Einführung in Web- und Data-Science

Prof. Dr. Ralf Möller

Universität zu Lübeck Institut für Informationssysteme

Tanya Braun (Übungen)

Acknowledgements

This lecture is based on the following presentation:

ANOVA: Analysis of Variation

Math 243 Lecture R. Pruim

(but contains additions and modifications)

Example

Subjects: 25 patients with blisters

Treatments: Treatment A, Treatment B, Placebo

Measurement: # of days until blisters heal

Data [and means]:

• A: 5, 6, 6, 7, 7, 8, 9, 10 [7.25]

• B: 7, 7, 8, 9, 9, 10, 10, 11 [8.875]

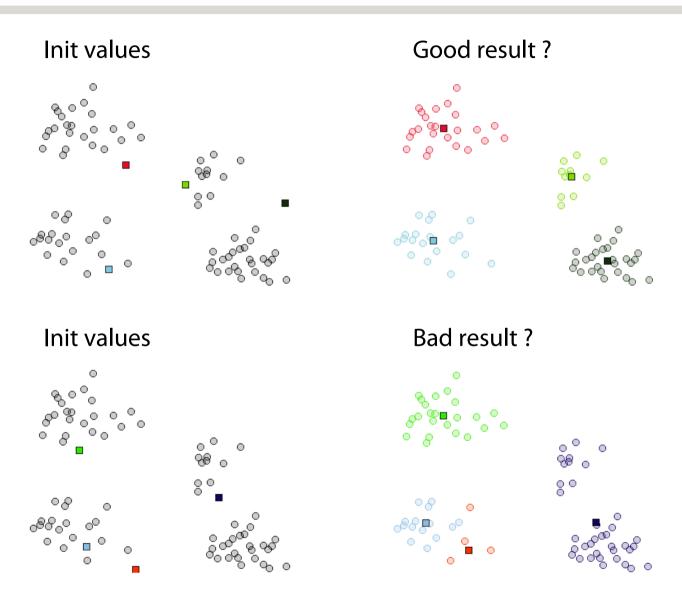
• P: 7, 9, 9, 10, 10, 10, 11, 12, 13 [10.11]

Are these differences significant?

Variation BETWEEN groups vs. variation WITHIN groups

Analysis of variation required: ANOVA

ANOVA and Clustering



The basic ANOVA situation

Two variables: 1 Categorical (type, group), 1 Quantitative (value)

Main Question: Do the (means of) the quantitative variables depend on the group (given by categorical variable) the individual is in?

If categorical variable has only 2 values:

• 2-sample t-test

ANOVA allows for 3 or more groups

Informal Investigation

Graphical investigation:

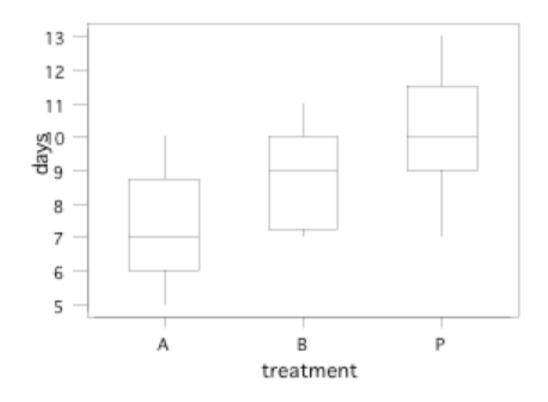
- side-by-side box plots
- multiple histograms

Whether the differences between the groups are significant depends on

- the difference in the means
- the standard deviations of each group
- the sample sizes (aka degrees of freedom df)

Need p-value to make a decision ANOVA determines p-value from a specific statistic

Side by Side Boxplots



What does ANOVA do?

At its simplest (there are extensions)
ANOVA tests the following hypotheses:

 H_0 : The means of all the groups are equal.

