observations (or visible states)

Vi VayeunsVy

RSI
44444
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State View: Hidden Markov models

To define a hidden Markov model, the following
probabilities have to be specified:
Matrix of transition probabilities A=(a;), aj= P(s;| si) ,

Matrix of observation probabilities B=(b; (v, )),
bi(vim) =P(vi| s) and a

. Vector of initial probabilities n=(m;), 7 =P(s;) .

Model is represented by M=(A, B, ).

RSI
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Example of Hidden Markov Model

UNIVERSITAT ZU LUBECK
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State View: Learning problem (1)

Given some training observation sequences

0=0,0,... 0, and general structure of HMM (numbers
of hidden and visible states), determine HMM

parameters VI=(A, B, 1) that best fit training data,
that is maximizes P(O | M) .

RSI
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State View: Learning problem (2)

If training data has information about sequence of hidden
states, then use maximum likelihood estimation of parameters:

Number of transitions from state S;to state S,

a,=P(s| s) =
Number of transitions out of state S.

Number of times observation V,, occurs in state S;

bi(v.)=P(v.| s)=

Number of times in state S,

Otherwise: Use iterative expectation-maximization algorithm
to find local maximum of P(O | M): Baum-Welch Algorithm.

ERLY: S UNIVERSITAT ZU LUBECK
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Baum-Welch algorithm

General idea:

Expected number of transitions from state S;to state S,

d;= P(Sj‘ S) =

Expected number of transitions out of state S,

Expected number of times observation V,, occurs in state S;

b(v.)=P(v.|s)=

Expected number of times in state S,

.= P(s) = Expected frequency in state S, at time k=1.
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Baum-Welch algorithm: Expectation step(1)

Define variable E.,k(i,j) as the probability of being in state S, at
time k and in state S, at time k+1, given the observation

sequence O,0,... O; withk<T
&k(ilj) — P(qk: Si J qk+1: Sj ‘ 01 02 cee OT)

£ - P(Qk=Si , Qk+1=Sj , 01 03 ... O7)
e P(O1 05 ... O7)

P(qk= Si ,0105...0K) ; b,(0..) P(Oks2 ... OT | Aiz1=Sj)
P(o;0,... O7)

o forward,i a, b,(0...) backward,..;)

RSI
GERSIZ,

JJJJJJJ
3858 ¢ INSTITUT FUR INFORMATIONSSYSTEME



Baum-Welch algorithm: Expectation step(2)

Define variable Y,(i) as the probability of being in state S; at

time k, given the observation sequence O, O,... O;.
v0=P(q=s. |0,0,... 0;)

i P(gkz Si, 07 05... O7) )
= P(o;0,... O7)

o forward.q) backward.q

RSI
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Baum-Welch algorithm: Expectation step(3)

We calculated &,i,)=P(Q=5:,qcs=S;|0,0.... O/)
and ()= P(qk= S. |O102... OT)

Expected number of transitions from state S;to state S;=

= Zk &k(irj)

Expected number of transitions out of state S; = 2., 0

Expected number of times observation V, occurs in state S; =
= 2. Y.(i), kis such that O,=Vp,
Expected frequency in state Sjat time k=1: Y,().

RSI
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Baum-Welch algorithm: Maximization step

3 Expected number of transitions from state Sj to state S; Zk ék(i,j)
Expected number of transitions out of state S; Zk yk(l)
b (V ) __ Expected number of times observation Vi, occursin state S; Zk ak(i'j)
i m/J = i : . -
Expected number of times in state S; Zk,ok: Ve yk(i)

= (Expected frequency in state S;at time k=1) = Y, (.
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GERSIZ,

JJJJJJJ
3858 ¢ INSTITUT FUR INFORMATIONSSYSTEME



DBN - Special Cases

« Hidden Markov Model (HMMs):

Temporal probabilistic model in which the state of the process
is described by a single discrete random variable. (The simplest kind of DBN )

« Kalman Filter Models (KFMs):

Estimate the state of a physical system from noisy observations over time.
Also known as linear dynamical systems (LDSs).
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Kalman Filters

Modelling systems described by a set of continuous variables,
e.g., tracking a bird flying—X, =X, Y. Z. X.Y. Z.

Airplanes, robots, ecosystems, economies, chemical plants, planets, . ..
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Updating Gaussian Distributions

Prediction step: if P(X;|e;.;) is Gaussian, then prediction
P(Xii1]ers) = /x (Xip1|xe) P(x¢|er.) dxq

is Gaussian. If P(X,,{|e;) is Gaussian, then the updated distribution
P(Xtt1lerit1) = aP(er1|Xer1)P (X1 er)

is Gaussian

Hence P(X,|ey) is multivariate Gaussian N (g, > ) for all

General (nonlinear, non-Gaussian) process: description of posterior grows
unboundedly as t — ~
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Simple 1-D Example

Gaussian random walk on X -axis, s.d. o,, sensor s.d. o.

llpsq = (Ut? +203)3’t+1 + a?lut l? . (02‘2 + 0%)(73
of + oz + 0% o} 024 o2
0.45 -
04 f |
0.35 " |
03 F ' ':.: P(x11z1=2.5) |
< 051 Px0) // \ 1 z1:first observation
R 02 r /',.' :;"".,\ |
0.15 - Ifﬁx |
0.1 P(xl)/,f’.?j’ F " |
0.05 | / : |
0 I M _—
8 6 4 2 0 P

X position

RST
sssss
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General Kalman Update

Transition and sensor models:

P(x¢1|xe) = N(Fxy, 3p)(x¢41)
P(z:x;) = N(Hxy, X.)(z) Left for your studies

F' is the matrix for the transition; 2., the transition noise covariance
H is the matrix for the sensors; >.. the sensor noise covariance

Filter computes the following update:

pen = Frg+Kii(z — HFE )
Y = (I- Kt+1)(F2tFT + ;)

where K1 = (FXF' + X, H'(H(FX,F' + 3, H' + X,)!

is the Kalman gain matrix

>.; and K, are independent of observation sequence, so compute offline
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2-D Tracking: Filtering

