Web-Mining Agents Rules of Encounter

Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme

Tanya Braun (Übungen)

IM FOCUS DAS LEBEN

Acknowledgements to...

... and to many other lecturers who have shared their slides on the web!

Mechanisms, Protocols, and Strategies

- The mechanism defines the "rules of encounter" between agents
- *Mechanism design* is designing mechanisms so that they have certain desirable properties
- Given a particular protocol, how can a particular *strategy* be designed that individual agents can use?
- Notion of a dominant strategy
 - Best strategy can be determined w/o considering the (best) strategies of other agents

Example: Prisoner's Dilemma

Two people are arrested for a crime.

IVERSITÄT ZU LÜBECK

- If neither suspect confesses, both are released.
- If both confess then they get sent to jail.
- If one confesses and the other does not, then the confessor gets a light sentence and the other gets a heavy sentence.

Dominant strategy exists but is not Pareto efficient

IM FOCUS DAS LEBEN

Example: Split or Steal

Does communication help? Only if agents do not lie

Example: Bach or Stravinsky

A couple likes going to concerts together.

• One loves Bach but not Stravinsky.

NIVERSITÄT ZU LÜBECK

IT FÜR INFORMATIONSSYSTEME

- The other loves Stravinsky but not Bach.
- However, they prefer being together than being apart.

IM FOCUS DAS LEBEN

Nash Equilibrium

- Sometimes an agent's best-response depends on the strategies other agents are playing
 - No dominant strategy equilibria
- A strategy profile is a Nash equilibrium if no player has incentive to deviate from his strategy given that others do not deviate

Mechanism Design

- Protocol such that agent can determine their actions
- Desirable properties of mechanisms:
 - Convergence/guaranteed success
 - Maximizing social welfare
 - Pareto efficiency
 - Individual rationality
 - Stability
 - Simplicity
 - Distribution

Auctions

- An auction takes place between an agent known as the auctioneer and a collection of agents known as the bidders
- The goal of the auction is for the auctioneer to allocate the *good* to one of the bidders
- In most settings the auctioneer desires to maximize the price; bidders desire to minimize price

Auction Parameters

- Goods can have
 - private value
 - public/common value
 - correlated value
- Winner determination may be
 - first price
 - second price
- Bids may be
 - open cry
 - sealed bid
- Bidding may be
 - one shot
 - ascending

- descending

English Auctions

- Most commonly known type of auction:
 - first price
 - open cry
 - ascending
- Dominant strategy is for agent to successively bid a small amount more than the current highest bid until it reaches their valuation, then withdraw
- Susceptible to:
 - winner's curse
 - shills

Dutch Auctions

- Dutch auctions are examples of *open-cry descending* auctions:
 - auctioneer starts by offering good at artificially high value
 - auctioneer lowers offer price until some agent makes a bid equal to the current offer price
 - the good is then allocated to the agent that made the offer

First-Price Sealed-Bid Auctions

- First-price sealed-bid auctions are *one-shot auctions*:
 - there is a single round
 - bidders submit a sealed bid for the good
 - good is allocated to agent that made highest bid
 - winner pays price of highest bid
- Best strategy is to bid less than true valuation

Example: 1st price sealed-bid auction

2 agents (1 and 2) with values v_1, v_2 drawn uniformly from [0,1]. Utility of agent i if it bids b_i and wins the item is $u_i = v_i - b_i$.

Assume agent 2's bidding strategy is $b_2(v_2)=v_2/2$ How should 1 bid? (i.e. what is $b_1(v_1)=z$?)

$$U_1 = \int_{x=0}^{2z} (v_1 - x) dx = [v_1 x - (1/2) x^2]_0^{2z} = 2zv_1 - 2z^2$$

Note: given $b_2(v_2)=v_2/2$, 1 only wins if $v_2 < 2z$ otherwise U_1 is 0

 $argmax_{z}[2zv_{1}-2z^{2}]$ when $z=b_{1}(v_{1})=v_{1}/2$

Similar argument for agent 2, assuming $b_1(v_1)=v_1/2$. We have an equilibrium

Vickrey Auctions

- Vickrey auctions are:
 - second-price
 - sealed-bid
- Good is awarded to the agent that made the highest bid; at the price of the second highest bid
- Bidding to your true valuation is dominant strategy in Vickrey auctions
- Vickrey auctions susceptible to *antisocial* behavior

