Web-Mining Agents

Multi-Relational Latent Semantic Analysis

Prof. Dr. Ralf Möller
Universität zu Lübeck
Institut für Informationssysteme

Tanya Braun (Übungen)

Acknowledgements

Slides by: Scott Wen-tau Yih

Describing joint work of Scott Wen-tau Yih with Kai-Wei Chang, Bishan Yang,
Chris Meek, Geoff Zweig, John Platt
Microsoft Research

Continuous Semantic Representations

Text entities are represented as vectors

- Words, phrases, sentences, or documents
- Learned via neural networks or matrix/tensor decomposition methods
- Relations are estimated by functions in the vector space

Learning Similarity Measures
S2Net [CoNLL-11, SIGIR-11]

Machine Translation

Continuous Semantic Representations

DSSM [CIKM-13, ACL-14]

Continuous Semantic Representations

$\stackrel{?}{=}$
 Learning Similarity Measures

S2Net [CoNLL-11, SIGIR-11]
$f_{\text {rel }}(\boldsymbol{\bullet}, \boldsymbol{\bullet})$
Multi-Relational LSA

Word Relation [EMNLP-12, EMNLP-13]
Knowledge Base Embedding [EMNLP-14]

Search Machine Translation

DSSM [CIKM-13*, ACL-14]

Relational Similarity

Word Analogy
[NAACL-13 x2]

Open-Domain Question Answering

Fulfill user's information need with direct answers

- Answer Sentence Selection [ACL-13]

Q: Who won the best actor Oscar in 1973?
S_{1} : Jack Lemmon was awarded the Best Actor Oscar for Save the Tiger (1973).
S_{2} : Academy award winner Kevin Spacey said that Jack Lemmon is remembered as always making time for others.

- Word-alignment based approaches with enhanced lexical semantic models

Continuous Semantic Representations

- A lot of popular methods for creating word vectors!
- Vector Space Model [Salton \& McGill 83]
- Latent Semantic Analysis [Deerwester+ 90]
- Latent Dirichlet Allocation [Blei+ 01]
- DNN [Collobert \& Weston 08]
- Chunking, POS, NER, SRL, (modeling long-distance modeling long-distance dependencies with time-delay networks)
- Word2Vec [Mikolov+ 13]
- Encode term co-occurrence information
- Measure semantic similarity well

Continuous Semantic Representations

Semantics Needs More Than Similarity

Leverage Linguistic Knowledge Bases

- Can't we just use the existing linguistic KBs?
- Knowledge in these resources is never complete
- Often lack of degree of relations
- Create a continuous semantic representation that
- Leverages existing rich linguistic knowledge bases
- Discovers new relations
- Enables us to measure the degree of multiple relations (not just similarity)

Roadmap

- Two opposite relations: Polarity Inducing Latent Semantic Analysis (PILSA)
- More relations: Multi-Relational Latent Semantic Analysis (MRLSA)
- Relational domain knowledge: Typed MRLSA (TRESCAL)
- Yih, Zweig \& Platt. Polarity Inducing Latent Semantic Analysis. In EMNLP-CoNLL-12.
- Chang, Yih \& Meek. Multi-Relational Latent Semantic Analysis. In EMNLP-13.
- Chang, Yih, Yang \& Meek. Typed Tensor Decomposition of Knowledge Bases for Relation Extraction. In EMNLP-14.

LSA, word2vec, and friends

- Can cope with homonyms due to word context

Problem: Handling Two Opposite Relations

Synonyms \& Antonyms

- LSA cannot distinguish antonyms [Landauer 2002]
- "Distinguishing synonyms and antonyms is still perceived as a difficult open problem" [Poon \& Domingos 09]
- Idea \#1: Change the data representation

Polarity Inducing LSA [Yih, Zweig \& Platt 2012]

- Data representation
- Encode two opposite relations in a matrix using "polarity"
- Synonyms \& antonyms (e.g., from a thesaurus)
- Factorization
- Apply SVD to the matrix to find latent components
- Measuring degree of relation
- Cosine of latent vectors

Encode Synonyms \& Antonyms in Matrix

- Joyfulness: joy, gladden; sorrow, sadden
- Sad: sorrow, sadden; joy, gladden

Encode Synonyms \& Antonyms in Matrix

- Joyfulness: joy, gladden; sorrow, sadden
- Sad: sorrow, sadden; joy, gladden

Cosine Score: + Synonyms

Encode Synonyms \& Antonyms in Matrix

- Joyfulness: joy, gladden; sorrow, sadden
- Sad: sorrow, sadden; joy, gladden

Problem: How to Handle More Relations?

- Limitation of the matrix representation
- Each entry captures a particular type of relation between two entities, or
- Two opposite relations with the polarity trick
- Encoding other binary relations
- Is-A (hyponym) - ostrich is a bird
- Part-whole - engine is a part of car

Idea \#2:
Encode multiple relations in a 3-way tensor (3-dim array)!

Multi-Relational LSA (MR-LSA)

- Data representation
- Encode multiple relations in a tensor
- Synonyms, antonyms, hyponyms (is-a), ... (e.g., from a linguistic knowledge base)
- Factorization
- Apply tensor decomposition to the tensor to find latent components (\rightarrow RESCAL)
- Measuring degree of relation
- Cosine of latent vectors after projection

Encode Multiple Relations in Tensor

- Represent word relations using a tensor
- Each slice encodes a relation between terms and target words.

