Einführung in Web- und Data-Science

Prof. Dr. Ralf Möller

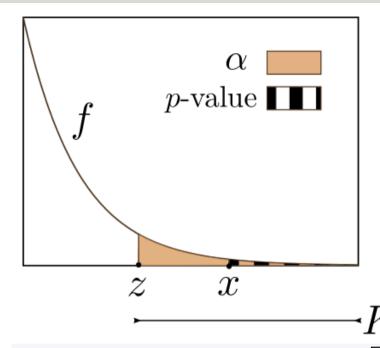
Universität zu Lübeck Institut für Informationssysteme

Tanya Braun (Übungen)

P-Wert (einseitiger Ablehnungsbereich)

- Hypothesentest H₀ vs. H₁
- Wie extrem ist der auf Basis der erhobenen Daten berechnete Wert der Teststatistik?
- Wahrscheinlichkeit, bei Gültigkeit von H₀ den bestimmten oder einen extremeren Wert der Teststatistik zu erhalten

In manchen Veröffentlichungen wird leider α als p-Wert bezeichnet!



Für diese Realisation x im Ablehnbereich K ist der p-Wert kleiner als α , oder dazu äquivalent ist die Realisation der Teststatistik x größer als der kritische Wert z. Hier ist f die Wahrscheinlichkeitsdichte der Verteilung unter der Nullhypothese

Danksagung

Nachfolgende Materialen sind mit Änderungen übernommen aus:

Vorlesung Statistik (WS08/09) aus dem Studiengang Psychologie and der Universität Freiburg

Unterschiedshypothesen

- Sind Frauen ängstlicher als Männer?
 - Unterscheiden sich die Mittelwerte von zwei Gruppen?
 - Unabhängige Stichproben
- Ist der Mittelwert der Ängstlichkeit nach einer Therapie größer als vor der Therapie?
 - Unterscheidet sich der Mittelwert einer Stichprobe zu zwei Messzeitpunkten?
 - Abhängige Stichproben
- Liegt der mittlere IQ einer Gruppe über 100?
 - Unterscheidet sich der Mittelwert einer Gruppe von einem vorgegeben Wert?
 - Test bzgl. Gruppe

Unterschiedshypothesen: Unabhängige Stichproben

Unterscheiden sich die Mittelwerte von zwei Gruppen?

Differenz der Mittelwerte zweier Stichproben: $\Delta_{r} = \overline{x}_1 - \overline{x}_2$

 0.3^{-}

0.2

0.1

- Schätze die bedingte Wahrscheinlichkeit: $p(\Delta_r | H_0)$
- Wenn $p < \alpha$, wird H_0 verworfen und H_1 angenommen
- Stichprobenkennwerteverteilung: Verteilung der Mittelwertsdifferenzen unter H_0
- Wie verteilen sich empirische Mittelwertsdifferenzen, wenn man sehr oft Stichproben zieht?

Standardfehler der Kennwerteverteilung

 Hängt von den Standardabweichungen und den Größen der beiden Teilstichproben ab:

$$\hat{\sigma}_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{\hat{\sigma}_1^2}{N_1} + \frac{\hat{\sigma}_2^2}{N_2}}$$

 Benötigt, um gefundene Mittelwertsdifferenz interpretieren zu können

t-Verteilung

 Empirische Mittelwertsdifferenz durch Standardfehler dividiert ergibt sog. t-Verteilung

$$t_{df} = \frac{\bar{x}_1 - \bar{x}_2}{\hat{\sigma}_{\bar{x}_1 - \bar{x}_2}}$$

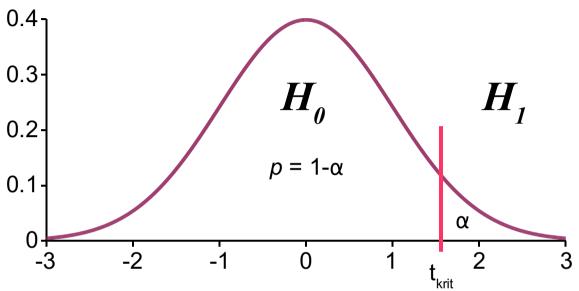
• Die genaue Form der t-Verteilung hängt von deren Freiheitsgraden ($df = degree \ of \ freedom$) ab

$$df = N_1 + N_2 - 2$$

- Bei df > 120 nahezu identisch mit z-Verteilung
- Je kleiner df, desto schmalgipfliger die t-Verteilung
- Die Herleitung der Dichtefunktion und der kumulativen Funktion erfolgt später

