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Example

Subjects: 25 patients with blisters
Treatments: Treatment A, Treatment B, Placebo
Measurement: # of days until blisters heal

Data [and means]:
• A: 5, 6, 6, 7, 7, 8, 9, 10 [7.25]
• B: 7, 7, 8, 9, 9, 10, 10, 11         [8.875]
• P: 7, 9, 9, 10, 10, 10, 11, 12, 13 [10.11]

Are these differences significant?

Variation BETWEEN groups vs. variation WITHIN groups

Analysis of variation required: ANOVA



ANOVA and Clustering
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Good result ?Init values

Bad result ?Init values



The basic ANOVA situation

Two variables: 1 Categorical (type, group), 1 Quantitative (value)

Main Question: Do the (means of) the quantitative variables depend on the group 
(given by categorical variable) the individual is in?

If categorical variable has only 2 values: 
• 2-sample t-test 

ANOVA allows for 3 or more groups



Informal Investigation

Graphical investigation: 
• side-by-side box plots
• multiple histograms

Whether the differences between the groups are significant depends on 
• the difference in the means
• the standard deviations of each group
• the sample sizes (aka degrees of freedom df)

Need p-value to make a decision
ANOVA determines p-value from a specific statistic



Side by Side Boxplots



What does ANOVA do?

At its simplest (there are extensions) 
ANOVA tests the following hypotheses:

H0: The means of all the groups are equal.

Ha: Not all the means are equal
• doesn’t say how or which ones differ.
• Can follow up with “multiple comparisons”

Note: we usually refer to the sub-populations as 
“groups” when doing ANOVA.



Assumptions of ANOVA

• Each group is approximately normal



Normality Check

We should check for normality using:
• Assumptions about population 
• Histograms for each group
• Normal quantile plot for each group
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Normality Check

We should check for normality using:
• Assumptions about population 
• Histograms for each group
• Normal quantile plot for each group

With small data sets, there really isn’t a really good way to check normality from 
data, but we make the common assumption that physical measurements of 
people tend to be normally distributed (but see Kolmogorov-Smirnov-Test)

Useful only for "large" datasets



Assumptions of ANOVA

• Each group is approximately normal
– Check this by looking at histograms and/or normal 

quantile plots, or use assumptions
– Can handle some non-normality, 

but not severe outliers

• Standard deviations of each group are 
approximately equal
– Rule of thumb: ratio of largest to smallest 

sample st. dev. must be less than 2:1



Standard Deviation Check

Compare largest and smallest standard deviations:
• largest: 1.764
• smallest: 1.458
• 1.458 x 2 = 2.916 > 1.764

Variable   treatment  N       Mean     Median    StDev
days       A          8      7.250      7.000    1.669

B          8      8.875      9.000    1.458
P          9     10.111     10.000    1.764



Notation for ANOVA

• n = number of individuals all together
• I = number of groups
• = mean for entire data set

Group i has
• ni = # of individuals in group i
• xij = value for individual j in group i
• = mean for group i
• si = standard deviation for group i



How ANOVA works (outline)

ANOVA measures two sources of variation in the data and 
compares their relative sizes

• Variation BETWEEN groups (MSG)
for each group look at the difference between its mean 
and the overall mean

• Variation  WITHIN groups (MSE)
for each data value xj of group i we look at the 
difference between that value and the mean of its 
group

N-1𝛴i

M-1𝛴obsij



The ANOVA F-statistic is a ratio of the Between Group Variaton divided 
by the Within Group Variation:      

A large F is evidence against H0, since it indicates that there is more 
difference between groups than within groups 
(hence the means between at least two groups differ).

F Statistic

H0: The means of all the groups are equal.



Computations

We want to measure the amount of 
variation due to BETWEEN group variation and WITHIN group variation

For each data value, we calculate its contribution to:

•BETWEEN group variation:

•WITHIN group variation:



An even smaller example

Suppose we have three groups
• Group 1: 5.3, 6.0, 6.7
• Group 2: 5.5, 6.2, 6.4, 5.7
• Group 3: 7.5, 7.2, 7.9

We get the following statistics:



ANOVA Output

1 less than number 
of groups

number of data values -
number of groups
(equals df for each group 
added together)1 less than number of individuals

(just like other situations)



