Web-Mining Agents

Prof. Dr. Ralf Möller
Universität zu Lübeck
Institut für Informationssysteme

Tanya Braun (Übungen)
Accessing Document Annotation Databases

Challenges:
• Robustness: noise, incompleteness, ambiguity (“Sunnybrook”), statistical information (“foundInRoom(bathtub, bathroom)”), …
• Complex queries: “which Canadian hockey teams have won the Stanley Cup?”
• Extensions to annotations required (exploit domain knowledge)
• Learning: how to acquire and maintain domain models as well as how to use it

Current state of the art
“Expressive, probabilistic, efficient: pick any two”
Wang & Cohen, Scalable Statistical Relational Learning for NLP
Datalog for Extending Annotation DBs

• A program defines a unique least Herbrand model

• Example program:

\[\text{grandparent}(X,Y):=\text{parent}(X,Z),\text{parent}(Z,Y). \]
\[\text{parent}(alice,bob). \quad \text{parent}(bob,chip). \quad \text{parent}(bob,dana). \]

The least Herbrand model also includes \text{grandparent}(alice,dana) and \text{grandparent}(alice,chip).

Finding the least Herbrand model: theorem proving…

Usually we care about answering queries:

What are values of \(W \): \text{grandparent}(alice,W) ?

H/T: “Probabilistic Logic Programming, De Raedt and Kersting”
Markov Networks

- **Undirected** graphical models

[h/t Pedro Domingos]

\[P(x) = \frac{1}{Z} \prod_c \Phi_c(x_c) \]

\[= \frac{1}{Z} \exp \left(\sum_i \Phi_c(x_c) \right) \]

<table>
<thead>
<tr>
<th>Smoking</th>
<th>Cancer</th>
<th>(\Phi(S,C))</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>False</td>
<td>4.5</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>4.5</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>2.7</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>4.5</td>
</tr>
</tbody>
</table>

A soft constraint that smoking \(\Rightarrow \) cancer
Markov Logic Networks (MLNs): Intuition

[Domingos et al]

• QA w.r.t. is a set of hard constraints on the set of possible worlds constrained to be deductively closed

• Let's make closure a soft constraint: When a world is not deductively closed, it becomes less probable

• Give each rule a weight which is a reward for satisfying it: (Higher weight \Rightarrow Stronger constraint)

$$P(\text{world}) \propto \exp\left(\sum \text{weights of formulas it satisfies}\right)$$
Markov Logic Networks (MLNs): Definition

- A Markov Logic Network (MLN) is a set of pairs \((F, w)\) where
 - \(F\) is a formula in first-order logic
 - \(w\) is a real number
- Together with a set of constants, it defines a Markov network with
 - One node for each ground\(\text{ing}\) of each predicate in the MLN – each element of the Herbrand base
 - One feature for each grounding of each formula \(F\) in the MLN, with the corresponding weight \(w\)

H/T: Pedro Domingos
Example: Friends & Smokers

Smoking causes cancer.
Friends have similar smoking habits.

H/T: Pedro Domingos
Example: Friends & Smokers

∀x Smokes(x) ⇒ Cancer(x)
∀x, y Friends(x, y) ⇒ (Smokes(x) ⇔ Smokes(y))
Example: Friends & Smokers

<table>
<thead>
<tr>
<th></th>
<th>(\forall x \text{ Smokes}(x) \Rightarrow \text{Cancer}(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>(\forall x, y \text{ Friends}(x, y) \Rightarrow (\text{Smokes}(x) \Leftrightarrow \text{Smokes}(y)))</td>
</tr>
</tbody>
</table>

H/T: Pedro Domingos
Example: Friends & Smokers

<table>
<thead>
<tr>
<th></th>
<th>∀x Smokes(x) ⇒ Cancer(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>∀x, y Friends(x, y) ⇒ (Smokes(x) ⇔ Smokes(y))</td>
</tr>
</tbody>
</table>

Two constants: **Anna** (A) and **Bob** (B)

H/T: Pedro Domingos
Example: Friends & Smokers

<table>
<thead>
<tr>
<th></th>
<th>(\forall x \text{ Smokes}(x) \Rightarrow \text{Cancer}(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>(\forall x, y \text{ Friends}(x, y) \Rightarrow (\text{Smokes}(x) \Leftrightarrow \text{Smokes}(y)))</td>
</tr>
</tbody>
</table>