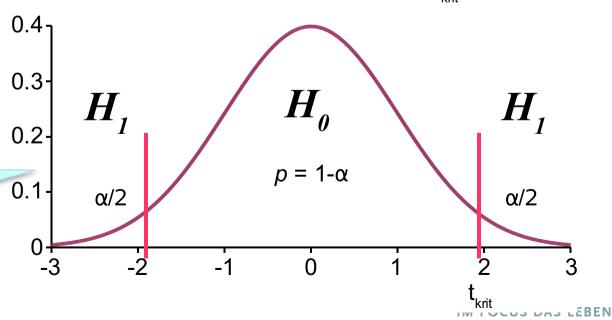
Der t-Test für unabhängige Stichproben

einseitiger Test (gerichtete H₀)



zweiseitiger Test (ungerichtete H₀)

Hier wird $1-\alpha$ als p-Wert bezeichnet!

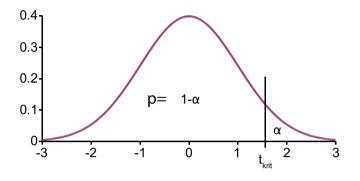


Entscheidung über die Nullhypothese

- Mittels einer t-Tabelle wird der empirische t-Wert interpretiert
- Dazu wird ein kritischer t-Wert aus der t-Tabelle entnommen
 - Der kritische t-Wert hängt dabei ab:
 - von den Freiheitsgraden,
 - von dem gewählten α -Niveau
 - von der Art des Tests (einseitig vs. zweiseitig)
 - Der kritische t-Wert definiert die Grenze des Bereichs für den empirischen t-Wert, ab dem H_0 verworfen wird

Die *t*-Verteilung

df	p=.800	p=.900	p=.950	p=.975	p=.990	p=.995
1	1,376	3,078	6,314	12,706	31,821	63,657
2	1,061	2,920	2,920	4,303	6,965	9,925
3	0,978	2,353	2,353	3,182	4,541	5,841
4	0,941	2,132	2,132	2,776	3,747	4,604
5	0,920	2,015	2,015	2,571	3,365	4,032
6	0,906	1,943	1,943	2,447	3,143	3,707
7	0,896	1,895	1,895	2,365	2,998	3,499
8	0,889	1,860	1,860	2,306	2,896	3,355
9	0,883	1,833	1,833	2,262	2,821	3,250
10	0,879	1,812	1,812	2,228	2,764	3,169
20	0,860	1,725	1,725	2,086	2,528	2,845
30	0,854	1,697	1,697	2,042	2,457	2,750
40	0,851	1,684	1,684	2,021	2,423	2,704
50	0,849	1,676	1,676	2,009	2,403	2,678
60	0,848	1,671	1,671	2,000	2,390	2,660
70	0,847	1,667	1,667	1,994	2,381	2,648
80	0,846	1,664	1,664	1,990	2,374	2,639
90	0,846	1,662	1,662	1,987	2,368	2,632
100	0,845	1,660	1,660	1,984	2,364	2,626
200	0,843	1,653	1,653	1,972	2,345	2,601
1000	0,842	1,646	1,646	1,962	2,330	2,581



Kritische t-Werte:

$$\alpha = .05$$
, einseitig, *df*=100:
 $t_{krit}(100) = 1.66$

$$\alpha = .05$$
, zweiseitig, *df*=100:
 $t_{krit}(100) = 1.98$

$$\alpha = .01$$
, einseitig, *df*=100:
 $t_{krit}(100) = 2.36$

Der t-Test für unabhängige Stichproben

Entscheidungsregeln

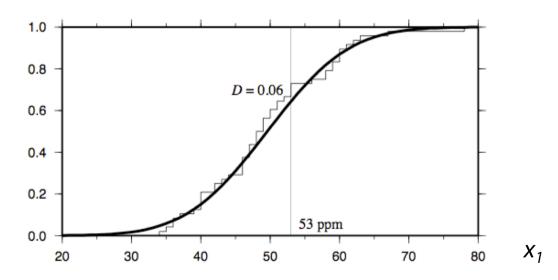
- Einseitiger Test:
 - Wenn $t_{emp} > t_{krit}$ wird H_0 verworfen
- Zweiseitiger Test
 - Wenn $|t_{emp}| > t_{krit}$ wird H_0 verworfen
- In der t-Tabelle werden immer Werte für den einseitigen Test angegeben.
- Für einen 2-seitigen Test muss t_{krit} so gewählt werden, dass ein Bereich von $\alpha/2$ "von der Verteilung abgeschnitten wird"

