Web-Mining Agents

Multi-Relational Latent Semantic Analysis

Prof. Dr. Ralf Möller
Universität zu Lübeck
Institut für Informationssysteme

Tanya Braun (Übungen)
Acknowledgements

Slides by: Scott Wen-tau Yih

Describing joint work of Scott Wen-tau Yih with
Kai-Wei Chang, Bishan Yang,
Chris Meek, Geoff Zweig, John Platt

Microsoft Research
Continuous Semantic Representations

Text entities are represented as vectors
- Words, phrases, sentences, or documents
- Learned via neural networks or matrix/tensor decomposition methods
- Relations are estimated by functions in the vector space

S2Net [CoNLL-11, SIGIR-11]

DSSM [CIKM-13, ACL-14]

DSSM Deep Structured Semantic Model, or more general, Deep Semantic Similarity Model
Continuous Semantic Representations

S2Net [CoNLL-11, SIGIR-11]

DSSM [CIKM-13, ACL-14]
Continuous Semantic Representations

Learning Similarity Measures

S2Net [CoNLL-11, SIGIR-11]

Multi-Relational LSA

\[f_{rel}(\bullet, \bullet) \]

Word Relation [EMNLP-12, EMNLP-13]

Knowledge Base Embedding [EMNLP-14]

Search
Machine Translation

DSSM [CIKM-13*, ACL-14]

Relational Similarity

Word Analogy
[NAACL-13 x2]
Open-Domain Question Answering

Fulfill user’s information need with direct answers

• Answer Sentence Selection [ACL-13]

Q: Who won the best actor Oscar in 1973?
S_1: Jack Lemmon was awarded the Best Actor Oscar for Save the Tiger (1973).
S_2: Academy award winner Kevin Spacey said that Jack Lemmon is remembered as always making time for others.

Word-alignment based approaches with enhanced lexical semantic models
Continuous Semantic Representations

- A lot of popular methods for creating word vectors!
 - Vector Space Model [Salton & McGill 83]
 - Latent Semantic Analysis [Deerwester+ 90]
 - Latent Dirichlet Allocation [Blei+ 01]
 - DNN [Collobert & Weston 08]
 - Chunking, POS, NER, SRL, (modeling long-distance modeling long-distance dependencies with time-delay networks)
 - Word2Vec [Mikolov+ 13]

- Encode term co-occurrence information
- Measure semantic similarity well
Continuous Semantic Representations

- sunny
- rainy
- cloudy
- windy
- car
- wheel
- cab
- emotion
- joy
- sad
- feeling
Semantics Needs More Than Similarity

Tomorrow will be rainy.

Tomorrow will be sunny.

\[\text{similar}(\text{rainy}, \text{sunny})?\]

\[\text{antonym}(\text{rainy}, \text{sunny})?\]
Leverage Linguistic Knowledge Bases

• Can’t we just use the existing linguistic KBs?
 – Knowledge in these resources is never complete
 – Often lack of degree of relations

• Create a continuous semantic representation that
 – Leverages existing rich linguistic knowledge bases
 – Discovers new relations
 – Enables us to measure the degree of multiple relations
 (not just similarity)
Roadmap

• Two opposite relations:
 Polarity Inducing Latent Semantic Analysis (PILSA)

• More relations:
 Multi-Relational Latent Semantic Analysis (MRLSA)

• Relational domain knowledge:
 Typed MRLSA (TRESCAL)

EMNLP: Empirical Methods in Natural Language Processing
CoNLL: Computational Natural Language Learning
ACL: Annual Meeting of the Association for Computational Linguistics
LSA, word2vec, and friends

• Can cope with homonyms due to word context
Problem: Handling Two Opposite Relations

Synonyms & Antonyms

- LSA cannot distinguish antonyms [Landauer 2002]
 - "Distinguishing synonyms and antonyms is still perceived as a difficult open problem." [Poon & Domingos 09]

- Idea #1: Change the data representation
Polarity Inducing LSA [Yih, Zweig & Platt 2012]

- Data representation
 - Encode two opposite relations in a matrix using “polarity”
 - Synonyms & antonyms (e.g., from a thesaurus)

- Factorization
 - Apply SVD to the matrix to find latent components

- Measuring degree of relation
 - Cosine of latent vectors
Encode Synonyms & Antonyms in Matrix

- Joyfulness: *joy, gladden*; *sorrow, sadden*
- Sad: *sorrow, sadden*; *joy, gladden*

Target word: row-vector

<table>
<thead>
<tr>
<th></th>
<th>joy</th>
<th>gladden</th>
<th>sorrow</th>
<th>sadden</th>
<th>goodwill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1: “joyfulness”</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Group 2: “sad”</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Group 3: “affection”</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Encode Synonyms & Antonyms in Matrix

