Web-Mining Agents Planning

Prof. Dr. Ralf Möller
Universität zu Lübeck
Institut für Informationssysteme

Tanya Braun (Übungen)

Handlungsplanung

- 1. Gegeben eine initiale Situation,
- 2. eine Beschreibung der Zielbedingungen und
- 3. eine Menge von möglichen Aktionen,
- -> Finde eine Sequenz von Aktionen (einen Handlungsplan), der die initiale Situation in eine Situation überführt, in der die Ziel-bedingungen gelten.

Handlungsplanung vs. Problemlösen durch Suche

- Wesentlicher Unterschied:
 - Bei Handlungsplanung explizite, logikbasierte Repräsentation
- Zustände/Situationen:
 - Durch logische Formeln beschriebene Weltzustände vs.
 Datenstrukturen
- Operatoren:
 - Axiome oder Transformation von Formeln
 vs. Modikation von Datenstrukturen durch Programme

Repräsentation der Operatoren durch Axiome

- Im Prinzip kann man Planung auf logische Inferenz (= Situationskalkül, <u>nicht</u> Beschreibungslogiken) reduzieren
- Bestehende Systeme, die für praktische Anwendungen effizient genug sind, befinden sich allerdings (immer noch) in der Entwicklung (-> Schlußsysteme für nichtmonotone Logiken)
- Wir behandeln einen anderen klassischen Ansatz…

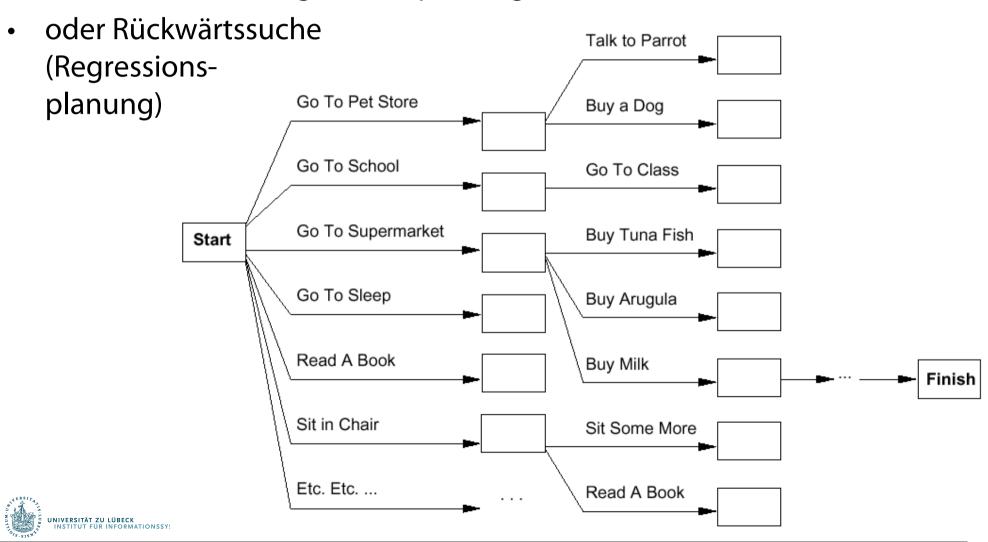
Transformation von Formeln: STRIPS

- STRIPS:
 - STanford Research Institute Problem Solver (Planer der frühen 70-er Jahre)
- System ist zwar obsolet, der Formalismus wird aber immer noch benutzt
- Kernidee:
 - "Weltzustand" durch log. Formeln repräsentiert,
 - "Operatoren" manipulieren Weltzustand

Der STRIPS-Formalismus

- Weltzustand (inkl. initialer Zustand)
 - Menge von Grundatomen, keine Funktionssymbole außer Konstanten, interpretiert unter CWA (manchmal auch Standardinterpretation, d.h. negative Fakten müssen angegeben werden)
 - Beispiel Blockswelt:On_Table(A), On_Table(B), On_Table(C)
- Zielbedingungen:
 - Menge von Grundatomen
 - Beispiel: On_Block(C, B), On_Block(B, A)