Voraussetzungen

- (1) Intervallskalenniveau der Variable
- (2) Normalverteilung des Merkmals in der Grundgesamtheit
- (3) "Varianzhomogenität" (Gleiche Varianzen des Merkmals in beiden Populationen)
- (4) Unabhängigkeit der Stichproben

Normalverteilung des Merkmals in Grundgesamtheit

- Normalverteilungsannahme für X statistisch überprüfbar
 - Kolmogorov-Smirnov-Test: $X \sim N(\mu, \sigma)$ ist H_0
 - Sortiere Stichprobendaten $x^T = [x_1, x_2]$ nach x_1 aufsteigend
 - Bestimme maximale Differenz D der kumulativen Verteilungen
 - Vergleiche ob D > KS-Wert bzgl. gewähltem Signifikanzniveau α (KS-Wert aus KS-Tabelle bestimmbar)



Herleitung der KS-Tabelle in höherem Semester

Varianzhomogenität

Auch Varianzhomogenität kann statistisch überprüft werden (Levene-Test)

Nullhypothese:

$$H_0{:}\,\sigma_1^2=\sigma_2^2=\ldots=\sigma_k^2$$

Testverteilung für Levene-Test wird später hergeleitet

 $H_1 \colon \sigma_i^2
eq \sigma_j^2$ für mindestens ein

Alternativhypothese:

Gruppenpaar i,j mit $i \neq j$

Befindet sich der p-Wert des Tests unter einem zuvor bestimmten Niveau, so sind die Unterschiede in den Varianzen der Stichproben überzufällig (signifikant) und die Nullhypothese der Varianzgleichheit kann abgelehnt werden.^[2]

Bei einem signifikanten
 Ergebnis (p < .05), werden
 die Freiheitsgrade des
 Tests "korrigiert"

$$df_{corr} = \frac{1}{\frac{c^2}{N_1 - 1} + \frac{(1 - c^2)}{N_2 - 1}}$$

$$mit \quad c = \frac{\hat{\sigma}_{x_1}^2}{\hat{\sigma}_{x_1}^2 + \hat{\sigma}_{x_2}^2}$$

Zusammenfassung: t-Test für unabhängige Stichproben

- (1) Formulierung der (inhaltlichen und statistische) Hypothesen
 - gerichtet oder ungerichtet?
- (2) Erfassung des Merkmals in zwei unabhängigen Stichproben
- (3) Berechnung der Mittelwerte in beiden Stichproben
- (4) Schätzung der Populationsvarianz
- (5) Berechnung des Standardfehlers der Mittelwertsdifferenz
- (6) Berechnung des empirischen t-Werts
- (7) Bestimmung des kritischen t-Werts
 - aus df, α, und Art des Tests
- (8) Entscheidung für H_0 oder H_1

Unterschiedshypothesen Teil 2

Unterschiedshypothesen: Abhängige Stichproben

- Ziehung eines Merkmalsträgers in die erste Stichprobe beeinflusst die Zugehörigkeit eines Merkmalsträgers zur zweiten Stichprobe
- Werte zweier Stichproben paarweise zugeordnet.
 - Beide Teilstichproben immer gleich groß!
- Messwiederholung
 - Gleiches Merkmal zweimal (oder mehrmals) bei den gleichen Personen erhoben
- Parallelisierung
 - Jeweils ähnliche 2 Personen einander zugeordnet
- Matching
 - Jeder Person der Stichprobe 1 ist einer Person der Stichprobe 2 zugeordnet

Abhängige Stichproben: Beispielrechnung

- Verändert sich die Einstellung zum Studienfach Informatik innerhalb der ersten 6 Wochen des Studiums?
- Abh. Variable: Einstellung zum Studium Informatik (Wertebereich 5 bis 25)
- Unabh. Variable: Messzeitpunkt (1. Woche vs. 6. Woche)