Two constants: **Anna** (A) and **Bob** (B)

H/T: Pedro Domingos
Example: Friends & Smokers

1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$
1.1 $\forall x, y \ Friends(x, y) \Rightarrow (\ Smokes(x) \Leftrightarrow \ Smokes(y))$

Two constants: **Anna** (A) and **Bob** (B)

Friends(A,B)

Friends(A,A), Smokes(A), Smokes(B), Friends(B,B), Cancer(A), Friends(B,A), Cancer(B)

H/T: Pedro Domingos
Example: Friends & Smokers

1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$
1.1 $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$

Two constants: Anna (A) and Bob (B)

H/T: Pedro Domingos
Example: Friends & Smokers

1.5 \(\forall x \ Smokes(x) \Rightarrow \ Cancer(x) \)

1.1 \(\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y)) \)

Two constants: Anna (A) and Bob (B)

H/T: Pedro Domingos
Markov Logic Networks

- MLN is **template** for ground Markov nets
- Probability of a world X:

\[
P(x) = \frac{1}{Z} \exp \left(\sum_i w_i n_i(x) \right)
\]

- Weight of formula i
- No. of true groundings of formula i in x

Recall for ordinary Markov net

\[
P(x) = \frac{1}{Z} \prod_c \Phi_c(x_c)
\]

\[
= \frac{1}{Z} \exp \left(\sum_i \Phi'_c(x_c) \right)
\]

H/T: Pedro Domingos
MLNs generalize many statistical models 😊

• Special cases:
 – Markov networks
 – Bayesian networks
 – Log-linear models
 – Exponential models
 – Max. entropy models
 – Logistic regression
 – Hidden Markov models
 – Conditional random fields

• Obtained by making all predicates zero-arity

• Markov logic allows objects to be interdependent (non-i.i.d.)

H/T: Pedro Domingos
MLNs generalize logic programs 😊

- Subsets of Herbrand base ~ domain of joint distribution
- Interpretation ~ element of the joint
- Consistency with all clauses $A: - B_1, ..., B_k$, i.e. “model of program” ~ compatibility with program as determined by clique potentials

- Reaches logic in the limit when potentials are infinite (sort of)

H/T: Pedro Domingos
MLNs are expensive 😞

- Inference done by *explicitly building a ground MLN*
 - Herbrand base is huge for reasonable programs: It grows *faster* than the size of the DB of facts
 - You’d like to able to use a huge DB—NELL is $O(10^M)$
- After that, inference on an arbitrary MLN is *expensive*: $\#P$-complete
 - It’s not obvious how to restrict the template so the MLNs will be tractable
Use Probabilistic Databases for Scalability?

Old trick: If you want to weight a rule you can introduce a **rule-specific fact**.

1. \(\text{uncle}(X,Y) : - \text{child}(X,W), \text{brother}(W,Y). \)
2. \(\text{uncle}(X,Y) : - \text{aunt}(X,W), \text{husband}(W,Y). \)
3. \(\text{status}(X,\text{tired}) : \text{child}(W,X), \text{infant}(W). \)

\[\text{r3. status}(X,\text{tired}) : \text{child}(W,X), \text{infant}(W), \text{weighted}(r3). \]

\[\text{r3. status}(X,T) : - \text{child}(W,X), \text{infant}(W), \text{assign_tired}(T), \text{weighted}(r3). \]

assign_tired(tired), 1
child(liam,eve), 0.99 infant(liam), 0.7
child(dave,eve), 0.99 infant(dave), 0.1
child(liam,bob), 0.75 aunt(joe,eve), 0.9
husband(eve,bob), 0.9 brother(eve,chip), 0.9
weighted(r3), 0.88

So learning rule weights is a **special case** of learning weights for **selected DB facts**.