STRIPS-Operatoren


- Aktionen sind Tripel, bestehend aus
 - Aktionsnamen: Funktionsname mit Parametern
 - Vorbedingungen: Konjunktion positiver Literale; müssen gelten, damit Aktion ausführbar ist
 - Effekte: Konjunktion positiver und negativer Literale; positive Literale werden hinzugenommen (ADD Liste), negative gelöscht (DEL Liste)
 - Variablen möglich (Renaming)

 $Op(Action: Go(there), Precond: At(here) \land Path(here, there), Effect: At(there) \land \neg At(here))$ $Go(there) \land At(there), At(there), At(there), At(there)$

At(here), Path(here, there)

Reduktion von Planen auf Suche in einem Zustandsraum

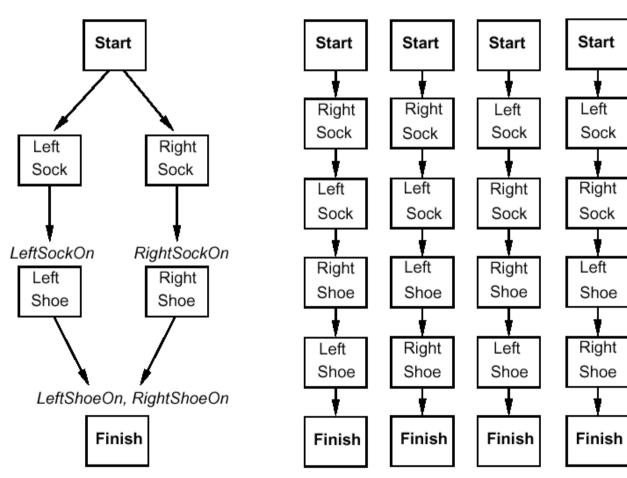
Vorwärtssuche (Progressionsplanung)

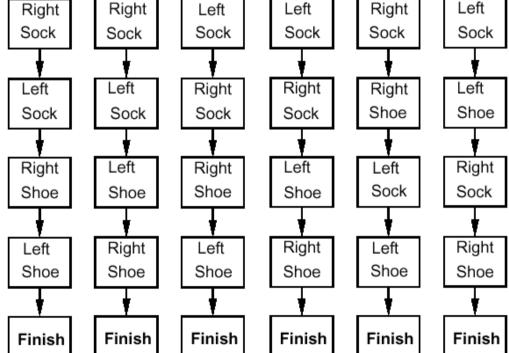
Suche im Planraum

Der Ausgangszustand ist dann ein **partieller Plan**, der nur einen Start- und einen Zielzustand enthält:

Der Zielzustand ist ein **vollständiger Plan**, der das gegebene Problem löst:

Verfeinerungsoperatoren machen den Plan konkreter (mehr Schritte usw.)


Modifikationsoperatoren modifizieren den Plan (im folgenden nur V.-Op.)



Plan = <u>Sequenz</u> von Aktionen?

Partial Order Plan:

Total Order Plans:

Start

Start

Prinzip der geringsten Festlegung

Oft ist es aber nicht sinnvoll oder möglich, sich bei der Reihenfolge früh festzulegen (Socken und Schuhe anziehen).