- Joyfulness: joy, gladden; sorrow, sadden
- Sad: sorrow, sadden; joy, gladden

<table>
<thead>
<tr>
<th></th>
<th>joy</th>
<th>gladden</th>
<th>sorrow</th>
<th>sadden</th>
<th>goodwill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1: “joyfulness”</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>Group 2: “sad”</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Group 3: “affection”</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Target word: row-vector

Inducing polarity

Cosine Score: + Synonyms
Encode Synonyms & Antonyms in Matrix

- Joyfulness: joy, gladden; sorrow, sadden
- Sad: sorrow, sadden; joy, gladden

<table>
<thead>
<tr>
<th></th>
<th>joy</th>
<th>gladden</th>
<th>sorrow</th>
<th>sadden</th>
<th>goodwill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1: “joyfulness”</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>Group 2: “sad”</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Group 3: “affection”</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Inducing polarity

Target word: row-vector

Cosine Score: − Antonyms
Problem: How to Handle More Relations?

- Limitation of the matrix representation
 - Each entry captures a particular type of relation between two entities, or
 - Two opposite relations with the polarity trick
- Encoding other binary relations
 - Is-A (hyponym) – ostrich *is a bird*
 - Part-whole – engine is a *part of* car

Idea #2:
Encode multiple relations in a 3-way tensor (3-dim array)!
Multi-Relational LSA (MR-LSA)

- **Data representation**
 - Encode multiple relations in a tensor
 - Synonyms, antonyms, hyponyms (is-a), … (e.g., from a linguistic knowledge base)

- **Factorization**
 - Apply tensor decomposition to the tensor to find latent components (→ RESCAL)

- **Measuring degree of relation**
 - Cosine of latent vectors after projection
Encode Multiple Relations in Tensor

Represent word relations using a tensor

- Each slice encodes a relation between terms and target words.

Construct a tensor with two slices

<table>
<thead>
<tr>
<th>Synonym layer</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>joyfulness</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gladden</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>sad</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>anger</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antonym layer</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>joyfulness</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gladden</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>sad</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>anger</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Encode Multiple Relations in Tensor

Can encode multiple relations in the tensor

```
1 1 0 0
1 1 0 0
0 0 1 0
0 0 0 0
```

```
joyfulness
gladden
sad
anger
```

```
joy    gladden    sadden    feeling
0 0 0 1
0 0 0 0
0 0 0 1
0 0 0 1
```

Hyponym layer
Tensor Decomposition – Analogy to SVD

- Derive a **low-rank approximation** to generalize the data and to discover unseen relations
- Apply Tucker decomposition and reformulate the results

\[W_1, W_2, \ldots, W_d \]

\[t_1, t_2, \ldots, t_n \]

\[\sim \times r \]

\[t_1, t_2, \ldots, t_n \]

latent representation of words
Tensor Decomposition – Analogy to SVD

- Derive a low-rank approximation to generalize the data and to discover unseen relations
- Apply decomposition and reformulate the results

![Diagram with tensor decomposition and analogy to SVD]
Measure Degree of Relation

• Similarity
 – Cosine of the latent vectors

• Other relation (both symmetric and asymmetric)
 – Take the latent matrix of the pivot relation (synonym)
 – Take the latent matrix of the relation
 – Cosine of the latent vectors after projection
Measure Degree of Relation: Raw Representation

\[\text{ant}(\text{joy, sadden}) = \cos(\mathbf{w}_{\text{joy}, \text{syn}}, \mathbf{w}_{\text{sadden}, \text{ant}}) \]

<table>
<thead>
<tr>
<th></th>
<th>joy</th>
<th>gladden</th>
<th>sadden</th>
<th>felling</th>
</tr>
</thead>
<tbody>
<tr>
<td>joy</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gladden</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>sadden</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>anger</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Synonym layer

<table>
<thead>
<tr>
<th></th>
<th>joy</th>
<th>gladden</th>
<th>sadden</th>
<th>felling</th>
</tr>
</thead>
<tbody>
<tr>
<td>joy</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gladden</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>sadden</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>anger</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Antonym layer
Measure Degree of Relation: Raw Representation

\[\text{ant}(\text{joy}, \text{sadden}) = \cos(\mathbf{w}_{\text{joy, syn}}, \mathbf{w}_{\text{sadden, ant}}) \]

Synonym layer

<table>
<thead>
<tr>
<th></th>
<th>joy</th>
<th>gladden</th>
<th>sad</th>
<th>anger</th>
</tr>
</thead>
<tbody>
<tr>
<td>joy</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gladden</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>sad</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>anger</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Antonym layer

<table>
<thead>
<tr>
<th></th>
<th>joy</th>
<th>gladden</th>
<th>sad</th>
<th>anger</th>
</tr>
</thead>
<tbody>
<tr>
<td>joy</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gladden</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>sad</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>anger</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Measure Degree of Relation: Latent Representation

\[rel(w_i, w_j) = \cos(S_{i,:,:}^{\text{syn}}V_{i,:,:}^{T}, S_{j,:,:}^{\text{rel}}V_{j,:,:}^{T}) \]

\[
\text{Cos} (\quad \times \quad , \quad \times \quad)
\]
Problem: Use Relational Domain Knowledge