2D filtering
12
—8—  true
+ observed
il /\ -x---filtered
J
I / "
/‘\ ' ? I’I 1
{0
|‘I "
10 |
|
.I
I\ ,‘1
> 9f
8 -
7 =
6 1 1 1 1 1 1 1 1 ]
8 10 12 14 16 18 20 22 24 26
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2-D Tracking: Smoothing

2D smoothing
12
—a—  true
* observed
i ==+ smoothed
I/\' . *
f X| \ -
> | xB— - .
1o Lot (x)@ N B
> 9r *
8_
A
7F { |
®
\ ."
\
6 1 1 1 1 1 1 1 1 ]
8 10 12 14 16 18 20 22 24 26
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Where it breaks

Cannot be applied if the transition model is nonlinear

Extended Kalman Filter models transition as locally linear around x; = p,
Fails if systems is locally unsmooth

Standard solution: switching Kalman filter

] 1

Keeping track of many objects: Identity uncertainty

IM FOCUS DAS LEBEN 117




RSI
GERSIZ,

Web-Mining Agents

Probabilistic Reasoning over Sequential Structures

Prof. Dr. Ralf Moller
Universitat zu Lubeck
Institut fir Informationssysteme

Tanya Braun (Ubungen)
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DBNs vs. HMMs

Every HMM is a single-variable DBN; every discrete DBN is an HMM

/; N

s
) NSt

Consider the transition model
Sparse dependencies = exponentially fewer parameters;

e.g., 20 state variables, three parents each
DBN has 20 x 2°= 160 parameters, HMM has 22" x 22 ~ 101?
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Learning (1)

- The techniques for learning DBN are mostly straightforward extensions of the
techniques for learning BNs

- Parameter learning
— The transition model P(X; | X,;) / The observation model P(Y, | X,)
— Offline learning
- Parameters must be tied across time-slices

- Theinitial state of the dynamic system can be learned independently of the
transition matrix

— Online learning
- Add the parameters to the state space and then do online inference (filtering)
— The usual criterion is maximum-likelihood(ML)

- The goal of parameter learning is to compute
- 0", =argmaxgP( Y| 6) = argmaxglog P( Y| 6)
0" \ap = argmaxglog P( Y| 8) + logP(0)
— Two standard approaches: gradient ascent and EM(Expectation Maximization)

E}“&%ﬁ@; UNIVERSITAT ZU LUBECK
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Learning (2)

. Structure learning
— Intra-slice connectivity: Structural EM

— Inter-slice connectivity:
For each node in slice t, we must choose its parents from slice t-1

— Given structure is unrolled to a certain extent,
the inter-slice connectivity is identical for all pairs of slices:

« Constraints on Structural EM
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Constructing Dynamic Bayesian Networks

X;, E; contain arbitrarily many variables in a replicated Bayes net

P(R,)

P(Ro_)

P

Battery-powered robot on x-y plane
X, = (X, Yy, Z, = measurements
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DBNs transient failure

For simplicity we assume that BMeter, and Battery, are taken from 0..5.

E(Battery, |...5555005555...)

5
4 4
€3 ¢
g g
3 2 :§
Q )
| 4
0 J K= Ko K=K KoK= KX M =X
E(Battery, 1...5555000000...)
-1 . . v T
15 20 25 30
Time step ¢
(a)

Generic gaussian error model
produces “overreaction”

qqqqqq
“

]

B ai% %

H Mg\f{ﬂ%; UNIVERSITAT ZU LUBECK

B INSTITUT FUR INFORMATIONSSYSTEME

| E(Battery, )...5555003555...)

5
4 A \
X
3 1 \
2 !
[ '
0 - T M- - K- 2 X=X
E(Bartery, 1...5555000000...)
-1 v T T T
15 20 25 30
Time step
(b)

Explicit transient failure model required:

P{BMeter; = 0|Baittery; =5) =0.03
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DBNs persistent failure

B, | P(B)
t 1.000
f | 0.001

Additional variable required: BMBroken,

“
[ S UNIVERSITAT ZU LUBECK
INSTITUT FUR INFORMATIONSSYSTEME

E(Battery)

E(Battery, |...5555005555...)

5 H_*H+*—*W—|—'—|—’—-+—P—f—+——'—
=¥~
iy T VA
i VN

i K3
= E(Battery, |...5555000000..)

2 4
P(BMBroken, |...5555000000...)
1 o P‘N-Ei"E'"E“'B"El--B“E]"-EI-"E"EJ

0 B8 58 85588 3N - M- K- K- K K K N K

P(BMBroken, |...5555005555...)

20 25 30
Time step

(b)

15

Upper curve: transient failure
with different observation sequences

Lower curve: persistent failure
with two different observation sequences

IM FOCUS DAS LEBEN 124




Learning DBN pattern structures?

. Difficult
- Need “deep” domain knowledge
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Recap: Exact Inference in DBNs

Naive method: unroll the network and run any exact algorithm for the whole BN

- L. B - 53 g L R 53 L L% RLY 53 niaa TS 3 = AT
== om P 3 e PO 33 v O 3 v OO 33 v O 32 v PO i SO 4 OO
Raix,, Raix | Raix Rain | Rain,, Raing Rain, Rain g --w Rain ;s'—:“ Rain: n \
S B LY T B LY 2 K L SWteans 'i-rw‘-
: av i [ : av ) [ 3] : av L) [ ‘-'L lr [] -‘-— []
e i e ki e ki -‘_é-._x.'_. ) E:_y._.
Umbrelia | ila o Umbrelia "y o7 Umbrella, ™)

~
-------------

Problem: inference cost for each update grows with #
Rollup filtering: add slice # + 1, “sum out” slice # using variable elimination

Largest factor is O(d""!), update cost O(d"?)
(cf. HMM update cost O(d*"))

Example:
d = possible values for variables 20 state variables with 4 values each
n = number of states means 4201 =4.398.046.511.104

Employ forward chaining (constant per time update but exponential
in the number of variables per state)
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Inference: Algorithms

- Exact Inference algorithms
— Forwards-backwards smoothing algorithm (on any discrete-state DBN)
— Kalman filtering and smoothing (for continuous variables)

— The Frontier Algorithm (sweep a Markov blanket, the frontier set F, across
the DBN, first forwards and then backwards)