H_a: Not all the means are equal

- doesn't say how or which ones differ.
- Can follow up with "multiple comparisons"

Note: we usually refer to the sub-populations as "groups" when doing ANOVA.

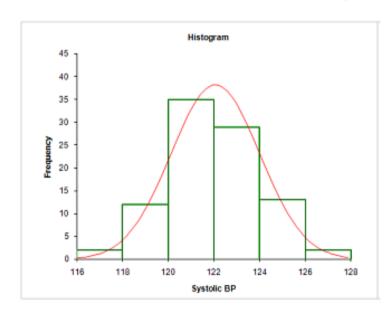
Assumptions of ANOVA

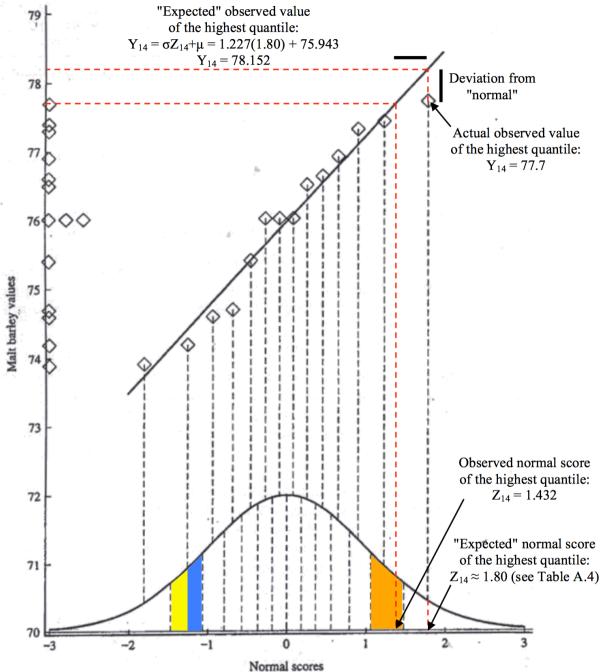
Each group is approximately normal

Normality Check

We should check for normality using:

- Assumptions about population
- Histograms for each group
- Normal quantile plot for each group



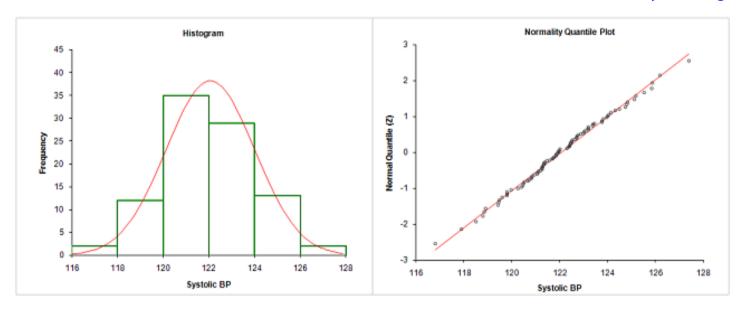


Normality Check

We should check for normality using:

- Assumptions about population
- Histograms for each group
- Normal quantile plot for each group

Useful only for "large" datasets



With small data sets, there really isn't a really good way to check normality from data, but we make the common assumption that physical measurements of people tend to be normally distributed (but see Kolmogorov-Smirnov-Test)

Assumptions of ANOVA

- Each group is approximately normal
 - Check this by looking at histograms and/or normal quantile plots, or use assumptions
 - Can handle some non-normality, but not severe outliers
- Standard deviations of each group are approximately equal
 - Rule of thumb: ratio of largest to smallest sample st. dev. must be less than 2:1

Standard Deviation Check

Variable	treatment	N	Mean	Median	StDev
days	A	8	7.250	7.000	1.669
	В	8	8.875	9.000	1.458
	P	9	10.111	10.000	1.764

Compare largest and smallest standard deviations:

• largest: 1.764

• smallest: 1.458

• $1.458 \times 2 = 2.916 > 1.764$

Notation for ANOVA

- n = number of individuals all together
- / = number of groups
- \bar{X} = mean for entire data set

