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Continuous Semantic Representations

Text entities are represented as vectors
— Words, phrases, sentences, or documents

— Learned via neural networks
or matrix/tensor decomposition methods

— Relations are estimated by functions in the vector space
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Continuous Semantic Representations
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Continuous Semantic Representations
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Word Relation [EMNLP-12, EMNLP-13] [NAACL-13 x2]

Knowledge Base Embedding [EMNLP-14]




Open-Domain Question Answering

Fulfill user’s information need with direct answers

« Answer Sentence Selection [ACL-13]

Q: Who won the best actor Oscar in 19737
: Jack Lemmon was awarded the Best Actor Oscar for Save the
Tiger (1973).
: Academy award winner Kevin Spacey said that Jack Lemmon is
remembered as always making time for others.

e Word-alignment based approaches with enhanced lexical
semantic models
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Continuous Semantic Representations

. Alot of popular methods for creating word vectors!
— Vector Space Model [Salton & McGill 83]
— Latent Semantic Analysis [Deerwester+ 90]
— Latent Dirichlet Allocation [Blei+ 01]

— DNN [Collobert & Weston 08]

- Chunking, POS, NER, SRL, (modeling long-distance modeling
long-distance dependencies with time-delay networks)

— Word2Vec [Mikolov+ 13]

« Encode term co-occurrence information
« Measure semantic similarity well
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Continuous Semantic Representations
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Semantics Needs More Than Similarity

similar( sunny)?

antonym(rainy, sunny)?
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Leverage Linguistic Knowledge Bases

- Can’t we just use the existing linguistic KBs?
— Knowledge in these resources is never complete
— Often lack of degree of relations

- Create a continuous semantic representation that
— Leverages existing rich linguistic knowledge bases
— Discovers new relations

— Enables us to measure the degree of multiple relations
(not just similarity)
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Roadmap

- Two opposite relations:
Polarity Inducing Latent Semantic Analysis (PILSA)

« More relations:
Multi-Relational Latent Semantic Analysis (MRLSA)

- Relational domain knowledge:
Typed MRLSA (TRESCAL)

Yih, Zweig & Platt. Polarity Inducing Latent Semantic Analysis. In EMNLP-CoNLL-12.
Chang, Yih & Meek. Multi-Relational Latent Semantic Analysis. In EMNLP-13.

Chang, Yih, Yang & Meek. Typed Tensor Decomposition of Knowledge Bases for Relation
Extraction. In EMNLP-14.

EMNLP: Empirical Methods in Natural Language Processing
QQQQQQQ CoNLL: Computational Natural Language Learning
@4}@ s 20 Lossc ACL; Annual Meeting of the Association for Computational Linguistics



LSA, word2vec, and friends

. Can cope with homonyms due to word context
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Problem: Handling Two Opposite Relations

Synonyms & Antonyms

« LSA cannot distinguish antonyms [Landauer 2002]

- “Distinguishing synonyms and antonyms s still perceived
as a difficult open problem " [Poon & Domingos 09]

- ldea #1: Change the data representation
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Polarity Inducing LSA [Yih, Zweig & Platt 2012]

- Data representation

— Encode two opposite relations in a matrix using “polarity”
.« Synonyms & antonyms (e.g., from a thesaurus)

 Factorization
— Apply SVD to the matrix to find latent components

- Measuring degree of relation
— Cosine of latent vectors
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Encode Synonyms & Antonyms in Matrix

. Joyfulness: joy, gladden; sorrow, sadden
. Sad: sorrow, sadden; joy, gladden

, Target word: row-vector
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Encode Synonyms & Antonyms in Matrix

. Joyfulness: joy, gladden; sorrow, sadden

. Sad: sorrow, sadden; joy, gladden

Inducing polarity
A

Group 1: “joyfulness” 0

Group 2: “sad” 0

Group 3: “affection” 1

Target word: row-vector

Cosine Score: + Synonyms

B ;k -
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Encode Synonyms & Antonyms in Matrix

. Joyfulness: joy, gladden; sorrow, sadden
. Sad: sorrow, sadden; joy, gladden

Inducing polarity

Group 1: “joyfulness” 1 1 -1 -1 0
Group 2: “sad” -1 -1 1 1 0
Group 3: “affection” 0 0 0 0 1

L]

Cosine Score: — Antonyms

Target word: row-vector

B ;k -
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Problem: How to Handle More Relations?