Encode Multiple Relations in Tensor

- Can encode multiple relations in the tensor

1	1	0	0
1	1	0	0
0	0	1	0
0	0	0	0

Tensor Decomposition - Analogy to SVD

- Derive a low-rank approximation to generalize the data and to discover unseen relations
- Apply Tucker decomposition and reformulate the results

latent representation of words

Tensor Decomposition - Analogy to SVD

- Derive a low-rank approximation to generalize the data and to discover unseen relations
- Apply decomposition and reformulate the results

Measure Degree of Relation

- Similarity
- Cosine of the latent vectors
- Other relation (both symmetric and asymmetric)
- Take the latent matrix of the pivot relation (synonym)
- Take the latent matrix of the relation
- Cosine of the latent vectors after projection

Measure Degree of Relation: Raw Representation

- $\operatorname{ant}($ joy, sadden $)=\cos \left(\mathcal{W}_{\text {:joy,syn }}, \mathcal{W}_{\text {:,sadden,ant }}\right)$

					joyfulness				
joyfulness gladden	1	1	0	0		0	0	0	0
	1	1	0	0	gladden	0	0	1	0
sad	0	0	1	0	sad	1	0	0	0
anger	0	0	0	0	anger	0	0	0	0
	synonym layer						on		

Measure Degree of Relation: Raw Representation

- $\operatorname{ant}($ joy, sadden $)=\cos \left(\mathcal{W}_{\text {:joy,syn }}, \mathcal{W}_{\text {:,sadden,ant }}\right)$

Measure Degree of Relation: Latent Representation

$\bullet \operatorname{rel}\left(\mathrm{w}_{i}, \mathrm{w}_{j}\right)=\cos \left(\boldsymbol{S}_{: ;,, \text {syn }} \mathbf{V}_{i, j}^{T}, \boldsymbol{S}_{: ;, r \operatorname{rel}} \mathbf{V}_{j,:}^{T}\right)$
$\operatorname{Cos}(x \quad \times$

Problem: Use Relational Domain Knowledge

- Relational domain knowledge - the entity type
- Relation can only hold between the right types of entities
- Words having is-a relation have the same part-of-speech
- For relation born-in, the entity types are: (person, location)
- Leverage type information to improve MRLSA
- Idea \#3: Change the objective function

Typed Multi-Relational LSA (TRESCAL)

- Only legitimate entities are included in the objective function of tensor decomposition
- Benefits of leveraging the type information
- Faster model training time
- Higher prediction accuracy
- Experiments conducted using knowledge base
- Application to Relation Extraction

Knowledge Base Representation (1/2)

- Collection of subj-pred-obj triples - $\left(e_{1}, r, e_{2}\right)$

Subject	Predicate	Object
Obama	Born-in	Hawaii
Bill Gates	Nationality	USA
Bill Clinton	Spouse-of	Hillary Clinton
Satya Nadella	Work-at	Microsoft
\ldots	\ldots	\ldots

n : \# entities, m: \# relations

Knowledge Base Representation (2/2)

Knowledge Base Embedding

- Each entity in a KB is represented by an R^{d} vector
- Predict whether $\left(e_{1}, r, e_{2}\right)$ is true by $f_{r}\left(v_{e_{1}}, v_{e_{2}}\right)$
- Related Work
-RESCAL [Nickel+, ICML-11]
- SME [Bordes+, AISTATS-12]
- NTN [Socher+, NIPS-13]
- TransE [Bordes+, NIPS-13]
- TransH [Wang+, AAAI-14]

Tensor Decomposition Objective

- Objective: $\frac{1}{2} \sum_{k}\left\|X_{k}-\mathbf{A} \mathcal{R}_{k} \mathbf{A}^{T}\right\|_{F}^{2}$

RESCAL [Nickel+, ICML-11]

Typed Tensor Decomposition Objective

- Objective: $\frac{1}{2} \sum_{k}\left\|x_{k}^{\prime}-\mathbf{A}_{\mathbf{l}} \mathcal{R}_{k} \mathbf{A}_{r}^{T}\right\|_{F}^{2}$ locations

Typed Tensor Decomposition Objective

- Objective: $\frac{1}{2} \sum_{k}\left\|x_{k}^{\prime}-\mathbf{A}_{\mathcal{L}} \mathcal{R}_{k} \mathbf{A}_{T}^{T}\right\|_{F}^{2}$

Experiments - KB Completion

- KB - Never Ending Language Learning (NELL)
- Training: version 165
- Developing: new facts between v. 166 and v. 533
- Testing: new facts between v. 534 and v. 745

\# Entities	753 k
\# Relation Types	229
\# Entity Types	300
\# Entity-Relation Triples	1.8 M

Tasks \& Baselines

- Entity Retrieval: $\left(e_{i}, r_{k}\right.$, ?)
- One positive entity with 100 negative entities
- Relation Retrieval: $\left(e_{i}, ?, e_{j}\right)$
- Positive entity pairs with equal number of negative pairs
- Baselines:

RESCAL

TransE

Entity Retrieval

Relation Retrieval

Mean Average Precision (MAP)

Experiments - Relation Extraction

Dan Roth is a professor at UIUC.

Relation Extraction as Matrix Factorization

[Riedel+ 13]

- Row: Entity Pair
- Column: Relation

Fig. 1 of [Riedel+ 13]

Conclusions

- Continuous semantic representation that
- Leverages existing rich linguistic knowledge bases
- Discovers new relations
- Enables us to measure the degree of multiple relations
- Approaches
- Better data representation
- Matrix/Tensor decomposition
- Relational domain knowledge
- Challenges \& Future Work
- Capture more types of knowledge in the model
- Support more sophisticated inferential tasks

Acknowledgements again

Slides by: Scott Wen-tau Yih (orignal presentation shortened)

Describing joint work of Scott Wen-tau Yih with Kai-Wei Chang, Bishan Yang,
Chris Meek, Geoff Zweig, John Platt
Microsoft Research