Group i has

- n_i = # of individuals in group i
- x_{ij} = value for individual j in group i
- \bar{x}_i = mean for group i
- s_i = standard deviation for group i

How ANOVA works (outline)

ANOVA measures two sources of variation in the data and compares their relative sizes

Variation BETWEEN groups (MSG)
 for each group look at the difference between its mean and the overall mean

$$N^{-1}\Sigma_i (\overline{x}_i - \overline{x})^2$$

• Variation WITHIN groups (MSE) for each data value x_j of group i we look at the difference between that value and the mean of its group $M^{-1} \sum_{obs_i} (x_{ij} - \overline{x}_i)^2$

F Statistic

The ANOVA F-statistic is a ratio of the Between Group Variaton divided by the Within Group Variation:

$$F = \frac{Between}{Within} = \frac{MSG}{MSE}$$

A large F is evidence *against* H_0 , since it indicates that there is more difference between groups than within groups (hence the means between at least two groups differ).

 H_0 : The means of all the groups are equal.

Computations

We want to measure the amount of variation due to BETWEEN group variation and WITHIN group variation

For each data value, we calculate its contribution to:

•BETWEEN group variation:
$$\left(\overline{x}_i - \overline{\overline{x}}\right)^2$$

•WITHIN group variation:
$$(x_{ij} - \overline{x}_i)^2$$

An even smaller example

Suppose we have three groups

• Group 1: 5.3, 6.0, 6.7

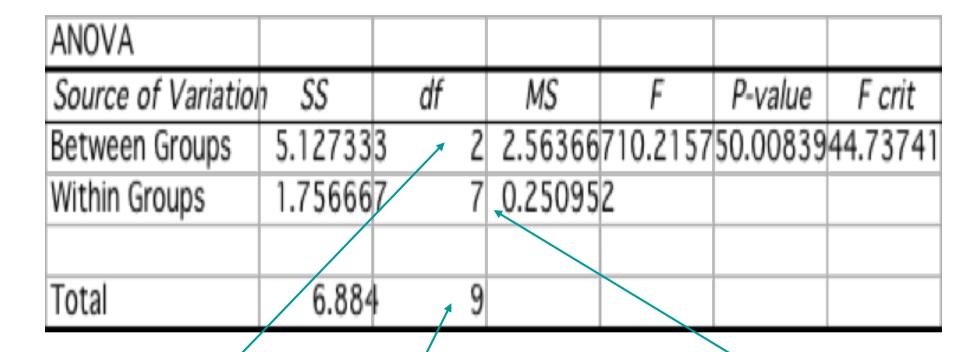
• Group 2: 5.5, 6.2, 6.4, 5.7

• Group 3: 7.5, 7.2, 7.9

We get the following statistics:

SUMMARY				
Groups	Count	Sum	Average	Variance
Column 1	3	18	6	0.49
Column 2	4	23.8	5.95	0.17666
Column 3	3	22.6	7.53333	30.12333

ANOVA Output



1 less than number of groups

1 less than number of individuals (just like other situations)