Phone Call Competition Example

- Customer wishes to place long-distance call
- Carriers simultaneously bid, sending proposed prices
- Phone automatically chooses the carrier (dynamically)

Best Bid Wins

- Phone chooses carrier with lowest bid
- Carrier gets amount that it bid

Attributes of the Mechanism

- ✓ Distributed
- ✓ Symmetric
- × Stable
- × Simple
- × Efficient

Carriers have an incentive to invest effort in strategic behavior

Best Bid Wins, Gets Second Price (Vickrey Auction)

- Phone chooses carrier with lowest bid
- Carrier gets amount of second-best price

Attributes of the Vickrey Mechanism

- ✓ Distributed
- ✓ Symmetric
- ✓ Stable
- ✓ Simple
- ✓ Efficient

Carriers have *no* incentive to invest effort in strategic behavior

IM FOCUS DAS LEBEN 7-20

Lies and Collusion

- The various auction protocols are susceptible to lying on the part of the auctioneer, and collusion among bidders, to varying degrees
- All four auctions (English, Dutch, First-Price Sealed Bid, Vickrey) can be manipulated by bidder collusion
- A dishonest auctioneer can exploit the Vickrey auction by lying about the 2nd-highest bid
- *Shills* can be introduced to inflate bidding prices in English auctions

Negotiation

- Auctions are only concerned with the allocation of goods: richer techniques for reaching agreements are required
- Negotiation is the process of reaching agreements on matters of common interest

Bargaining, Mechanims, Strategies, Deals

- Negotiations can involve
 - Exchange of information
 - Relaxation of initial goals
 - Mutual concession
- Negotiations governed by mechanism (or protocol)
 - Rules of encounter between the agents
 - Public rules by which the agents will come to agreements
 - Stategies that agents should use
 - Deals that can be made
 - Sequence of offers and counter-offers that can be made

Negotiation in Applications

- Task-oriented domains (TOD)
 - Each agent is associated with a set of tasks (e.g., web mining tasks)
 - Goal: redistribute tasks such that costs of completing the tasks is reduced/minimized
- State-oriented domains (SOD \supseteq TOD)
 - Each agent has a set of goal states it would like to achieve
 - Use negotiation to achieve a common goal (actions can have positive or negative side effects)
- Worth-oriented domains (WOD \supseteq SOD)

/ERSITÄT ZU LÜBECK

- Agents assign worth to state (agent-local utility)
- Goal: maximize mutual worth / compromise on goals

How many agents?

- One to one
- One to many (auction is an example of one seller and many buyers)
- Many to many (could be divided into buyers and sellers, or all could be identical in role – like officemate)
 - n(n-1)/2 number of pairs

Negotiation Process

- Negotiation usually proceeds in a series of rounds, with every agent making a proposal at every round.
- Communication during negotiation:

Another way

 of looking at the
 negotiation process:
 Who "moves" the farthest

Types of deals

- Conflict deal: keep the same tasks as had originally
- Pure divide up tasks
- Mixed we divide up the tasks, but we decide probabilistically who should do what
- All or Nothing (A/N) Mixed deal, with added requirement that we only have all or nothing deals (one of the tasks sets is empty)

TOD Examples

- Parcel Delivery
 - Several couriers have to deliver sets of parcels to different cities.
 - Target of negotiation is to reallocate deliveries so that the cost of travel for each courier is minimal.
- Database Query Answering / Web Mining
 - Scenario 1:
 - Several agents have access to a common database / web area, and each has to carry out a set of queries
 - Target of negotiation is to arrange queries so as to maximize efficiency of database operations (Selection, Projection, Join, ...)
 - E.g., "you are doing a join as part of another operation, so please save the results for me"
 - Scenario 2:
 - Several agents have to access an overlapping set of web areas
 - Agree on reallocation and share results

Negotiation Protocols

- Who begins
- Take turns
- Single or multiple issues
- Build off previous offers
- Give feedback (or not). Tell what utility is (or not)
- Obligations requirements for later
- Privacy (not share details of offers with others)
- Allowed proposals you can make as a result of negotiation history
- Process terminates (hopefully)

Criteria of a Negotiation Protocols

- Efficiency do not waste utility. Pareto Optimal
- Stability no agent have incentive to deviate from dominant strategy
- Simplicity low computational demands on agents (e.g., no counter-speculation required → "dominant strategy" exists)
- Distribution no central decision maker
- Symmetry (possibly) may not want agents to play different roles