- Relational domain knowledge – the entity type
 - Relation can only hold between the right types of entities
 - Words having *is-a* relation have the same part-of-speech
 - For relation *born-in*, the entity types are: (person, location)

- Leverage type information to improve MRLSA

- Idea #3: Change the objective function
Typed Multi-Relational LSA (TRESCAL)

• Only legitimate entities are included in the objective function of tensor decomposition

• Benefits of leveraging the type information
 – Faster model training time
 – Higher prediction accuracy

• Experiments conducted using knowledge base
 – Application to Relation Extraction
Knowledge Base Representation (1/2)

- Collection of subj-pred-obj triples – \((e_1, r, e_2)\)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Predicate</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obama</td>
<td>Born-in</td>
<td>Hawaii</td>
</tr>
<tr>
<td>Bill Gates</td>
<td>Nationality</td>
<td>USA</td>
</tr>
<tr>
<td>Bill Clinton</td>
<td>Spouse-of</td>
<td>Hillary Clinton</td>
</tr>
<tr>
<td>Satya Nadella</td>
<td>Work-at</td>
<td>Microsoft</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

\(n: \# \text{ entities}, \ m: \# \text{ relations}\)
Knowledge Base Representation (2/2)

\[\chi \]

\[\chi_k \]

\(R_k : \text{born-in} \)

\(\text{Hawaii} \)

\(\text{Obama} \)

A 0 entry means:
• Incorrect (\textit{false})
• Unknown
Knowledge Base Embedding

- Each entity in a KB is represented by an \mathbb{R}^d vector
- Predict whether (e_1, r, e_2) is true by $f_r(v_{e_1}, v_{e_2})$

- Related Work
 - RESCAL [Nickel+, ICML-11]
 - SME [Bordes+, AISTATS-12]
 - NTN [Socher+, NIPS-13]
 - TransE [Bordes+, NIPS-13]
 - TransH [Wang+, AAAI-14]
Tensor Decomposition Objective

- Objective: \(\frac{1}{2} \sum_k \| \mathbf{X}_k - \mathbf{A} \mathbf{R}_k \mathbf{A}^T \|_F^2 \)

RESCAL \([\text{Nickel+}, \text{ICML-11}]\)
Typed Tensor Decomposition Objective

Objective: \(\frac{1}{2} \sum_k \| x'_k - A_l R_k A_r^T \|_F^2 \)

- Persons
- Locations
- Relation: born-in
Typed Tensor Decomposition Objective

- Objective: \[\frac{1}{2} \sum_k \|X'_k - A_l R_k A_r^T \|_F^2 \]
Experiments – KB Completion

- KB – Never Ending Language Learning (NELL)
 - Training: version 165
 - Developing: new facts between v.166 and v.533
 - Testing: new facts between v.534 and v.745

<table>
<thead>
<tr>
<th># Entities</th>
<th>753k</th>
</tr>
</thead>
<tbody>
<tr>
<td># Relation Types</td>
<td>229</td>
</tr>
<tr>
<td># Entity Types</td>
<td>300</td>
</tr>
<tr>
<td># Entity-Relation Triples</td>
<td>1.8M</td>
</tr>
</tbody>
</table>
Tasks & Baselines

- **Entity Retrieval**: \((e_i, r_k, ?)\)
 - One positive entity with 100 negative entities
- **Relation Retrieval**: \((e_i, ?, e_j)\)
 - Positive entity pairs with equal number of negative pairs
- **Baselines**:
 - RESCAL
 - TransE
Entity Retrieval

Mean Average Precision (MAP)

- TransE: 67.56%
- RESCAL: 62.91%
- TRESICAL: 69.26%
Relation Retrieval

Mean Average Precision (MAP)

- TransE: 70.71%
- RESCAL: 73.08%
- TRESCLAL: 75.70%
Experiments – Relation Extraction

Dan Roth is a **professor**

at UIUC.

*(Dan Roth, *work-at*, UIUC)*
Relation Extraction as Matrix Factorization

[Riedel+ 13]

- Row: Entity Pair
- Column: Relation

Fig. 1 of [Riedel+ 13]
Conclusions

- Continuous semantic representation that
 - Leverages existing rich linguistic knowledge bases
 - Discovers new relations
 - Enables us to measure the degree of multiple relations

- Approaches
 - Better data representation
 - Matrix/Tensor decomposition
 - Relational domain knowledge

- Challenges & Future Work
 - Capture more types of knowledge in the model
 - Support more sophisticated inferential tasks
Acknowledgements again

Slides by: Scott Wen-tau Yih
(orignal presentation shortened)

Describing joint work of Scott Wen-tau Yih with Kai-Wei Chang, Bishan Yang, Chris Meek, Geoff Zweig, John Platt

Microsoft Research