Web-Mining Agents

Multi-Relational Latent Semantic Analysis

Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme

Tanya Braun (Übungen)

Acknowledgements

Slides by: Scott Wen-tau Yih

Describing joint work of Scott Wen-tau Yih with Kai-Wei Chang, Bishan Yang, Chris Meek, Geoff Zweig, John Platt

Microsoft Research

Text entities are represented as vectors

- Words, phrases, sentences, or documents
- Learned via neural networks or matrix/tensor decomposition methods
- Relations are estimated by functions in the vector space

DSSM Deep Structured Semantic Model, or more general, Deep Semantic Similarity Model

S2Net [CoNLL-11, SIGIR-11]

DSSM [CIKM-13, ACL-14]

Open-Domain Question Answering

Fulfill user's information need with direct answers

- Answer Sentence Selection [ACL-13]
 - **Q**: Who won the best actor Oscar in 1973?
 - S_1 : Jack Lemmon was awarded the Best Actor Oscar for Save the Tiger (1973).
 - S₂: Academy award winner Kevin Spacey said that Jack Lemmon is remembered as always making time for others.
 - Word-alignment based approaches with enhanced lexical semantic models

- A lot of popular methods for creating word vectors!
 - Vector Space Model [Salton & McGill 83]
 - Latent Semantic Analysis [Deerwester+ 90]
 - Latent Dirichlet Allocation [Blei+ 01]
 - DNN [Collobert & Weston 08]
 - Chunking, POS, NER, SRL, (modeling long-distance modeling long-distance dependencies with time-delay networks)
 - Word2Vec [Mikolov+ 13]
- Encode term co-occurrence information
- Measure semantic similarity well

Semantics Needs More Than Similarity

Leverage Linguistic Knowledge Bases

- Can't we just use the existing linguistic KBs?
 - Knowledge in these resources is never complete
 - Often lack of degree of relations
- Create a continuous semantic representation that
 - Leverages existing rich linguistic knowledge bases
 - Discovers new relations
 - Enables us to measure the degree of multiple relations (not just similarity)

Roadmap

- Two opposite relations: Polarity Inducing Latent Semantic Analysis (PILSA)
- More relations: Multi-Relational Latent Semantic Analysis (MRLSA)
- Relational domain knowledge: Typed MRLSA (TRESCAL)

- Yih, Zweig & Platt. *Polarity Inducing Latent Semantic Analysis*. In EMNLP-CoNLL-12.
- Chang, Yih & Meek. *Multi-Relational Latent Semantic Analysis*. In EMNLP-13.
- Chang, Yih, Yang & Meek. *Typed Tensor Decomposition of Knowledge Bases for Relation Extraction*. In EMNLP-14.

EMNLP: Empirical Methods in Natural Language Processing CoNLL: Computational Natural Language Learning ACL; Annual Meeting of the Association for Computational Linguistics

LSA, word2vec, and friends

• Can cope with homonyms due to word context

Problem: Handling Two Opposite Relations

Synonyms & Antonyms

- LSA cannot distinguish antonyms [Landauer 2002]
 - "Distinguishing synonyms and antonyms is still perceived as a difficult open problem." [Poon & Domingos 09]
- Idea #1: Change the data representation

Polarity Inducing LSA [Yih, Zweig & Platt 2012]

- Data representation
 - Encode two opposite relations in a matrix using "polarity"
 - Synonyms & antonyms (e.g., from a thesaurus)
- Factorization
 - Apply SVD to the matrix to find latent components
- Measuring degree of relation
 - Cosine of latent vectors

Encode Synonyms & Antonyms in Matrix

- Joyfulness: joy, gladden; sorrow, sadden
- Sad: sorrow, sadden; joy, gladden

Target word: row-vector

		јоу	gladden	sorrow	sadden	goodwill
*	Group 1: "joyfulness"	1	1	1	1	0
	Group 2: "sad"	1	1	1	1	0
	Group 3: "affection"	0	0	0	0	1

Encode Synonyms & Antonyms in Matrix

- Joyfulness: joy, gladden; sorrow, sadden
- Sad: sorrow, sadden; joy, gladden

.Target word: row-vector

gladden goodwill sadden sorrow joy Group 1: "joyfulness" -1 -1 0 Group 2: "sad" 0 Group 3: "affection" 0 0 0 0

Cosine Score: + Synonyms

Inducing polarity

Encode Synonyms & Antonyms in Matrix

- Joyfulness: joy, gladden; sorrow, sadden
- Sad: sorrow, sadden; joy, gladden

Target word: row-vector						
	јоу	gladden	sorrow	sadden	goodwill	
Group 1: "joyfulness"	1	1	-1	-1	0	
Group 2: "sad"	-1	-1	1	1	0	
Group 3: "affection"	0	0	0	0	1	

Problem: How to Handle More Relations?

- Limitation of the matrix representation
 - Each entry captures a particular type of relation between two entities, or
 - Two opposite relations with the polarity trick
- Encoding other binary relations
 - Is-A (hyponym) ostrich *is a* bird
 - Part-whole engine is a *part of* car

<u>Idea #2</u>: Encode multiple relations in a 3-way tensor (3-dim array)!