— The Interface Algorithm (use only the set of nodes with outgoing arcs to the
next time slice to d-separate the past from the future)

- Approximate algorithms:
— The Boyen-Koller (BK) algorithm (approximate the joint distribution over the
interface as a product of marginals)
— Factored Frontier (FF) Algorithm / Loopy propagation algorithm (LBP)
— Stochastic sampling algorithm:
 Importance sampling or MCMC (offline inference)

- Particle filtering (PF) (online)

RSI
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Approximate inference in DBNs

Central idea:

Create N initial-state examples (from prior dist P(X,))

Based on the transition model, each sample is
propagated forward by sampling the next state value
X.,; given the current value x;,

Each sample is weighted by the likelihood it assigns to
the new evidence P(e,,, | X;,+)

Resample to generate new population of N samples
Select new sample based on its weight

Samples are called particles (= Particle Filtering)

RSI
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Particle Filtering

Basic idea: ensure that the population of samples ( “particles” )
tracks the high-likelihood regions of the state-space

Replicate particles proportional to likelihood for e;

Rain, Rain, Rain, 4 Rain, ,;
f L 1 11 00 ce e ®
rue 0000 00 L ®
o [ 1 ] o0 2838
false c ca o0 YY)
(a) Propagate (b) Weight (c) Resample

Widely used for tracking nonlinear systems, esp. in vision

Also used for simultaneous localization and mapping in mobile robots
10°-dimensional state space
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Example

R, | P(RIR.) N(r.,,|e) =2 " P(X.1[xy) N(x|e)
¢ |os For rain = 0.7*8+0.3%*2=6.2 => 6
For notrain=0.3*8 + 0.7¥2=3.8=>4

Umbrelie Suppose no umbrella for t+1
R PUR) total weight(rain particles) =0.1 * 6= 0.6
F_ o2 total weight(not rain) = 0.8 * 4= 3.2

Normalized =<0.17, 0.83>

2 %
s )
ARG TINGG, =
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Particle Filtering

function PARTICLE-FILTERING(e, N, dbn) returns a set of samples for the next time step
inputs: e, the new incoming evidence
N, the number of samples to be maintained
dbn, a DBN with prior P(X), transition model P(X;|Xj), sensor model P(E; |X;)
persistent: S, a vector of samples of size NV, initially generated from P(X)
local variables: W, a vector of weights of size N

for:=1to N do
S[i] < sample from P(X; | Xo= S[i]) /*step 1 */

Wil —P(e| X; = S[i]) /* step 2 */
S «— WEIGHTED-SAMPLE-WITH-REPLACEMENT(N, S, W) [* Step 3 %
return S
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Particle Filtering (cntd.)

Assume consistent at time t: [N (x¢|e1.) /N = P(x¢|e.)

Propagate forward: populations of x;. are
N(Xt+1|91:t) = Extp(xt—l-l|Xt)j\"r(xt|el:t)

Weight samples by their likelihood for e;.1:

I"'}['“"'(Xt+1|elzt+l) = P(et+1|Xt+1)N(Xt+1|el:t)

Resample to obtain populations proportional to 11

1'\"7(Xt+1‘el;t+1)/f\"? = O'I"J[’Y(Xt-{-l’el:t-i-l) - afp(et-i-l‘Xt‘i'l)j\r(xt‘*'l‘el:t)
= Q'P(et+1|Xt+1)2xtp(xt+1|Xt)N(Xt|el=t)

= 0',P(et+1|Xt+1)2xtp(xt+l|xt)P(Xt|elzt)

- P(Xt+1|elzt+l)
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Summary

Temporal models use state and sensor variables replicated over time

Markov assumptions and stationarity assumption, so we need
— transition modelP (XX, ;)
— sensor model P(E;|X;)

Tasks are filtering, prediction, smoothing, most likely sequence;
all done recursively with constant cost per time step

Hidden Markov models have a single discrete state variable; used
for speech recognition

Kalman filters allow 7 state variables, linear Gaussian, O(n*) update
Dynamic Bayes nets subsume HMMs, Kalman filters; exact update intractable

Particle filtering is a good approximate filtering algorithm for DBNs
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HMM-LDA

§ PN Mediidanonssvsewe Integrating topics and syntax. In Proc. of NIPS'04, pp. 537-544. 2004.

In traditional topic modeling, such as LDA, we
remove most syntactic words (e.g., stopwords)
since we are only interested in meaning.

In doing so, we discard much of the structure, and
all of the order the original author intended.

In topic modeling, we are concerned long-range
topic dependencies rather document structure.

Thomas L. Griffiths, Mark Steyvers, David M. Blei, and Joshua B. Tenenbaum. 134



Introduction

- HMMs are useful for segmenting documents into different
types of words, regardless of meaning.

- For example, all nouns will be grouped together because
they play the same role in different passages/documents.

- Syntactic dependencies last at most for a sentence.

- The standardized nature of grammar means that it stays
fairly constant across different contexts.

JJJJJJJ
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Combining syntax and semantics 1

- All words (both syntactic and semantic) exhibit short range
dependencies.

« Only content words exhibit long range semantic
dependencies.

« This leads to the HMM-LDA.

- HMM-LDA is a composite model, in which an HMM decides
the parts of speech, and a topic model (LDA) extracts topics
only those words which are deemed semantic.
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Generative Process 1

Definitions
Words w = {w,...,w,} form document d where each word w; is one of W words
Topic assignments z = {z1,...z,} foreach word, where each ~; taking one of T topics
Class assignments ¢ = {c1, ..., ¢, }for each word, where each ¢; taking one of C word classes

g(d) Multinomial distribution over topics for document d

¢'*) Multinomial distribution over semantic words for topic indicated by z.

»'°) Multinomial distribution over non-semantic words for class indicated by class c.
7(¢i—1) Transition probability from¢;—1 to ¢;

?{@&@ff; UNIVERSITAT ZU LUBECK
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Generative Process 2

§(d) ~ Dirichlet(c)
¢*) ~ Dirichlet(3)
7 ~ Dirichlet(y) Wherez
#(¢) ~ Dirichlet(5)

" is the row of the transition matrix indicated by c.