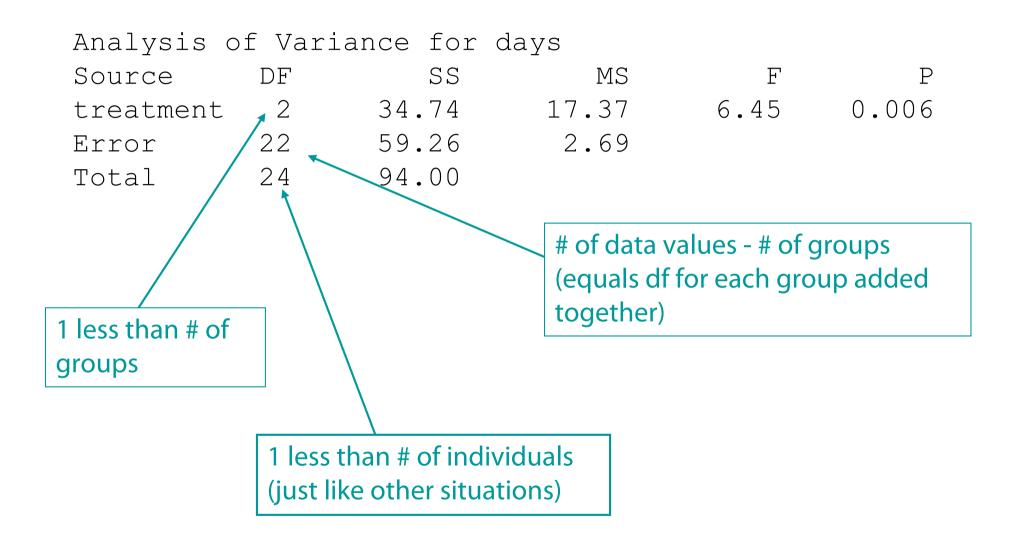
number of data values number of groups (equals df for each group added together)

Computing ANOVA F statistic

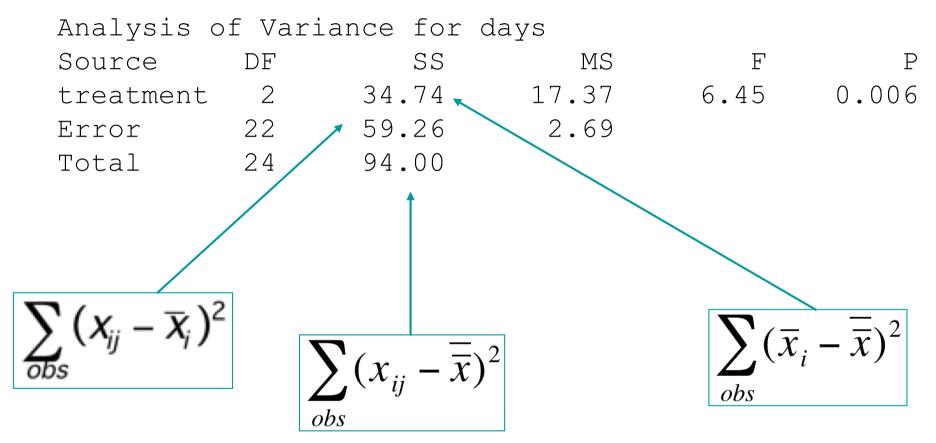
			WITHIN		BETWEEN	
			difference:		difference	
		group	data - group	mean	group mean	- overall me:
data	group	mean	plain	squared	plain	squared
5.3	1	6.00	-0.70	0.490) -0.4	0.194
6.0	1	6.00	0.00	0.000) -0.4	0.194
6.7	1	6.00	0.70	0.490) -0.4	0.194
5.5	2	5.95	-0.45	0.203	-0.5	0.240
6.2	2	5.95	0.25	0.063	-0.5	0.240
6.4	2	5.95	0.45	0.203	-0.5	0.240
5.7	2	5.95	-0.25	0.063	-0.5	0.240
7.5	3	7.53	-0.03	0.00	1.1	1.188
7.2	3	7.53	-0.33	0.109	1.1	1.188
7.9	3	7.53	0.37	0.137	1.1	1.188
TOTAL				1.757	7	5.106
TOTAL/di				0.250957	114	2.5527