Wang&Cohen, Scalable Statistical Relational Learning for NLP
PDBs: Problems

- Not clear if expanding queries with respect to rules yields safe queries (safe queries can be answered with SQL)
- Rules can be cyclic (no expansion possible)
- Queries get very large due to expansion (n-way join order optimization has its limits)
 - Preprocessing is at least not easy
 - Better approach: Query data w.r.t. model
- How to learn a model?
 - Learn datalog rules
 - Learn more complex logical formulas
Inductive Logic Programming

- Combines inductive methods with the power of first-order representations
- Offers a rigorous approach to the learning problem
- Offers complete algorithms for inducing general, first-order theories from examples

J.R. Quinlan. Learning Logical Definitions from Relations. Machine Learning, Volume 5, Number 3, 1990

ILP: An example

- **Example**: Learning family relations from examples
 - Observations are an extended family tree
 - Mother, Father and Married relations
 - Male and Female properties
 - Target predicates: Grandparent, BrotherInLaw, Ancestor
Example (not up to date)
Example

- Descriptions include facts like
 - Father(Philip, Charles)
 - Mother(Mum, Margaret)
 - Married(Diana, Charles)
 - Male(Philip)
 - Female(Beatrice)

- Sentences in Classifications depend on the target concept being learned (in the example: 12 positive, 388 negative)
 - Grandparent(Mum, Charles)
 - ¬Grandparent(Mum, Harry)

- **Goal**: find a set of sentences for Hypothesis such that the entailment constraint is satisfied
 - Without background knowledge this is for example

 \[
 \text{Grandparent}(x, y) \iff \left(\exists_z \text{Mother}(x, z) \land \text{Mother}(z, y) \right) \\
 \lor \left(\exists_z \text{Mother}(x, z) \land \text{Father}(z, y) \right) \\
 \lor \left(\exists_z \text{Father}(x, z) \land \text{Mother}(z, y) \right) \\
 \lor \left(\exists_z \text{Father}(x, z) \land \text{Father}(z, y) \right)
 \]
Background knowledge

• A little bit of background knowledge helps a lot
 – Background knowledge contains
 \[\text{Parent}(x, y) \iff [\text{Mother}(x, y) \lor \text{Father}(x, y)] \]
 – Grandparent is now reduced to
 \[\text{Grandparent}(x, y) \iff \exists z \text{Parent}(x, z) \land \text{Parent}(z, y) \]

• Constructive induction algorithm
 – Create new predicates to facilitate the expression of explanatory hypotheses
 – Example: introduce a predicate Parent to simplify the definitions of the target predicates
Top-Down Inductive Learning: FOIL

- Split positive and negative examples
 - Positive: <George, Anne>, <Philip, Peter>, <Spencer, Harry>
 - Negative: <George, Elizabeth>, <Harry, Zara>, <Charles, Philip>
- Construct a set of Horn clauses with Grandfather(x,y) as the head with the positive examples instances of the Grandfather relationship
 - Start with a clause with an empty body
 \[\Rightarrow \text{Grandfather} (x,y) \]
 - All examples are now classified as positive, so specialize to rule out the negative examples: Here are 3 potential additions:
 1) Father(x,y) \(\Rightarrow\) Grandfather(x,y)
 2) Parent(x,z) \(\Rightarrow\) Grandfather(x,y)
 3) Father(x,z) \(\Rightarrow\) Grandfather(x,y)
 - The first one incorrectly classifies the 12 positive examples
 - The second one is incorrect on a larger part of the negative examples
 - Prefer the third clause and specialize
 Father(x,z) \(\land\) Parent(z,y) \(\Rightarrow\) Grandfather(x,y)
function Foil(examples, target) returns a set of Horn clauses

inputs: examples, set of examples
target, a literal for the goal predicate

local variables: clauses, set of clauses, initially empty

while examples contains positive examples do
 clause ← New-Clause(examples, target)
 remove examples covered by clause from examples
 add clause to clauses

return clauses
function New-Clause(examples, target) returns a Horn clause

local variables:

- clause: a clause with target as head and an empty body
- l: a literal to be added to the clause
- extended-examples: a set of examples with values for new variables

extended-examples ← examples

while extended-examples contains negative examples do

 l ← Choose-Literal(New-Literals(clause), extended-examples)
 append l to the body of clause
 extended-examples ← set of examples created by applying Extend-Example to each example in extended-examples

return clause
function Extend-Example(example, literal) returns
 if example satisfies literal
 then return the set of examples created
 by extending example with each
 possible constant value for each new
 variable in literal
 else return the empty set
• **New-Literals**
 - Takes a clause and constructs all possible “useful” literals

• **Example**: \(\text{Father}(x,z) \Rightarrow \text{Grandfather}(x,y) \)
 - Add literals using predicates
 • Negated or unnegated
 • Use any existing predicate (including the goal)
 • Arguments must be variables
 • Each literal must include at least one variable from an earlier literal or from the head of the clause
 • Valid: \(\text{Mother}(z,u), \text{Married}(z,z), \text{Grandfather}(v,x) \)
 • Invalid: \(\text{Married}(u,v) \)