For document d
Draw topic

distribution > 1+ Sample 0D from a Dirichlet(a) prior

2. For each word w; 1n document d
Drawatopic .+ (a) Draw z; from §'®
for word i (b) Draw ¢; from 7'—1)

Draw a class for / (C) If Ci = 1 then draw wWq from C’)(z") . else draw wj from ¢(Ci)

dif y
wordtifrom Semantic class
transition matrix
Draw a semanticword ~ OR  Draw a syntactic word
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Graphical Model 1

(z) (2) LDA

Q @ . HMM
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Simple Example 1

(b) :
Semantic Class
C o0s 0.4 0.1 L
- network vocd [0 images

network image kernel

meural images support image obtained with kemel

networks object Vector

ourput objects e output described with objects

: neural network rained vl svm images
trainad
obtained
Preposition class Verb Class

- The HMM allocates words which vary across context to the

semantic class, since grammar is fairly standardized but
content is not.
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Model Inference 1

MCMC inference

Topic indicators

P(zi|lz_i,c,w) P(zi|z_;) P(w;|z,c,w_;)
(di) , _
KN as oLy
(nz" + ) n(zi) +W 3 ’
(d;)

Nz, isthe number of words in document  (/,signed to topic z;

ngfj) is the number of words in topic z; that are the same as w;

All counts include only words for which ¢; = land exclude word %

xxxxxx
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Model Inference 2

Class indicators

P(cilc_j,z,w) < P(w;|c,z,w_;) P(cile_;)
[ nl4s (el TV ) (S I (cima=ei) I (ei=ciq1)+7)
. ""I+H B . '“’+I(¢,_1—o )+ Cy
nul"+;3 (ne," ™ V) (nl +1+I(L,_l_¢ )-I(ci=cit1)+Y)
L RV wps LV 4 T (eim1=ci)+Cy

( 1;) : :
nz; " is the number of words in document (/. signed to topic %
n E;‘ ) is the number of words in topic ~ ;1at are the same as w;
,,,gz—j-; ) is the number of words in class  ¢;iat are the same as w;
nffj“‘ 1) is the number of transitions from class  ¢;_1:lass C;i

I(-) is an indicator variable which equals 1 if argument is true

All counts exclude transitions to and from  ¢;

WA & UNIVERSITAT ZU LUBECK
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Extreme Cases 1

. If we set the number of semantic topics to T =1, then the
model reduces to an HMM parts of speech tagger.

. If we set the number of HMM classes to C = 2, where one
state is for punctuation, the the model reduces to LDA.

JJJJJJJ
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Results 1

Brown + TASA corpus: 38,151 documents; Vocab Size = 37,202;
number of word tokens = 13,328,397 words

the the the the the a the the the
blood . , of a the . .
) and and , of of of a a
of of of to . , a of m
body 2 in in in in and and zame  LDA only
heart m land and to water n drink ball
and trees to classes picture 1S story alcohol and
m tree farmers  govemment film and is to team
to with for a Image matter to bottle to
15 on farm state lens are as m play
blood torest farmers — government hght water story drugs ball
heart trees land state eye matter stones drug game
pressure forests crops federal lens molecules poem alcohol team
Y land farm public image liquid characters people *
hmgs soil food local nUITOr particles poetry drinking baseball  HMM-LDA Semantic
oxygen areas people act eves gas character person players
vessels park famung states glass sohd author effects football Topics
arteries wildhife  wheat national object substance poems marijuana player
u area farms laws objects  temperature life body field
breathing rain com department  lenses changes poet use basketball
the n e ' be said can fime .
a for it new have made would way :
his to you other see used will years (
this on they first make came could day : _ i
therr with 1 same do went may part ) HMM-LDA Sy ntactic
these at she great know found had number Classes
your we good get called must kind
her from there small go do place
my as this little take have A FOCUS DAS LEBEN

who

old

find

did
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Results 2

NIPS Papers 1713 documents; Vocabulary Size: 17268;
Number of word tokens = 4,321,614

1mage data state membrane chip experts kemel network
Images gaussian policy synaptic analog expert support neural
object mixture value cell neuron gating vector networks
objects likelihood function * dagital hme svm oufput
feature posterior action current synapse  architecture kemels mput .
recognition prior reinforcement dendntic neural nuxture = fraining SyntaCtIC Words

Views distmbution leaming potential hardware learming space mputs

= em classes neuron weight mixtures function  weights

pixel bayesian optimal conductance = function machines #
visual parameters * channels visi zate set outputs

n 13 see used moael Works however #

with was show raimed algonithm values also *

for has note obtamned system results then 1

on becomes consider described case models thus X

from denotes assume given problem  parameters  therefore t .

at being present found network units first n  Semantic Words
using remains need presented method data here -

mto represents propose defined approach functions now c

over exists describe generated paper problems hence r
within seems suggest shown process algonthms finally p

RST
\\\\\

S UNIVERSITAT ZU LUBECK
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Results 2 (cont'd)

NIPS Papers 1713 documents; Vocabulary Size: 17268;
Number of word tokens = 4,321,614

network activity smgle cell
mput resistance time and space constants !
{ excitability 117 spaniotemporal (sic) integration
integrated architecture feed forward | control error feedback adaptive
control neural networks
proof of convergence softassign algonithm a doubly
stochastic matnx matrx
3 doubly stochastic metTic
portfolio expected | retum nisk level time
honzon ' *mstitutional or *legally required
right 2 fraining # samples
3.
graph | G *guest | graph H | e host | graph

Black words are semantic, Graylevel words are syntactic. Boxed words are semantic on
one passsage and syntactic in another. Asterisked words have low frequency and not

considered.
j ;5, UNIVERSITAT ZU LUBECK IM FOCUS DAS LEBEN
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Results 3

Log Marginal probabilities of the data

log P(w)
grown log P(w) Brown=TASA

-de+06 -4e:07 1
3 Composite v Composite
8 -4.52+06} 8 —sesc7|
- -
. S52+06 » ge+l7
?-:;50- pﬁ-’-?.
"\q $.52+406 g 7e+07

-62+06 -3e+07

1t 2nd 3rd 18t 2nd 3rd st 2ng 2rd st 2ng 3rg

Figure 5: Log margimal probabilities of each corpus under different models.