→ nicht-lineare oder partiell geordnete
Pläne (least-commitment planning)

Repräsentation nicht-linearer Pläne

- Planschritt = STRIPS-Operator
- Plan besteht aus
 - Menge von **Planschritten** mit partieller Ordnung (\prec), wobei $S_i \prec S_j$ gdw. S_i muß vor S_j ausgeführt werden.
 - Menge von **Variablenbelegungen** x = t, wobei x eine Variable und t eine Konstante oder Variable ist.
- L Menge kausaler Beziehungen: $S_i \stackrel{c}{\longrightarrow} S_j$ n vollständig und
 - k bedeutet " S_i erzeugt die Vorbedingung c für S_j " (impliziert $S_i \prec S_j$)

Vollständigkeit und Konsistenz

Vollständiger Plan:

Jede Vorbedingung eines Schritts wird erfüllt: $\forall S_j \text{ mit } c \in \mathsf{Precond}(S_j) \text{ und}$ $\exists S_i \text{ mit } S_i \prec S_j \text{ und } c \in \mathsf{Effects}(S_i) \text{ und}$ für jede Linearisierung des Plans gilt:

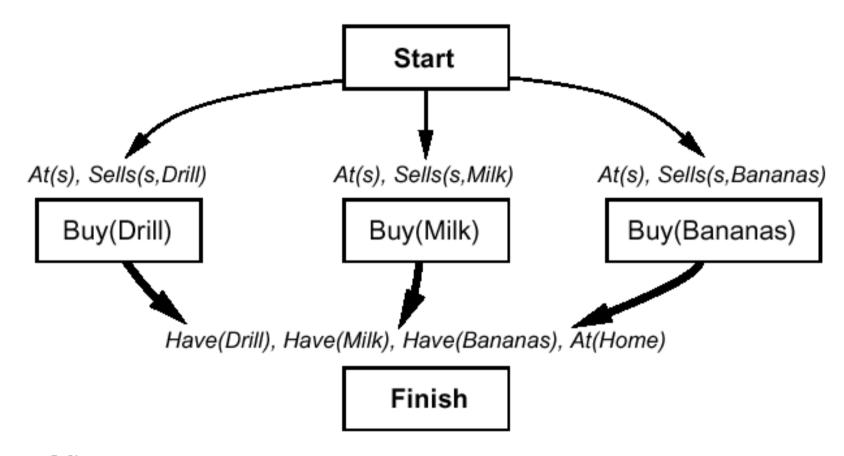
 $\forall S_k \text{ mit } S_i \prec S_k \prec S_j, \ \neg c \not\in \mathsf{Effect}(S_k).$

Konsistenter Plan:

wenn $S_i \prec S_j$, dann $S_j \not\prec S_i$ und wenn x = A, dann $x \neq B$ für verschiedene A und B für eine Variable x (Unique Name Assumption!)

Ein *vollständiger, konsistenter Plan* heißt **Lösung** eines Planungsproblems.