- Equality and inequality literals
 • E.g. \(z \neq x \), empty list

- Arithmetic comparisons
 • E.g. \(x > y \), threshold values
FOIL

• The way New-Literal changes the clauses leads to a very large branching factor
• Improve performance by using type information
 – E.g., Parent(x,n) where x is a person and n is a number
• Choose-Literal uses a heuristic similar to information gain
• Ockham’s razor to eliminate hypotheses
 – If the clause becomes longer than the total length of the positive examples that the clause explains, this clause is not a valid hypothesis
• Most impressive demonstration
 – Learn the correct definition of list-processing functions in Prolog from a small set of examples, using previously learned functions as background knowledge
Inverse Resolution

- Inverse resolution
 - Run a proof backwards to find Hypothesis
 - **Problem**: How to run the proof backwards?
Generating Inverse Proofs

• Ordinary resolution
 – Take two clauses C_1 and C_2 and resolve them to produce the resolvent C

• Inverse resolution
 – Take resolvent C and produce two clauses C_1 and C_2
 – Take C and C_1 and produce C_2
Generating Inverse Proofs

\[\text{Parent}(Elizabeth, y) \Rightarrow \text{Grandparent}(George, y) \]

\[\text{True} \Rightarrow \text{Parent}(Elizabeth, Anne) \]

\[\text{Tr}ue \Rightarrow \text{Grandparent}(George, Anne) \]

\[\text{Grandparent}(George, Anne) \Rightarrow \text{False} \]

\[\text{True} \Rightarrow \text{False} \]
Generating Inverse Proofs

- **Inverse resolution is a search**
 - For any \(C \) and \(C_1 \) there can be several or even an infinite number of clauses \(C_2 \)
 - Instead of \(\text{Parent}(\text{Elizabeth},y) \Rightarrow \text{Grandparent}(\text{George},y) \) there were numerous alternatives
 - \(\text{Parent}(\text{Elizabeth},\text{Anne}) \Rightarrow \text{Grandparent}(\text{George},\text{Anne}) \)
 - \(\text{Parent}(z,\text{Anne}) \Rightarrow \text{Grandparent}(\text{George},\text{Anne}) \)
 - \(\text{Parent}(z,y) \Rightarrow \text{Grandparent}(\text{George},y) \)
 - The clauses \(C_1 \) that participate in each step can be chosen from Background, Descriptions, Classifications or from hypothesized clauses already generated

- **ILP needs restrictions to make the search manageable**
 - Eliminate function symbols
 - Generate only the most specific hypotheses
 - Use Horn clauses
 - All hypothesized clauses must be consistent with each other
 - Each hypothesized clause must agree with the observations
New Predicates and New Knowledge

• An inverse resolution procedure is a complete algorithm for learning first-order theories
 – If some unknown Hypothesis generates a set of examples, then an inverse resolution procedure can generate Hypothesis from the examples

• Can inverse resolution infer the law of gravity from examples of falling bodies?
 – Yes, given suitable background mathematics

• **Monkey and typewriter problem**: How to overcome the large branching factor and the lack of structure in the search space?
New Predicates and New Knowledge

- Inverse resolution is capable of generating new predicates
 - Resolution of C_1 and C_2 into C eliminates a literal that C_1 and C_2 share
 - This literal might contain a predicate that does not appear in C
 - When working backwards, one possibility is to generate a new predicate from which to construct the missing literal
New Predicates and New Knowledge

- P can be used in later inverse resolution steps
 - **Example**: Mother(x,y) \(\Rightarrow\) P(x,y) or Father(x,y) \(\Rightarrow\) P(x,y) leading to the “Parent” relationship
- Inventing new predicates is important to reduce the size of the definition of the goal predicate
 - Some of the deepest revolutions in science come from the invention of new predicates (e.g. Galileo’s invention of acceleration)
Learning of "Weights"

- Use similar trick as for PDBs:
 - Introduce atoms weighted(r_k) in rules and respective facts with probabilities
- Learn probabilities of weighted facts such that training data are most likely generated (ML, MAP)
- Various approaches known

- Use MLNs
Problems with MLN QA

• Grounding

Leads to research about lifted inference:
• Probabilistic relational models (PRMs)
• Dynamic probabilistic relational models (DPRMs)