Versuchs- person	1. Woche	6. Woche
1	16	20
2	18	19
3	23	23
4	14	16
	•••	•••
mean	19.67	18.98

Beispielrechnung

• Für jede Person kann die Differenz der Messwerte berechnet werden (Einstellungsänderung)

Vp	1. Woche	6. Woche	D=x ₂ -x ₁
1	16	20	4
2	18	19	1
3	23	23	0
4	16	14	- 2
mean	19.67	18.98	.68

Hypothesen

- Die statistischen Hypothesen des t-Tests für abhängige Stichproben beziehen sich auf den Mittelwert der Differenzen aller Personen
 - Vorteil: Es ist nun unerheblich, ob innerhalb der Messzeitpunkte große Varianz gegeben ist.
- Ungerichtete Hypothese:

$$-H_0$$
: $\mu_d = 0$

$$-H_1: \mu_d \neq 0$$

Gerichtete Hypothese (1):

$$-H_0: \mu_d \le 0$$

$$-H_1: \mu_d > 0$$

- Gerichtete Hypothese (2):
 - $-H_0: \mu_d \ge 0$
 - $-H_1$: $\mu_d < 0$

Standardfehler und t-Wert

 Um die empirisch gefundene Differenz beurteilen zu können, wird der Standardfehler benötigt

$$\hat{\sigma}_{\bar{x}_d} = \frac{\hat{\sigma}_{x_d}}{\sqrt{N}} \qquad mit \quad \hat{\sigma}_{x_d} = \sqrt{\frac{\sum_{i=1}^{N} (x_{di} - \bar{x}_d)^2}{N-1}} \quad \text{Basierend auf korrigierter Stichprobenvarianz}$$

 Mit dem Standardfehler kann nun ein empirischer t-Wert berechnet werden:

$$t_{df} = \frac{\overline{x}_d}{\hat{\sigma}_{\overline{x}_d}} \operatorname{mit} df = N-1$$

Standardfehler und *t*-Wert

Im Beispieldatensatz:

$$\bar{x}_d = 0.68$$

$$\hat{\sigma}_{x_d} = 2.78$$

$$N = 60$$

• Es ergibt sich :

$$\hat{\sigma}_{\bar{x}_d} = \frac{2.78}{\sqrt{60}} = 0.36$$

$$t_{59} = \frac{0.68}{0.36} = 1.89$$

Kritischer t-Wert & Interpretation

•
$$T_{emp,59} = 1.89$$

•
$$T_{krit,59} = ?$$

- Offene Fragestellung⇒ zweiseitiger Test
- $\alpha = .05$

• Interpretation:

- $-t_{emp} < t_{krit}$
- Also: Kein bedeutsamerUnterschied!

df	p=.800	p = .900	p=.950	p=.975	p=.990	p=.995
1	1,376	3,078	6,314	12,706	31,821	63,657
2	1,061	2,920	2,920	4,303	6,965	9,925
3	0,978	2,353	2,353	3,182	4,541	5,841
4	0,941	2,132	2,132	2,776	3,747	4,604
5	0,920	2,015	2,015	2,571	3,365	4,032
6	0,906	1,943	1,943	2,447	3,143	3,707
7	0,896	1,895	1,895	2,365	2,998	3,499
8	0,889	1,860	1,860	2,306	2,896	3,355
9	0,883	1,833	1,833	2,262	2,821	3,250
10	0,879	1,812	1,812	2,228	2,764	3,169
20	0,860	1,725	1,725	2,086	2,528	2,845
30	0,854	1,697	1,697	2,042	2,457	2,750
40	0,851	1,684	1,684	2,021	2,423	2,704
50	0,849	1,676	1,676	2,009	2,403	2,678
60	0,848	1,671	1,671	2,000	2,390	2,660
70	0,847	1,667	1,667	1,994	2,381	2,648
80	0,846	1,664	1,664	1,990	2,374	2,639
90	0,846	1,662	1,662	1,987	2,368	2,632
100	0,845	1,660	1,660	1,984	2,364	2,626
200	0,843	1,653	1,653	1,972	2,345	2,601
1000	0,842	1,646	1,646	1,962	2,330	2,581

Eingruppen t-Test

• Ziel: Vergleich des Mittelwerts einer Stichprobe mit einem vorgegebenen (konstanten) Wert.