. Limitation of the matrix representation

— Each entry captures a particular type of relation between
two entities, or

— Two opposite relations with the polarity trick
- Encoding other binary relations

— Is-A (hyponym) - ostrich /s ¢ bird

— Part-whole - engine is a a7 of car

Encode multiple relations in a
3-way tensor (3-dim array)!
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Multi-Relational LSA (MR-LSA)

Data representation

— Encode multiple relations in a tensor

- Synonyms, antonyms, hyponyms (is-a), ... (e.g., from a
linguistic knowledge base)

Factorization

— Apply tensor decomposition to the tensor to find latent
components (= RESCAL)

Measuring degree of relation
— Cosine of latent vectors after projection
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Encode Multiple Relations in Tensor

@ Represent word relations using a tensor

e Each slice encodes a relation between terms and
target words. N &
v
(O 3 X WP
D\ N O A& 9
S 0§ f % ¢ @
joyfulness 1 | 1 [0 | O Jjoyfulness| 0 (0 | 0 | O
gladden| 1 | 1 | 0 | 0 gladden 0 [0 |1 |0
sadl olol11!0 sad| 1 |0o| 0|0
anger; 0 | 0 | 0 | O anger| 0 | 0 | 0 | O
Synonyw\ Iager AV\tOV\yW\ layer

Construct a tensor with two slices
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Encode Multiple Relations in Tensor

@ Can encode multiple relations in the tensor

¥
-0\)) \Ob' b‘b‘ Q}\v
_ S @
1/1/0]0 ,

I joyfulness| 0 | 0 | 0 | 1

1 1 0| O
gladden, 0 [0 | 0 | 0

0O 0|1 0
I sad|{ 0 [0 | 0 | 1

O 00| O
| | | | anger|, 0 00 |1

Hyponym layer
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Tensor Decomposition — Analogy to SVD

@ Derive alow-rank approximation to generalize the data and to
discover unseen relations

@ Apply Tucker decomposition and reformulate the results

;Wd
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!

W4, Wy, ...
W1, Wy, ...
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Tensor Decomposition — Analogy to SVD

@ Derive alow-rank approximation to generalize the data and to
discover unseen relations

@ Apply decomposition and reformulate the results

;Wd

W4, Wy, ...
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Measure Degree of Relation

« Similarity
— Cosine of the latent vectors

« Other relation (both symmetric and asymmetric)
— Take the latent matrix of the pivot relation (synonym)

— Take the latent matrix of the relation
— Cosine of the latent vectors after projection
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Measure Degree of Relation: Raw Representation

% ant(joy, sadden) = COS(W:Joy,syn’ W:,sadden,ant)
& o bq;r N
P 2 oD D
Yy o & STy g @
joyfulness 1 | 1 [0 | O Joyfulness 0 | 0 [0 | 0
gladden| 1 | 1 | 0| 0 gladden, 0 | 0 | 1 | 0
sadl ol o |10 sad| 1 |0/ 0| o0
angeri 0 | 0 | 0 | O angeri 0 | 0 | 0 | O

Antonym layer
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Measure Degree of Relation: Raw Representation

@ ant(joy, sadden) = COS(W:JOy’Syn, W:,sadden,ant)
o ¢ bib“~ Y

P P eI
joyfulness| 1 [1 |0 [0 |” Joyfulness| 0 | 0 | 0 | 0
1/0 0 0|0 0
sad| o |o|[1]o0 sad| 10|00
angeri 0 | 0 | 0 | O anger| 0 | 0 | 0 | O

Antonym layer
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Measure Degree of Relation: Latent Representation

@ rel(w;,w;) = cos(S..syn Vi S”relVT

Cos ( X , X
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Problem: Use Relational Domain Knowledge