Computing ANOVA F statistic

overall mean: 6.44 F = 2.5528/0.25025 = 10.21575 



ANOVA Output

1 less than # of 
groups

# of data values - # of groups
(equals df for each group added 
together)

1 less than # of individuals
(just like other situations)

Analysis of Variance for days    
Source     DF        SS        MS        F        P
treatment   2     34.74     17.37     6.45    0.006
Error      22     59.26      2.69
Total      24     94.00



ANOVA Output for Drug Example

Analysis of Variance for days    
Source     DF        SS        MS        F        P
treatment   2     34.74     17.37     6.45    0.006
Error      22     59.26      2.69
Total      24     94.00

SS stands for sum of squares
• ANOVA splits this into 3 parts



ANOVA Output

MSG = SSG / DFG
MSE = SSE / DFE 

Analysis of Variance for days    
Source     DF        SS        MS        F        P
treatment   2     34.74     17.37     6.45    0.006
Error      22     59.26      2.69
Total      24     94.00

F = MSG / MSE

P-value
comes from
F(DFG,DFE)

(P-values for the F statistic are in table as usual)



So How big is F?

Since F is
Mean Square Between / Mean Square Within

= MSG / MSE

A large value of F indicates relatively more
difference between groups than within groups 
(evidence against H0)

To get the P-value, we compare to F(I-1,n-I)-distribution
• I-1 degrees of freedom in numerator (# groups -1)
• n - I degrees of freedom in denominator (rest of df)



F-Distribution
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Critical Value
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Example: 𝛼 = 0.05
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Example: 𝛼 = 0.05
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F-Table
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Critical Value for 𝛼 = 0.05

31



Rejection of Null Hypothesis

32



Connections between SST, MST, and standard deviation

So  SST = (n -1) s2,  and MST = s2.  That is, SST and MST measure the TOTAL variation 
in the data set.

If ignore the groups for a moment and just compute the standard deviation of 
the entire data set, we see

SST: Sum of Squares Total
DFT: Degrees of Freedom Total
MST: Mean Sum of Squares Total



Connections between SSE, MSE, and standard deviation

So  SS[Within Group i] = (si
2) (dfi )

This means that we can compute SSE from the standard deviations and sizes (df) of 
each group:

Remember: 



Pooled estimate for st. dev

One of the ANOVA assumptions is that all groups have the same standard 
deviation.  We can estimate this with a weighted average:

so MSE is the pooled 
estimate of variance



In Summary



R2 Statistic

R2 gives the percent of variance due to between
group variation



Where’s the Difference?

Analysis of Variance for days    
Source     DF        SS        MS        F        P
treatmen    2     34.74     17.37     6.45    0.006
Error      22     59.26      2.69
Total      24     94.00

Individual 95% CIs For Mean
Based on Pooled StDev

Level       N      Mean     StDev  ----------+---------+---------+------
A           8     7.250     1.669  (-------*-------) 
B           8     8.875     1.458             (-------*-------) 
P           9    10.111     1.764                      (------*-------) 

----------+---------+---------+------
Pooled StDev =    1.641                    7.5       9.0      10.5

Once ANOVA indicates that the groups do not all appear to have the same means, 
what do we do?

Clearest difference:  P is worse than A (CI’s don’t overlap)



Multiple Comparisons

Once ANOVA indicates that the groups do not all
have the same means, we can compare them two
by two using the 2-sample t test

• We need to adjust our p-value threshold because we are 
doing multiple tests with the same data.  

•There are several methods for doing this.

• If we really just want to test the difference between one pair 
of treatments, we should set the study up that way.



Tuckey’s Pairwise Comparisons

Tukey's pairwise comparisons

Family error rate = 0.0500
Individual error rate = 0.0199

Critical value = 3.55

Intervals for (column level mean) - (row level mean)

A           B

B      -3.685
0.435

P      -4.863      -3.238
-0.859       0.766

95% confidence

Use alpha = 0.0199 for
each test.

These give 98.01%
CI’s for each pairwise
difference.

Only P vs A is significant
(both values have same sign)98% CI for A-P is (-0.86,-4.86)



ANOVA and Clustering
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Good result !Init values

Bad result !Init values



Tukey’s Method in R

Tukey multiple comparisons of means
95% family-wise confidence level

diff      lwr    upr
B-A 1.6250 -0.43650 3.6865
P-A 2.8611  0.85769 4.8645
P-B 1.2361 -0.76731 3.2395