Labels on
horizontal axis indicate the order of the HMM.
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Results 4

Parts of speech tagging
Black bars indicate performance on a fine tagset (297 word types), white bars indicate
performance on coarse tagset (10 word types).

e
o
-
|
]

1st 2nd 3d 1st 2nd 32rd i1st 2nd 3rd 1st 2nd 3rd

Srown Brown+TASA Brown Brown+TAS

HMM Composite Model
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Conclusion

- HMM-LDA is a composite topic model which considers both
long range semantic dependencies and short range
syntactic dependencies.

- The modelis quite competitive with a traditional HMM parts
of speech tagger, and outperforms LDA when stopwords
and punctuation are not removed.

JJJJJJJ
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Dynamic Topic Models

 In LDA the order of documents does not matter

- Not appropriate for sequential corpora (e.g., that span hundreds of years)
- Further, we may want to track how language changes over time

- Let the topics driftin a sequence.

1789 2009

Inaugural addresses
My fellow citizens: I stand here today humbled by the task AMONG the vicissitudes incident to life no event could
before us, grateful for the trust you have bestowed, mindful have filled me with greater anxieties than that of which
of the sacrifices borne by our ancestors... the notification was transmitted by your order...

David M. Blei and John D. Lafferty. Dynamic topic models.
In Proc. ICML '06. pp. 113-120. 2006. 150




Recap: Smoothed LDA Model

« Give a different word distribution
@ to each topic

— [ is KXV matrix (V vocabulary
@ size), each row denotes word
distribution of a topic

« For each document d
— Choose 0, ~ Dirichlet(- | o)
— Choose [~ Dirichlet(n- |)
By, — Foreach positioni=1, .., N

=
=X

. Generate a topic z, ~ Mult(- | 6)

Z,By)

 Generate a word w; ~ Mult(:

qqqqqqq
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Bk,

Topics drift through time



Dynamic Topic Models

Brk,1 Bk Bk,
Q =© - :O

- Use a logistic normal distribution to model topics
evolving over time

- Embed it in a state-space model on the log of the topic
distribution

Bkl Bi—1ix ~ N(Bt=1x 10°)
p(wlBik) o< expiBik}

. Lets us make inferences about sequences of documents

\/
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Logit Normal Distribution

The probability density function (PDF) of a logit-normal
distribution, for 0 = x <1, is:

1 1 _ (logit(x)—p)?
T, o) = e 202

where u and o are the mean and standard deviation of
the variable’s logit (by definition, the variable’s logit is
normally distributed).

| I - X
6 f{x)—ﬂog Tex
4 /
2 P
___—
—T
0 0.2 0.6 08 | 1.0
B
yd
_4l/
-6

Plot of logit(p) in the domain of 0 to 1, where the base of =~
logarithm is e

UNIVERSITAT ZU LUBECK
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o
sigma
— 0.32
— 0.56
— 1
— 1.78
— 3.16
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Dynamic Topic Models

Original article

TECHVIEW: DNA SEQUENCING

Sequencing the Genome, Fast

James C. Mullikin and Amanda A. McMurray

enome sequencing projects reveal
the genetic makeup of an organism
by reading off the sequence of the
DNA bases, which encodes all of the infor-
mation necessary for the life of the organ-
ism. The base sequence contains four nu-
cleotides—adenine. thymidine, guanosine,
and cytosine—which are linked together
into long double-helical chains. Over the

ety of genomes, including 81 Mb of se-
quence from the human genome, the
largest amount of any ct 5o far (3). We
are aiming to sequence 1 Gb of human se-
quence in rough-draft form by 2001, with
a finished version by 2003, Our sequenc-
ing equipment includes 44 ABI 373XL, 61
ABI 377XL, and 31 ABI 377XL-96 slab
el sequencers from Perkin-Elmer plus 6

last two decades, DNA se-
quencers have made the process of obtain-
ing the base-by-base sequence of DNA
casier. By application of an clectric ficld
across a gel mainix, these

MegaBACE 1000
capillary sequencers, allowing a maximum
throughput of 32,000 samples per day. Two
ABI 3700 capillary sequencers—delivered

TECH.SIGHT

ples from the plates into wells that open in-
to the capillaries. This and the rest of the
sequencing operation is fully automatic.
The machine can currently process four
96-well plates of DNA samples unattended,
taking approximately 16 hours before oper-
ator intervention is required. This rate falls
short of the design specification of four
96-well plates in 12 hours.

“The main innovation of the ABI 3700 is.
the use of a sheath flow fluorescence detec-
tion system (4). Detection of the DNA frag-
ments occurs 300 jim past the end of the cap-
illary within a fused silica cuvette. A laminar
fluid flows over the ends of the capillaries,
drawing the DNA fragments as they emenge
ries through a fixed Jaser

detected with a spectral CCD (charge-cou-
pled device) detector. This arrangement
means that there are no moving parts in the
detection system, other than a shutter in front
of the CCD detector,

sepa-
rate fluorescently labeled DNA molecules
that differ in size by one base. As the
molecules move past a given point in the
gel. laser excitation of a fluorescent dye
specific to the base at the end of the
molecule yields a base-specific signal that
can be automatically resorded.

The latest sequencer to be launched is
Perkin-Elmer's much-anticipated ABI
Prism 3700 DNA Analyzer which, like the
Molecular Dynamics MegaBACE 1000
launched last year. incorporates a capillary
tube to hold the sequence gel rather than a
traditional slab-shaped gel apparatus. Extra
interest in the ABI 3700 has been generat-
ed because Craig Venter of Celera Ge-
nomics Corporation anticipates that ~230
of these machines (/) will enable the com-
pany to produce raw sequence for the en-
tire 3 gigabases (Gb) of the human genome
in 3 years. The specifications of the ABI
3700 machine say that, with less than |
hour of human labor per day, it can se-
quence 768 samples per day. Assuming
that each sample gives an average of 400
base pairs (bp) of usable sequence data (its
read length) and any section from the en-
tire human genome is covered by an aver-
age of 10 overlapping independent reads
(2), the 75 million samples that Celera
must process will require ~100,000 ABI
3700 machine days. With ~230 machines,
that works out to less than 2 years or about
434 days, which affords some margin of er-
ror for unexpected developments

At the Sanger Centre, we have finished
146 Mb of genomic sequence from a vari-

The suthers oo at The Songer Contre. Wekcome
Compen, Midca, Cande. COY0 15
o !Mpm

www sciencemagorg  SCIENCE  VOL 283 19 MARCH 1999
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We have evaluated these ma-
chines for their performance, op-
eration, case of use, and reliabili-
ty in comparison to the more
commonly used slab gel se-
quencing machines. In automat-
ed sequencers, there are two
methods for containing the gel
matrix. One is to polymerize a
gel matrix between two finely

ed glass plates (0.4 mm or

© e w e wm wm w | less)the slab gel method. The
other is to inject a polymer ma-

Fig. 1. Comparison of read-length histograms for se-
quences collected wit) machine and
the ABI 377X1-96 slab gel machine. The capillary machine
under-performs the stab gel machine by about 200 bases.