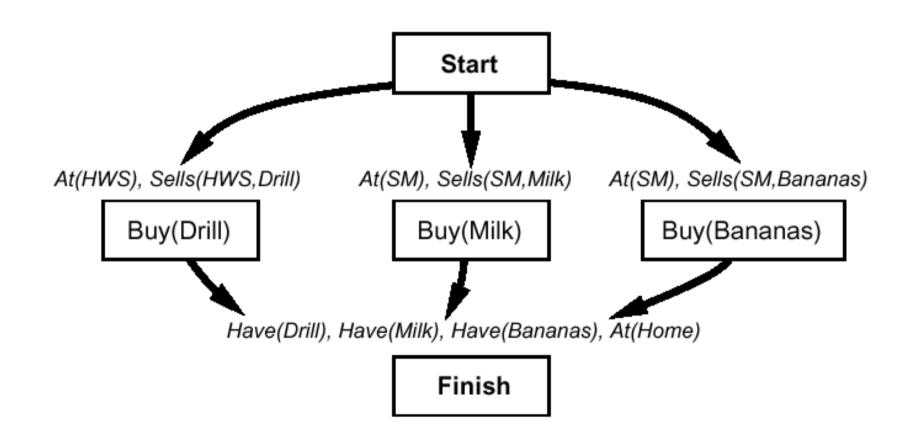
Beispiel



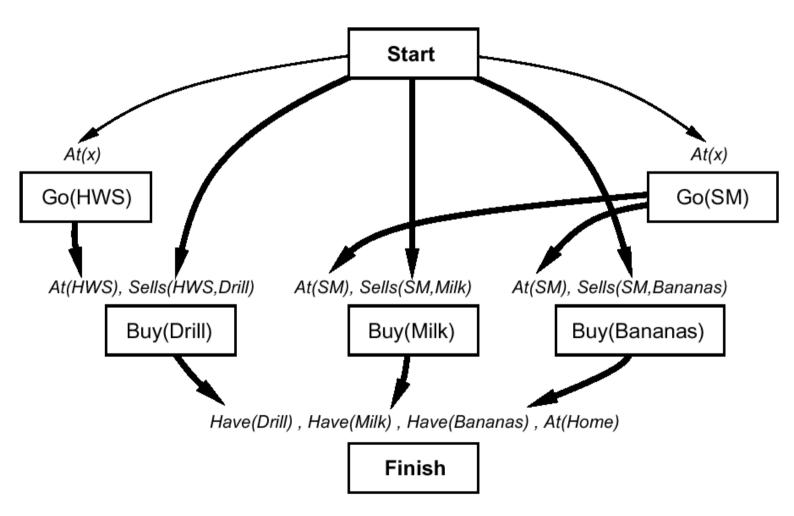
there, here, x, store sind Variablen.

Effect: Have(x))

Planverfeinerung (1)

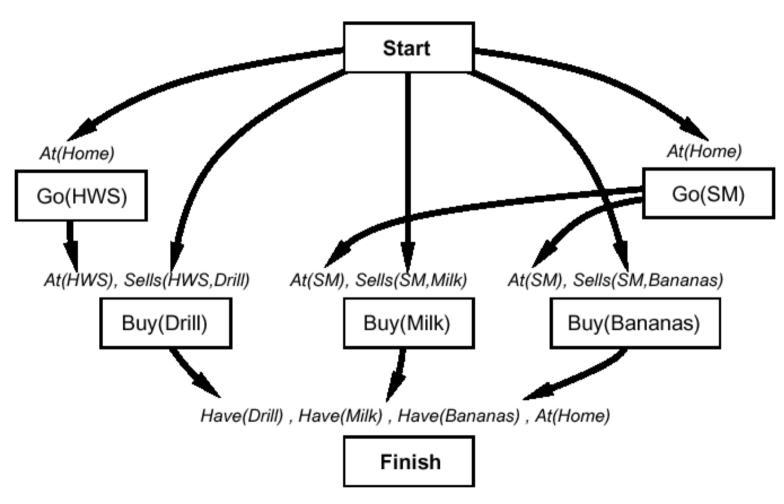

Regressionsplanung: Erfülle die Have-Prädikate

Dünne Pfeile = \prec Fette Pfeile = Kausale Beziehungen + \prec


Planverfeinerung (1)

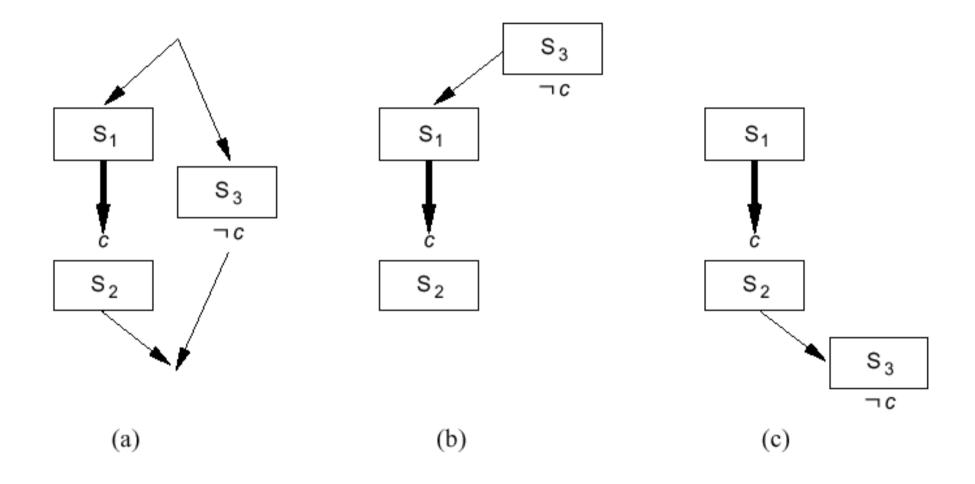
... nach Instantiierung der Variablen

Planverfeinerung (2)