F = 2.5528/0.25025 = 10.21575

ANOVA Output



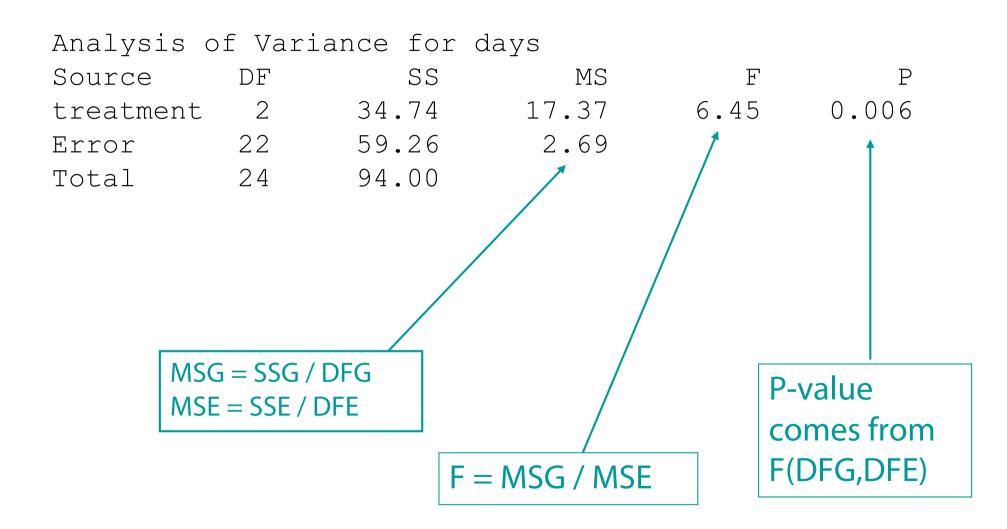
ANOVA Output for Drug Example



SS stands for sum of squares

ANOVA splits this into 3 parts

ANOVA Output



(P-values for the F statistic are in table as usual)

So How big is F?

Since F is

Mean Square Between / Mean Square Within

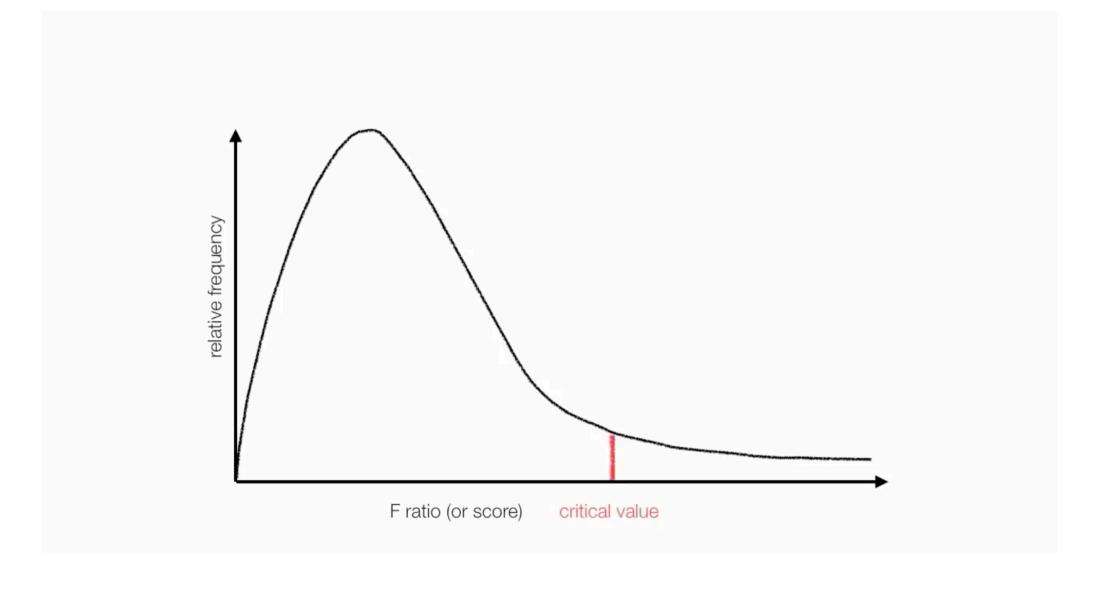
= MSG / MSE

A large value of F indicates relatively more difference between groups than within groups (evidence against H₀)