Beispiele:

- Es wir überprüft, ob eine bestimmte Personengruppe sich in ihrer Intelligenz vom Populationsmittelwert (100) unterscheidet.
- Es wird überprüft, ob sich die tatsächliche Studiendauer von der Regelstudienzeit unterscheidet.
- Es wird überprüft, ob sich die Differenz von Reaktionszeiten unter zwei Bedingungen von Null unterscheidet.

Eingruppen t-Test

Voraussetzungen

- Normalverteilung des Merkmals
- Intervalskalenniveau des Merkmals
- Es handelt sich um eine Zufallsstichprobe

Eingruppen t-Test

Statistische Hypothesen

Ungerichtete Hypothese:

$$-H_0$$
: $\mu = c$

$$-H_1$$
: $\mu \neq c$

• Gerichtet Hypothese (1):

$$-H_0$$
: $\mu \leq c$

$$-H_1: \mu > c$$

• Gerichtet Hypothese (2):

$$-H_0$$
: $\mu \ge c$

$$-H_1$$
: $\mu < c$

Standardfehler und *t*-Wert

Berechnung des Standardfehlers

$$\hat{\sigma}_{\bar{x}} = \frac{\hat{\sigma}_{x}}{\sqrt{N}}$$

Berechnung des t-Werts

$$t(df = N - 1) = \frac{\overline{x} - c}{\hat{\sigma}_{\overline{x}}}$$

Beispiel

- Liegt der IQ der Kinder, die als hochbegabten klassifiziert werden, wirklich über dem Populationsmittelwert (100)?
- Hypothesen:

$$-H_0$$
: $\mu \le 100$

$$-H_1$$
: $\mu > 100$

- Stichprobenkennwerte bei *N*=10:
 - Mittelwert: 108.50
 - Standardabweichung: 14.35

$$\hat{\sigma}_{\bar{x}} = \frac{14.35}{\sqrt{10}} = 4.54$$
 $t(9) = \frac{108.5 - 100}{4.54} = 1.87$

Beispiel

•
$$t_{emp}(9) = 1.87$$

•
$$t_{krit}(9) = ?$$

– Gerichtete Fragestellung⇒ einseitiger Test

$$- \alpha = .05$$

• Interpretation:

- $-t_{emp} > t_{krit}$
- $-H_0$ wird verworfen

	df	p=.800	p=.900	p=.950	p=.975	p=.990	p=.995
	1	1,376	3,078	6,314	12,706	31,821	63,657
	2	1,061	2,920	2,920	4,303	6,965	9,925
	3	0,978	2,353	2,353	3,182	4,541	5,841
a	4	0,941	2,132	2,132	2,776	3,747	4,604
9	5	0,920	2,015	2,015	2,571	3,365	4,032
	6	0,906	1,943	1,943	2,447	3,143	3,707
	7	0,896	1,895	1,895	2,365	2,998	3,499
	8	0,889	1,860	1,860	2,306	2,896	3,355
	9	0,883	1,833	1,833	2,262	2,821	3,250
	10	0,879	1,812	1,812	2,228	2,764	3,169
	20	0,860	1,725	1,725	2,086	2,528	2,845
	30	0,854	1,697	1,697	2,042	2,457	2,750
	40	0,851	1,684	1,684	2,021	2,423	2,704
	50	0,849	1,676	1,676	2,009	2,403	2,678
	60	0,848	1,671	1,671	2,000	2,390	2,660
	70	0,847	1,667	1,667	1,994	2,381	2,648
	80	0,846	1,664	1,664	1,990	2,374	2,639
	90	0,846	1,662	1,662	1,987	2,368	2,632
	100	0,845	1,660	1,660	1,984	2,364	2,626
2	200	0,843	1,653	1,653	1,972	2,345	2,601
10	000	0,842	1,646	1,646	1,962	2,330	2,581

	unabhängige Stichproben	abhängige Stichproben	Eingruppen <i>t</i> -Test
Fragestellung			
Voraus- setzungen			

	Unabhängige Stichproben	Abhängige Stichproben	Eingruppen t-Test
Ungerichtete Hypothese			
Gerichtete Hypothese			