... im richtigen Geschäft kaufen

Planverfeinerung (3)

... da muß man erst einmal hin


Planverfeinerung (3)

Beachte: Bisher keine Suche, sondern einfache Rückwärtsverkettung.

Jetzt: Konflikt! Wenn wir go(hws) gemacht haben, sind wir nicht mehr At(home). Das gleiche gilt für go(sm).

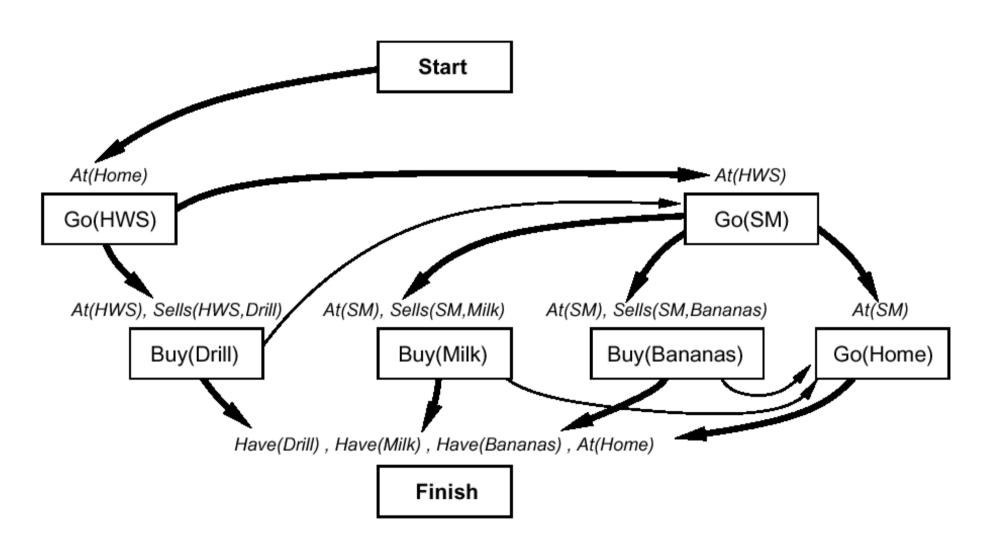
Schutz kausaler Beziehungen

Schutz kausaler Beziehungen

a) Konflikt: S_3 "bedroht" die kausale Beziehung zwischen S_1 und S_2

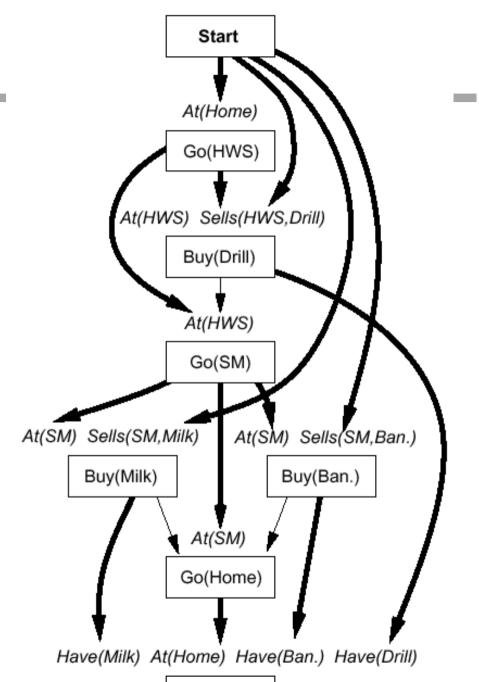
Konfliktlösungen:

- b) Demotion: Den "Bedroher" vor die kausale Beziehung legen
- c) Promotion: Den "Bedroher" hinter die kausale Beziehung legen



Eine andere Planverfeinerung...