Multi-Relational LSA (MR-LSA)

- Data representation
 - Encode multiple relations in a tensor
 - Synonyms, antonyms, hyponyms (is-a), ... (e.g., from a linguistic knowledge base)
- Factorization
 - Apply tensor decomposition to the tensor to find latent components (→ RESCAL)
- Measuring degree of relation
 - Cosine of latent vectors after projection

Encode Multiple Relations in Tensor

- Represent word relations using a tensor
 - Each slice encodes a relation between terms and target words. dodger og ceeling

jow gladder der feeling joyfulness 0 0 gladden 1 1 0 0 sad 0 0 1 0 anger 0 0 0 0

> Antonym layer Synonym layer Construct a tensor with two slices

joyfulness

gladden

sad

anger

. jov

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

Encode Multiple Relations in Tensor

Can encode multiple relations in the tensor

1	1	0	0
1	1	0	0
0	0	1	0
0	0	0	0

			yer,	or .	S
	. Jord	100	500	yer	,
joyfulness	0	0	0	1	
gladden	0	0	0	0	
sad	0	0	0	1	
anger	0	0	0	1	
	Hyj	oony	jm l	ayeı	~

Tensor Decomposition – Analogy to SVD

- Derive a low-rank approximation to generalize the data and to discover unseen relations
- Apply Tucker decomposition and reformulate the results

Tensor Decomposition – Analogy to SVD

- Derive a low-rank approximation to generalize the data and to discover unseen relations
- Apply decomposition and reformulate the results

Measure Degree of Relation

- Similarity
 - Cosine of the latent vectors
- Other relation (both symmetric and asymmetric)
 - Take the latent matrix of the *pivot* relation (synonym)
 - Take the latent matrix of the relation
 - Cosine of the latent vectors after projection

Measure Degree of Relation: Raw Representation

•
$$ant(joy, sadden) = cos(\mathcal{W}_{:joy,syn}, \mathcal{W}_{:,sadden,ant})$$

 $:joy dodden$
 $joyfulness 1 1 0 0$
 $gladden 1 1 0 0$
 $sad 0 0 1 0$
 $anger 0 0 0 0 0$
 $Synonym layer$
• $ioy dodden$
 $:joy dodden$

Measure Degree of Relation: Raw Representation

Measure Degree of Relation: Latent Representation

•
$$rel(w_i, w_j) = cos(S_{:,:,syn}V_{i,:}^T, S_{:,:,rel}V_{j,:}^T)$$

 $Cos(\times, \times, \times)$

Problem: Use Relational Domain Knowledge

- Relational domain knowledge the entity type
 - Relation can only hold between the right types of entities
 - Words having *is-a* relation have the same part-of-speech
 - For relation *born-in*, the entity types are: (person, location)
- Leverage type information to improve MRLSA
- Idea #3: Change the objective function

Typed Multi-Relational LSA (TRESCAL)

- Only legitimate entities are included in the objective function of tensor decomposition
- Benefits of leveraging the type information
 - Faster model training time
 - Higher prediction accuracy
- Experiments conducted using knowledge base
 - Application to Relation Extraction

Knowledge Base Representation (1/2)

• Collection of subj-pred-obj triples – (e_1, r, e_2)

Su	bject	Predicate	Object
Oł	oama	Born-in	Hawaii
Bill	Gates	Nationality	USA
	Bill inton	Spouse-of	Hillary Clinton
	atya Idella	Work-at	Microsoft
	•••	•••	

n: # entities, m: # relations

Knowledge Base Representation (2/2)

Knowledge Base Embedding

- Each entity in a KB is represented by an R^d vector
- Predict whether (e_1, r, e_2) is true by $f_r(v_{e_1}, v_{e_2})$
- Related Work
 - RESCAL [Nickel+, ICML-11]
 - SME [Bordes+, AISTATS-12]
 - NTN [Socher+, NIPS-13]
 - TransE [Bordes+, NIPS-13]
 - TransH [Wang+, AAAI-14]

Tensor Decomposition Objective

• Objective:
$$\frac{1}{2} \sum_{k} \| \mathcal{X}_{k} - \mathbf{A} \mathcal{R}_{k} \mathbf{A}^{T} \|_{F}^{2}$$

RESCAL [Nickel+, ICML-11]

Typed Tensor Decomposition Objective

Typed Tensor Decomposition Objective

• Objective:
$$\frac{1}{2} \sum_{k} \| \boldsymbol{\mathcal{X}}_{k}^{\prime} - \mathbf{A}_{l} \boldsymbol{\mathcal{R}}_{k} \mathbf{A}_{r}^{T} \|_{F}^{2}$$

Experiments – KB Completion

- KB Never Ending Language Learning (NELL)
 - Training: version 165
 - Developing: new facts between v.166 and v.533
 - Testing: new facts between v.534 and v.745

# Entities	753k
# Relation Types	229
# Entity Types	300
# Entity-Relation Triples	1.8M

Tasks & Baselines

- Entity Retrieval: $(e_i, r_k, ?)$
 - One positive entity with 100 negative entities
- Relation Retrieval: $(e_i, ?, e_j)$
 - Positive entity pairs with equal number of negative pairs
- Baselines:

Entity Retrieval

Mean Average Precision (MAP)

Relation Retrieval

Mean Average Precision (MAP)

Experiments – Relation Extraction

(Dan Roth, work-at, UIUC)

Relation Extraction as Matrix Factorization

[Riedel+ 13]

- Row: Entity Pair
- Column: Relation

Conclusions

- Continuous semantic representation that
 - Leverages existing rich linguistic knowledge bases
 - Discovers new relations
 - Enables us to measure the degree of multiple relations
- Approaches
 - Better data representation
 - Matrix/Tensor decomposition
 - Relational domain knowledge
- Challenges & Future Work
 - Capture more types of knowledge in the model
 - Support more sophisticated inferential tasks

Acknowledgements again

Slides by: Scott Wen-tau Yih (orignal presentation shortened)

Describing joint work of Scott Wen-tau Yih with Kai-Wei Chang, Bishan Yang, Chris Meek, Geoff Zweig, John Platt

Microsoft Research