	Unabhängige Stichproben	Abhängige Stichproben	Eingruppen <i>t</i> -Test
Kennwert des Tests			
Standardfehler des Kennwerts			
<i>t</i> -Wert			
Freiheitsgrade			

	Unabhängige Stichproben	Abhängige Stichproben	Eingruppen t-Test
Kritischer <i>t</i> - Wert hängt ab von			
H_0 wird verworfen, wenn			
H_0 wird verworfen, wenn			

Nonparametrische Testverfahren

Definition:

- Nonparametrische (verteilungsfreie) Verfahren
 - Keine bestimmte Verteilungsformen des erfassten Merkmals vorausgesetzt (z.B. Normalverteilung)
- Nonparametrische Verfahren werden eingesetzt...
 - ⇒ Für die Analyse von ordinal- oder nominalskalierten Variablen
 - ⇒ Wenn die Normalverteilungsannahme verletzt ist
- Parametrische Verfahren dürfen nur verwendet werden, wenn die beteiligten Variablen die geforderte Verteilungsform ausweisen (z.B. Normalverteilung für den t-Test)
 - Dann aber meist mehr "Aussagekraft" (Power)

Der χ^2 -Test

 Der x²-Test ("Chi-Quadrat-Test") dient dem Vergleich von beobachteten und erwarteten Häufigkeiten. Er kann eingesetzt werden, wenn 1 oder 2 nominalskalierte unabhängige Variablen vorliegen.

Beispiele:

- Leiden Männer und Frauen gleich häufig an einer bestimmten Erkrankung?
- Leisten hoch-ängstlich und gering-ängstliche Personen gleich häufig Hilfe in einer Notsituation?

Der χ^2 -Test

Voraussetzung für den χ^2 -Test (Faustregeln)

- (1) Weniger als 1/5 aller Zellen hat ein *erwartete Häufigkeit* kleiner als 5.
- (2) Keine Zelle weist eine *erwartete Häufigkeit* kleiner als 1 auf.

Wenn diese Voraussetzungen nicht erfüllt sind, gibt es andere Tests (später behandelt)

χ²-Test – Beispiel 1

- Es soll geprüft werden, ob die Verteilung von Männern und Frauen in einer Gruppe signifikant von einer Gleichverteilung abweicht.
- N = 76 (Frauen: 56; Männer: 20)
- Statistische Hypothesen
 - H_0 : $\pi(Frau) = \pi(Mann)$
 - $\mathbf{H_1}$: π (Frau) ≠ π (Mann)

Schritt 1:

- Zunächst werden die nach der H_0 zu erwarteten Häufigkeiten berechnet:
- Beobachtet: $N_F = 56$; $N_M = 20$
- Erwartet: ???
 - Gesamtzahl: 76
 - Bei einer Gleichverteilung wären also Männer und Frauen zu erwarten.

Schritt 2:

• Nun wird der (empirische) χ^2 -Wert berechnet:

$$\chi_{df=k-1}^{2} = \sum_{i=1}^{k} \frac{\left(f_{b,i} - f_{e,i}\right)^{2}}{f_{e,i}}$$

	Merkmal	
	Auspr. 1	Auspr. k
Beobachtet	$f_{b,1}$	$f_{b,k}$
Erwartet	$f_{e.1}$	$f_{e,k}$

mit:

- k: Anzahl der Stufen der beiden Variablen
- • $f_{b,i}$: Beobachtete Häufigkeit in der Zelle (i)
- • $f_{e,i}$: Erwartete Häufigkeit in der Zelle (i)

	Geschlecht		
	Frau	Mann	
Beobachtet	56	20	76
Erwartet	38	38	76

$$\chi_{df=k-1}^{2} = \sum_{i=1}^{k} \frac{\left(f_{b,i} - f_{e,i}\right)^{2}}{f_{e,i}}$$

$$\chi_{df=1}^{2} = \frac{\left(56 - 38\right)^{2}}{38} + \frac{\left(20 - 38\right)^{2}}{38} = \frac{18^{2}}{38} + \frac{\left(-18\right)^{2}}{38} = 8.53 + 8.53 = 17.05$$

- **Schritt 3**: Vergleich des empirischen χ^2 -Werts mit dem kritischen χ^2 -Wert.
- Der kritische χ^2 -Wert wird in Abhängigkeit von den Freiheitsgraden und dem gewählten α -Niveau aus einer Tabelle zur χ^2 -Verteilung abgelesen
- Für α =.05 ergibt sich bei df=1:

$$\chi_{emp}^2 = 17.05$$

$$\chi^2_{krit} = 5.02$$

• Die H_0 muss verworfen werden; folglich kann ein Unterschied nachgewiesen werden.