- Wir können den Konflikt nicht durch "Schutz" auflösen.
- → Wir haben uns bei einer Planverfeinerung falsch entschieden.
 - Alternative: Bei der Instantiierung von At(x) in go(sm) wählen wir x = hws (mit kausaler Beziehung)
 - Beachte: Dies bedroht das Kaufen des drills → Promotion von go(sm).


Eine andere Planverfeinerung...

Die vollständige Lösung

- ... mit allen Links
- Bestimmung
 z.B. durch POP-Algorithmus
 - Vollständig
 - ... und korrekt
- Zusätzlich, hier nicht näher betrachtet: Behandlung von Variablen

function POP(*initial*, *goal*, *operators*) **returns** *plan*

```
plan \leftarrow \text{MAKE-MINIMAL-PLAN}(initial, goal)
\textbf{loop do}
\textbf{if SOLUTION?}(plan) \textbf{ then return } plan
S_{need}, c \leftarrow \text{SELECT-SUBGOAL}(plan)
\text{CHOOSE-OPERATOR}(plan, operators, S_{need}, c)
\text{RESOLVE-THREATS}(plan)
\textbf{end}
```

function Select-Subgoal(plan) returns S_{need} , c

pick a plan step S_{need} from STEPS(plan) with a precondition c that has not been achieved return S_{need} , c

procedure Choose-Operators(plan, operators, S_{need} , c)

```
choose a step S_{add} from operators or STEPS(plan) that has c as an effect if there is no such step then fail add the causal link S_{add} \xrightarrow{c} S_{need} to LINKS(plan) add the ordering constraint S_{add} \prec S_{need} to ORDERINGS(plan) if S_{add} is a newly added step from operators then add S_{add} to STEPS(plan) add S_{add} \prec S_
```

procedure RESOLVE-THREATS(*plan*)

```
for each S_{threat} that threatens a link S_i \xrightarrow{c} S_j in LINKS(plan) do choose either

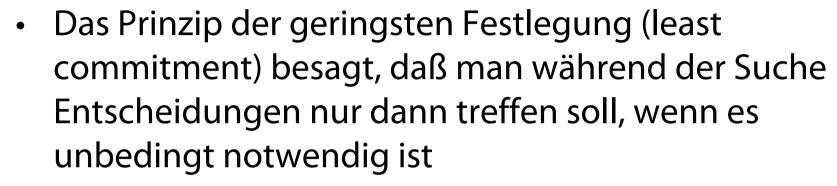
Promotion: Add S_{threat} \prec S_i to ORDERINGS(plan)

Demotion: Add S_j \prec S_{threat} to ORDERINGS(plan)

if not Consistent(plan) then fail
end
```

Planungssysteme

- Prodigy
 - sucht im Zustandsraum und generiert lineare Pläne
 - (http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/prodigy/Web/prodigy-home.html)
- UCPOP (http://www.cs.washington.edu/ai/ucpop.html)
- Neuere, effizientere Systeme:
 - Graphplan (http://www-2.cs.cmu.edu/~avrim/graphplan.html)
 - IPP (http://www.informatik.uni-freiburg.de/~koehler/ipp.html)



Zusammenfassung, Kernpunkte (1)

- Handlungsplanung unterscheidet sich vom Problemlösen dadurch, daß die Repräsentation flexibletist.
- Statt im Zustandsraum kann man im Planraum suchen.

Zusammenfassung, Kernpunkte (2)

- Nichtlineares Planen ist eine Instanz dieses Prinzips
- Der POP-Algorithmus realisiert nichtlineares Planen und ist vollständig und korrekt