ABI 3700 capillary

trix into a capillary (internal di-
ameter <0.2 mm). Most sequenc-

Both sets of reads are from runs with ABI Big Dye Termina-  sequencers have only rtccmly
tor chemistries. Read length is computed as the number of  become wmmm-lly available

per read where the predicted error rate is less thanor  With ¢i
.quuwu(ozzo)m “phred” Q value was recali-  the aim

beated for each type of read.

to the Sanger Centre in December 1998—
are in our Research and Development de-
partment for evaluation. Thus, the ABI
3700 will ultimately be added to our pres-
ent capacity to reach our goal.

The ABI 3700 DNA sequencer is built
into a floor-standing cabinet, which con-
tains in its base all the reagents required
for its operation. The reagent containers are
readily accessible for replenishment, which
is required every day under high-through-
put operation. At bench height within the
cabinet is a four-position bed. on which mi-
crotiter plates of DNA samples are located.
The operator places the prepared plates in-
to position, closes the front of the machine
and programs it by using a personal com-
puter. A robotic arm transfers DNA sam-

INSTITUT FUR INFORMATIONSSYSTEME

ible for a given sample of
DNA-—that is, long read lengths
are desirable. In fact, a system that could
read twice as many bases but at half the
speed of another system is preferable, if
both systems cost the same. This is be-
cause assembling relatively fewer long-se-
quenced fragments is easier than assem-
bling many short ones. So, read length is
an important parameter when evaluating
new sequencing technologies.

We have directly compared the ABI
3700 sequencer to the ABI 377XL slab gel
sequencer by evaluating the sequence data
obtained from both machines with human
DNA samples. These samples were sub-
cloned into plasmid or m13 phage and pre-
pared and sequenced with our standard
protocols for Perkin-Elmer Big Dye Ter-
‘minator chemistry.

1867

Topic proportions

o BK0 bl
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Dynamic Topic Models

Original article

TECHVIEW: DNA SEQUENCING

Sequencing the Genome, Fast

James C. Mullikin and Amanda A. McMurray

enome sequencing projects reveal

the genetic makeup of an organism

by reading off the sequence of the
DNA bases, which encodes all of the infor-
mation necessary for the life of the organ-
ism. The base sequence contains four nu-
cleotides—adenine, thymidine, guanosine,
and cytosine—which are linked together
into long double-helical chains. Over the
last two decades, DNA se-

ety of genomes, including 81 Mb of se-
quence from the human genome, the
Jargest amount of any center so far (3). We
are aiming 0 sequence | Gb of human se-
quence in rough-draft form by 2001, with
a finished version by 2003, Our sequenc-
ing equipment includes 44 ABI 373XL, 61
ABI 377XL, and 31 ABI 377XL-96 slab
gel sequencers from Perkin-Elmer plus 6

quencers have made the process of obtain-
ing the base-by-base sequence of DNA
casier. By application of an electric field
across a gel matrix, these sequencers sepa-
rate fluorescently labeled DNA molecules
that differ in size by one base. As the
molecules move past a given point in the
gel, laser excitation of a fluorescent dye
specific to the base at the end of the
molecule yields a base-specific signal that
can be automatically resorded.

The latest sequencer to be launched is
Perkin-Elmer's much-anticipated ABI
Prism 3700 DNA Analyzer which, like the
Molecular Dynamics MegaBACE 1000
launched last year, incorporates a capillary
tube to hold the sequence gel rather than a
traditional slab-shaped gel apparatus. Extra
interest in the ABI 3700 has been gener:
ed because Craig Venter of Celera Ge-
nomics Corporation anticipates that ~230
of these machines (/) will enable the com-
pany to produce raw sequence for the en-
tire 3 gigabases (Gb) of the human genome
in 3 years. The specifications of the ABI
3700 machine say that, with less than |
hour of human labor per day, it can se-
quence 768 samples per day. Assuming
that each sample gives an average of 400
base pairs (bp) of usable sequence data (its
read length) and any section from the en-
tire human genome is covered by an aver-
age of 10 overlapping independent reads
(2), the 75 million samples that Celera
must process will require ~100,000 ABI
3700 machine days. With ~230 machines,
that works out to less than 2 years or about
434 days, which affords some margin of er-
ror for unexpected developments.

At the Sanger Centre, we have finished
146 Mb of genomic sequence from a vari-

The authors are at The Sanger Centre, Wellcome
ambs, C810 15A,

wwwsciencemag.org  SCIENCE  VOL 283 19 MARCH 1999
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MegaBACE 1000
capillary sequencers, allowing a maximum
throughput of 32,000 samples per day. Two
ABI 3700 capillary sequencers—delivered
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Fig. 1. Comparison of read-length histograms for se-
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ples from the plates into wells that open in-
to the capillaries. This and the rest of the
sequencing operation is fully automatic.
The machine can currently process four
96-well plates of DNA samples unattended,
taking approximately 16 hours before oper-
ator intervention is required. This rate falls
short of the design specification of four
96-well plates in 12 hours.

The main innovation of the ABI 3700 is
the use of a sheath flow fluorescence detec-
tion system (4). Detection of the DNA frag-
ments occurs 300 pum past the end of the cap-
illary within a fused silica cuvette. A laminar
fluid flows over the ends of the capillaries,
drawing the DNA fragments as they emenge
from the capillarics through a fixed laser
beam that simultancously intersects with all
of the samples. The emitted fluorescence is
detected with a spectral CCD (charge-cou-
pled device) detector. This arrangement
means that there are no moving parts in the
detection system, other than a shutter in front
of the CCD detector.