Task-oriented domain (TOD)

- A task-oriented domain is a triple <*T*, *Ag*, *c*> where
 - *T* is the (finite) set of all possible tasks
 - $Ag = \{1, ..., n\}$ is the set of participating agents
 - $c = \wp(T) \rightarrow \mathbf{R}$ defines the cost of executing each subset of tasks
- Constraints on the cost function *c*:
 - If $T \subseteq T'$, then $c(T) \leq c(T')$ (monotonicity).
 - $c(\emptyset) = 0$

The case of two agents

• Let (T_1, T_2) be the original tasks of two agents and let $\delta = (D_1, D_2)$ be a new task allocation (a *deal*), i.e.,

•
$$T_1 \cup T_2 = D_1 \cup D_2$$

• An agent *i*'s utility of a deal δ is defined as follows:

•
$$utility_i(\delta) = c(T_i) - c(D_i)$$

- δ_1 dominates δ_2 when one agent is better off and none is worse off

The negotiation set

- The **negotiation set** consists of the deals that are Pareto efficient and individual rational.
 - A deal is *Pareto efficient* if it is not dominated by another task allocation
 - A deal is *individual rational* if neither agent is worse off than in the original allocation (the 'conflict deal')

- Both agents make several small concessions until an agreement is reached.
- Each agent proposes a deal
- If one agent matches or exceeds what the other demands, the negotiation ends
- Else, each agent makes a proposal that is equal or better for the other agent (concede)
- If no agent concedes, the negotiation ends with the conflict deal

- Properties
 - Termination: guaranteed if the agreement space is finite
 - Verifiability: easy to check that an opponent really concedes (only one's own utility function matters)
- Criticism
 - You need to know your opponent's utility function to be able to concede (typical assumption in game theory; not always appropriate)

- What is a good negotiation strategy for the Monotonic Concession Protocol?
- Consider danger of getting it wrong:
 - If you concede too often (or too much), then you risk not getting the best possible deal for yourself.
 - If you do not concede often enough, then you risk conflict (which has utility 0).

Idea: measure willingness to risk conflict

Zeuthen strategy

- Start with deal that is best among all deals in the negotiation space
- Calculate willingness to risk conflict of self and opponent
- If willingness to risk conflict is smaller than opponent, offer minimal sufficient concession (a sufficient concession makes opponent's willingness to risk conflict less than yours); else offer original deal

Deception in task-oriented domains

- Deception can benefit agents in two ways:
- Phantom and decoy tasks
 - Pretending that you have been allocated tasks you have not
- Hidden tasks
 - Pretending not to have been allocated tasks that you have been

Evaluation

- The game-theoretic approach to reaching agreement has pros and cons:
- PRO: Desirable properties of protocols provable
- CON: Positions cannot be justified
- CON: Positions cannot be changed
- Alternative: Argumentation

Logic-based Argumentation

- Database \vdash (Sentence, Grounds)
- Database is a (possibly inconsistent) set of logical formulae
- Sentence is a logical formula known as the conclusion
- *Grounds* is a set of logical formulae such that:
 - Grounds \subseteq Database; and
 - Sentence can be proved from Grounds

Argument attack

- Let (C1, G1) and (C2, G2) be arguments from some database D.
- (C1, G1) <u>rebuts</u> (C2, G2) if $C1 \equiv \neg C2$
- (C1, G1) <u>undercuts</u> (C2, G2) if C1 $\equiv \neg$ S for some S \in G2
- Rebuttals and undercuts are known as attacks.

Abstract Argumentation

- An <u>abstract argument system</u> is a collection or arguments together with a relation "→" indicating what attacks what
- Labeling:

An argument is <u>out</u> (defeated) if (and only if) it has an undefeated attacker, and <u>in</u> (undefeated) if all its attackers are defeated

• Out-in labelings obeying this constraint do not always exist and are not always unique.

Idea for an algorithm:

- Label all nodes that can have no <u>in</u> attacker in a complete labeling as <u>in</u>. (Having no attackers at all will do.)
- 2. Label all nodes with an <u>in</u> attacker as <u>out</u>.
- 3. Go to 1 if changes were made; else stop.

An Example Abstract Argument System

That's it! BTW: In this case there exists no complete labeling. (Why?)

IM FOCUS DAS LEBEN