- Relational domain knowledge - the entity type

— Relation can only hold between the right types of entities
- Words having is-a relation have the same part-of-speech
- For relation born-in, the entity types are: (person, location)

. Leverage type information to improve MRLSA

- Idea #3: Change the objective function




Typed Multi-Relational LSA (TRESCAL)

Only legitimate entities are included in the objective
function of tensor decomposition

Benefits of leveraging the type information
— Faster model training time
— Higher prediction accuracy

Experiments conducted using knowledge base
— Application to Relation Extraction
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Knowledge Base Representation (1/2)

. Collection of subj-pred-obj triples — (e4, 1, e5)

Subject Predicate Object
Obama Born-in Hawaii
Bill Gates Nationality USA
Bill Spouse-of  Hillary
Clinton Clinton
Satya Work-at ~ Microsoft
Nadella

©
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n: # entities, m: # relations



Knowledge Base Representation (2/2)

%  k-th slice
: e X
{ X k Hawaii

€r... €,

_______________________________________________

Obama | rx

A 0 entry means:
 Incorrect (false)

¢ Unknown | .
R, : born-in
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Knowledge Base Embedding

. Each entity in a KB is represented by an R% vector

. Predict whether (e, 7, €,) is true by fr(vel, Uez)

- Related Work
—‘ RESCAL [Nickel+, lCML-:L:L]‘
— SME [Bordes+, AISTATS-12]
— NTN [Socher+, NIPS-13]
— TransE [Bordes+, NIPS-13]
— TransH [Wang+, AAAI-14]
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Tensor Decomposition Objective

cctive: = 1 — AR AT |2
. Objective: 7/ Ik — AR A"l
k

Xk A

Ry AT

!
X
X

RESCAL [Nickel+, ICML-11]
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Typed Tensor Decomposition Objective

1
/ 2
- Objective: anxk—AleAﬂhv
K

locations
Xk ﬁ A
T Ry AT
________________________;:__: ~ % X |
persons Relation: born-in
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Typed Tensor Decomposition Objective
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Experiments — KB Completion

- KB - Never Ending Language Learning (NELL)
— Training: version 165
— Developing: new facts between v.166 and v.533
— Testing: new facts between v.534 and v.745

# Entities 753k
# Relation Types 229
# Entity Types 300
# Entity-Relation Triples 1.8M
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Tasks & Baselines

- Entity Retrieval: (e;, 1, 7)
— One positive entity with 100 negative entities
- Relation Retrieval: (¢;, ?,¢e)
— Positive entity pairs with equal number of negative pairs

« Baselines:

RESCAL Transk

SUET

2 w‘?ﬂa\, @

éﬁ%@k@}; UNIVERSITAT ZU LUBECK

i@%;,?}; TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
Is.g18™



Entity Retrieval

72,0%

70,0%

68,0%

66,0%

64,0%

62,0%

60,0%

58,0%

Mean Average Precision (MAP)

RESCAL

TRESCAL

IM FOCUS DAS LEBEN



Relation Retrieval

78,0%

76,0%

74,0%

72,0%

70,0%

68,0%

Mean Average Precision (MAP)

RESCAL

TRESCAL
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Experiments — Relation Extraction

S

Dan Roth is a professor
at UIUC.

(Dan Roth, worlk-at, UIUC)
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Relation Extraction as Matrix Factorization

[Riedel+ 13]

Row: Entity Pair
Column: Relation

Fig.1 of [Riedel+ 13]

Firth,Oxford Oman,Oxford Ferguson,Harvard

Godel,Princeton

X-professor-at-Y X-historian-at-Y

——— —

|
|
|
|
|
|
|
|

employee(X,Y) member(X,Y)

- Surface Patterns— F—KB Relations—
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Conclusions

Continuous semantic representation that

— Leverages existing rich linguistic knowledge bases
— Discovers new relations
— Enables us to measure the degree of multiple relations

Approaches

— Better data representation

— Matrix/Tensor decomposition
— Relational domain knowledge

Challenges & Future Work

— Capture more types of knowledge in the model

— Support more sophisticated inferential tasks
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