We have cvaluated these ma-
chines for their performance, op-
eration, case of use, and reliabili-
ty in comparison to the more
commonly used slab gel se-
quencing machines. In automat-
ed sequencers, there are two
methods for containing the gel
matrix. One is to polymerize a
gel matrix between two finely
separated glass plates (0.4 mm or
we  we|  less) ~the slab gel method. The
other is to inject a polymer ma-
trix into a capillary (internal di-

quences collected with the ABI 3700 capillary machine and  Ameter <0.2 mm). Most sequenc-
the ABI 377XL-96 slab gel machine. The capillary machine N8 facilities use the slab gel

under-performs the stab gel machine by about

200 bases, Method, because multic

illary

Both sets of reads are from runs with ABI Big Dye Termina-  sequencers have only recently
tor chemistries. Read length is computed as the number of  become commercially available.

bases per read where the predicted error rate is
equal to 1.0% (Q = 20). The “phred” Q value
beated for each type of read.

to the Sanger Centre in December 1998—
are in our Research and Development de-
partment for evaluation. Thus, the ABI
3700 will ultimately be added to our pres-
ent capacity to reach our goal

The ABI 3700 DNA sequencer is built
into a floor-standing cabinet, which con-
tains in its base all the reagents required
for its operation. The reagent containers are
readily accessible for replenishment, which
is required every day under high-through-
put operation. At bench height within the
cabinet is a four-position bed, on which mi-
crotiter plates of DNA samples are located.
The operator places the prepared plates in-
to position, closes the front of the machine
and programs it by using a personal com-
puter. A robotic arm transfers DNA sam-
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less than or With cither type of system,
was recali-  the aim is to read as many bases
as possible for a given sample of
DNA—that is, long read lengths
are desirable. In fact, a system that could
read twice as many bases but at half the
speed of another system is preferable, if
both systems cost the same. This is be-
cause assembling relatively fewer long-se-
quenced fragments is easier than assem-
bling many short ones. So, read length is
an important parameter when evaluating
new sequencing technologies.

We have directly compared the ABI
3700 sequencer 1o the ABI 377XL slab gel
sequencer by evaluating the sequence data
obtained from both machines with human
DNA samples. These samples were sub-
cloned into plasmid or m13 phage and pre-
pared and sequenced with our standard
protocols for Perkin-Elmer Big Dye Ter-
minator chemistry.

1867

Most likely words from top topics

sequence
genome
genes

sequences

human
gene
dna

sequencing
chromosome

regions
analysis
data
genomic
number

devices
device
materials
current
high

gate

light
silicon
material

technology

electrical
fiber
power
based

data

information

network
web
computer
language
networks
time
software
system
words
algorithm
number
internet
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Dynamic Topic Models

(1880 ) (1890 ) (1900 ) (1910 ) (1920 ) (1930 ) (1940 )
electric electric apparatus air apparatus tube air
machine power steam water tube apparatus tube
power company power engineering air glass apparatus
engine steam engine apparatus pressure air glass
steam —»| electrical —»| engineering —» room —»| water —»| mercury —»| laboratory

two machine water laboratory glass laboratory rubber
machines two construction engineer gas pressure pressure
iron system engineer made made made small
battery motor room gas laboratory gas mercury
wire engine | feet ) (| tube ) mercury small gas
v
(1950 ) ( 1960 ) ( 1970 ) ( 1980 | ( 1990 ) ( 2000 )
tube tube air high materials devices
apparatus system heat power high device
glass temperature power design power materials
air air system heat current current
chamber —» heat —» temperature | system | applications gate
instrument chamber chamber systems technology high
small power high devices devices light
laboratory high flow instruments design silicon
pressure instrument tube control device material
( rubber J | control J | design J | large ) | heat ) | technology )
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Dynamic Topic Models

"Theoretical Physics" "Neuroscience"”

OXYGEN

1880 1900 1920 1940 1960 1980 2000 1880 1900 1920 1940 1960 1980 2000

Wang, Chong; Blei, David; Heckerman, David. "Continuous Time
VNSRS NS amonssvsreme Dynamic Topic Models". Proceedings of ICML'08, 2008. IM FOCUS DAS LEBEN 158




Dynamic Topic Models

Time-corrected similarity shows a new way of using the
posterior.

- Consider the expected Hellinger distance between the topic
proportions of two documents,

K
dij=E Z(\/Hi,k - \/9j,k)2 | Wi, w;
k=1

« Uses the latent structure to define similarity

- Time has been factored out because the topics associated to
the components are different from year to year.

- Similarity based only on topic proportions

For two discrete probability distributions P = (p1,...,px) and Q@ = (q1,- - -, qk)
their Hellinger distance is defined as

1 k
H(P,Q) = — J (VP = va&)’,
e V2 \iT

\\\\\\\
3RS »  INSTITUT FUR INFORMATIONSSYSTE
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Dynamic Topic Models

The Brain of the Orang (1880

326 SCIENCE.

THE BRAIN OF THE ORANG*
Y KENRY €. CHAPMAN, M.0.

The brain of the Orang has been figured by Tiede-
‘mann, Sandifort, Schroeder van der Kolk and Vrolik,
Gratiolet, Rolleston, etc.  On account, however, of the
few illustrations extant, and of the importance of the
subject, I aval myself of the opportunity of preseating
several views of my Orang’s brain (Figs. 1 to 5). which
was removed from the skull oaly a few bours after
death. The -t-bnnam-xh»ﬂnuudmga

The
the rostal by the cen
temproal incompltely, by ¢

arated from l:exapuminimm,u,m:mm-
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suing only 3 slightly bac irect
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forward in the Orang than in man. It differentiates the | Pl lobe. a3 mg first uupml (yru.| my it is
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Dynamic Topic Models

Representation of the Visual Field on the Medial Wall
of Occipital-Parietal Cortex in the Owl Monkey (1976

project, the visuotopic organization of the
medial occipital-parictal cortex was ex-
plored with electrophysiological mapping
techniques in five owl monkeys (2). The
monkeys were anesthetized with urethan
and prepared for recording. Tungsten and
platinum-iridium  microclectrodes  were
used to record from small clusters of neu-
rons or occasionally from single necrons in
tangential penetrations parallel to the me-
dial surface of occipital-parictal cortex.
Receplive fields were plotted by moving
circular spots or rectangular slits and bars
on the surface of a translucent plastic
hemisphere ceatered in front of the con:
tralateral eye. The position of the optic
disk was projected onto the plastic hemi-
sphere with the method of Fernald and
Chase (3). The ipsilateral eye usually was

20
o o

Fig. 1. Microelectrod

covered with an opaque shiekd. Electrode
tracks and recording sites were recon-
structed from histological sections and
photographs of the intuct brain.