	Geschlecht		
Angst	Frau	Mann	
gering	25	14	39
hoch	33	6	39
	58	20	78

- Frage: Ist die (relative) Häufigkeit hoher bzw. geringer Ängstlichkeit bei Männern und Frauen gleich?
- Statistische Hypothesen
 - H_0 : $\pi(Angst | Frau) = \pi(Angst | Mann)$
 - H_1 : π (Angst | Frau) $\neq \pi$ (Angst | Mann)

Schritt 1: Zunächst werden aus den Randsummen die nach der H_0 zu erwarteten Häufigkeiten geschätzt:

Beobachtet:

	Geschlecht		
Angst	Frau	Mann	
gering	25	14	39
hoch	33	6	39
	58	20	78

$$f_{e(i,j)} = \frac{f_{b(i)}}{N} \cdot \frac{f_{b(i,j)}}{N} \cdot N$$
$$= \frac{f_{b(i,j)} \cdot f_{b(i,j)}}{N}$$

Erwartet:

	Gesc	_	
Angst	Frau	Mann	
gering	29	10	39
hoch	29	10	39
	58	20	78

Schritt 2: Nun wird der (empirische) χ^2 -Wert berechnet:

$$\chi^{2}_{df=(k-i)\cdot(l-1)} = \sum_{i=1}^{k} \sum_{j=1}^{l} \frac{\left(f_{b(i,j)} - f_{e(i,j)}\right)^{2}}{f_{e(i,j)}}$$

mit:

- k, l: Anzahl der Stufen der beiden Variablen
- f_{b(i,i)}: Beobachtete Häufigkeit in der Zelle (i,j)
- f_{e(i,i)}: Erwartete Häufigkeit in der Zelle (i,j)

Beobachtet:

Erwartet:

	Geschlecht		
Angst	Frau	Mann	
gering	25	14	39
hoch	33	6	39
	58	20	78

	Geschlecht		_
Angst	Frau	Mann	
gering	29	10	39
hoch	29	10	39
	58	20	78

$$\chi^{2}_{df=(k-1)\cdot(l-1)} = \sum_{i=1}^{k} \sum_{j=1}^{l} \frac{\left(f_{b(i,j)} - f_{e(i,j)}\right)^{2}}{f_{e(i,j)}}$$

$$\chi_{df=1}^{2} = \frac{(25-29)^{2}}{29} + \frac{(33-29)^{2}}{29} + \frac{(14-10)^{2}}{10} + \frac{(6-10)^{2}}{10}$$
$$= 0.55 + 0.55 + 1.60 + 1.60 = 4.30$$

- **Schritt 3**: Vergleich des empirischen χ^2 -Werts mit dem kritischen χ^2 -Wert.
- Der kritische χ^2 -Wert wird in Abhängigkeit von den Freiheits-graden und dem gewählten α -Niveau aus einer Tabelle zur χ^2 -Verteilung abgelesen (Leonhart, S.448f).
- Für α =.05 ergibt sich bei df=1:

$$\chi^2_{emp} = 4.30$$

$$\chi^2_{krit} = 3.84$$

• Die H_0 muss verworfen werden; folglich kann ein Unterschied nachgewiesen werden.

Überblick weitere Verfahren:

Stichproben	Nominalskalen	Ordinalskalen
Unabhängig	· χ ² Test	. Mediantest
	. Fisher-Yates-Test	· U-Test (Mann-Whitney)
		· H-Test (Kruskal & Wallis)
Abhängig	. McNemar-Test	· Vorzeichen-Test
	. Cochran-Test	· Vorzeichen-Rang-Test
		(Wilkoxon)
		· Friedman-Test

Zusammenfassung

- Nonparametrische Testverfahren können, wenn
 - a) die vorliegenden Daten kein Intervallskalenniveau aufweisen oder
 - b) die Normalverteilungsannahme der parametrischen Tests verletzt ist.
- Der x²-Test überprüft, ob beobachtete und erwartete Häufigkeiten signifikant voneinander abweichen.