Figure | illustrates the data from our
most complete mapping of the medial
arca: data obtained in the other four ex-
periments revealed the same pattern of vis-
wotopic organization. Tangeatial penc.
trations 1 through 4 ran parallel 10 the me-
dial surface of occipital-parietal cortex at a
distance of approximately 1 mm from the
medial surface. In previously published ex-
periments, we found that the receptive
fields recorded adjacent 10 the medial area
in the second visual area (V 11) were lo-
cated in the lower quadrant ncar the hori-
zontal meridian abost S0* 10 60" from the
center (4). Thas, as is shown in Fig. 1, and

40" +60°
2205000

60

wor

-20°

—40*

-60°

also in Fig. 2, which illustrates the organi-
zation of the other cortical visual areas
that have been mapped in the owl monkey,
the border between the medial area and the
second vissal area corresponds t0 a periph-
eral portion of the horizontal meridian. In
other experiments in the dorsomedial area,
we found that receplive fields recorded
near its common border with the medial
area began near the vertical meridi-
an in the lower quadrant and proceeded in
2 broad loop in the periphery toward the
horizontal meridian (5). Thus, as is shown
in Figs. 1 and 2. the common border be-
tweea the dorsomedial and the medial
areas corresponds 10 part of the lower fickd
vertical meridian and the peripheral por-
tions of the lower visual quadrant. Dor-
sally. the medial area is adjoined by poste-

for the modial visual area in owl monkey 72-455. The diagram oa the lower left s 3

view of the posterior half of the medial wall of

of the left hemisp th the beaimstem

sal s 10 the left in this dagram,

cles indicate the

removed. Anterior is up and dor-

numbered. an arc indicated by short bars denoted b letters. The corre-

rtical the visual field; the

e fekds are shown in the perimeter chart on the right. In the upper left is an expanded map of the visuotopic organization of the medial

tralateral half of the visual field; the triangles isdicate the temporal periphery of the contralateral hemif
| arca: DM is the dorsomedial visual area. OD indicates the projection of the optic disk or biind spo

13 FEBRUARY 1976
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Dynamic Topic Models: Summary

- The Dirichlet assumption on topics and topic

proportions makes strong conditional independence
assumptions about the data.

- The dynamic topic model uses a logistic normal in a

linear dynamic model to capture how topics change
over time.
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Gartner Hype Cycle
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Gartner Hype Cycle 2015

Advanced Analytics With Self-Senvice Delivery

expectations

Autonomous Vehicles
A Internet of Things
Micro Data Centers :adlho Leaming
Digital Dexterity earadles
Sofware-Defined Security Cryplocurrencies

Consumer 3D Printing

| Newobusinass Natural-Language Question Answerng

Citizen Data Science
Biochips

loT Platform
Connected Home

Affective Computing

SmanRobols

30 Bloprinting Systems lthtosn Transplant
Volumetric Displays

Human Augmentation

Brain-Computer interface

Quantum Computing

Hybrid Cloud Computing

Augmented Reality

Bioacoustic Sensing

ity
| Autonomous Field Vehicles
People-Literate Technology

Digital Security
As of July 2015
Peak of
Innovation T h of Plateau of
Trigger . Inflated Diolatamant Slope of Enlightenment Productivity
time >
Plateau will be reached in: bsolete

Olessthan 2years ©2toSyears @5to10years A morethan 10years @ before plateau
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Gartner Hype Cycle

Cognitive Expert Advisors
expectations . e Machine Learning
" Autonomous Vehicles
L Nanotube Electronics
Gesture Control Devices Software-Defined Anything (SDx)

| loT Platform
Commercial UAVs (Drones)
Affective Computing

Virtual Personal Assistants
Brain-Computer Interface
Conversational User Interfaces
Volumetric Displays

Smart Workspace

Personal Analytics

Quantum Comguting
Data Broker Paa$ (dbrPaaS)
N Context Virtual Reality
| 802.11ax
General-Purpose Machine !nteligenoe
4? Printing
Smar Dust
As of July 2016
Peak of
Innovation Trough of Plateau of
Trigger Ex:;?:::;ns Disillusionment Siope of Enlightenment Productivity
time e
Years to mainstream adoption: obsolete
Olessthan2years O 2toS5years @5t 10years A morethan 10 years & before plateau
Source: Gartner (Ray 2016)
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Gartner Hype Cycle

. ConnectedHome
expectations Deep Learning

Virtual Assistants Machine Learning

loT Platform Autonomous Vehicles

SmartRobots Nanotube Electronics

Edge Computing Cognitive Computing
Augmented Data Discovery Blockchain
| SmartWorkspace

ommercial UAVs (Drones)

Conversational UserInterfaces
Cognitive Expert Advisors

Brain-Computer Interface

Volumetric Displays
Quantum Computing
Digital Twin

Serverless PaasS

5G

Human Augmentation
Neuron'\orphic Hardware
Deep Reinforcement Learning

Enterprise Taxonomy
and Ontology
Management
Software-Defined
Security

Virtual Reality
Artificial General Intelligence
4D Printing

Augmented Reality

SmartDust
As of July 2017
Peak of
Innovation Trough of . Plateau of
Trigger Ex::leﬂc::i‘j)ns Disillusionment Slope of Enlightenment Productivity
time >
Years to mainstream adoption: obsolete

Olessthan 2years ©2to5years @5to10years A morethan 10years @ before plateau
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