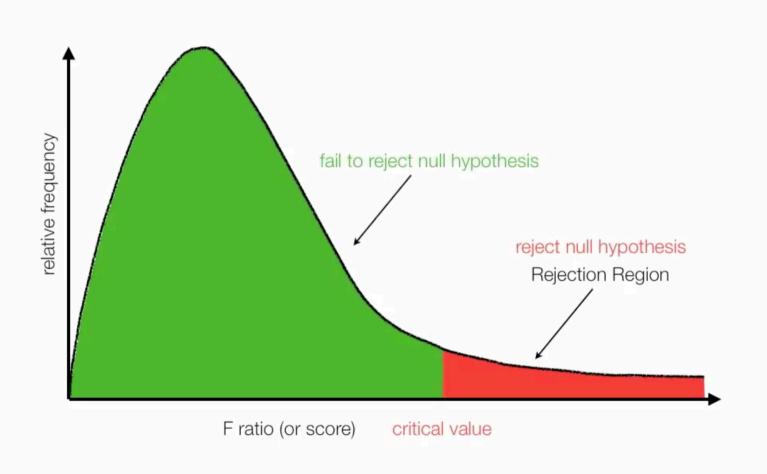
To get the P-value, we compare to F(I-1,n-I)-distribution

- *I-1* degrees of freedom in numerator (# groups -1)
- n I degrees of freedom in denominator (rest of df)

F-Distribution



Critical Value



Example: $\alpha = 0.05$

F(2, 12) = 22.59,
$$p < .05$$

degrees of freedom numerator relates to groups or samples

Example: $\alpha = 0.05$

relates total observations degrees of freedom denominator
$$F(2, 12) = 22.59, p < .05$$
degrees of freedom numerator

F-Table

Table 6(a) Critical Values of F: A = .05

relates to groups or samples

	ν,				NUMERATOR	DEGREES OF	FREEDOM			
	ν_2	1	2	3	4	5	6	7	8	9
	1	161.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	240.5
	2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38
	3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81
2	4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00
observations	5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77
Ĭ	6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10
>	7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68
Ē	8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39
S	9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18
ŏ	10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02
o To	11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90
	12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80
number	₹ 13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71
Ĕ	13 14 15	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65
5	置 15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59
=	ö 16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54
2	S 17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49
	ğ 18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46
lates	<u>=</u> 19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42
<u>a</u>	20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39
<u>a</u>	ž 21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37
	DENOMINATOR DECREES 17 18 19 20 21 22 23	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34
	Z 23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32
	24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30
	2.5		~ ~ ~		2	+ 69	- 44	4 10		

Critical Value for $\alpha = 0.05$

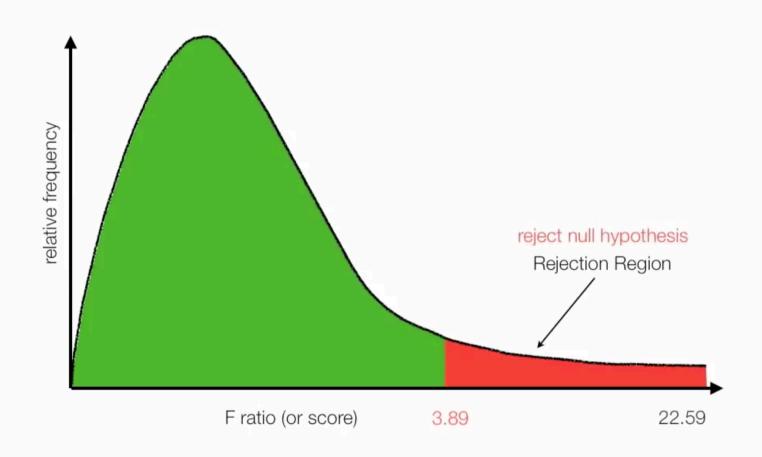
Table 6(a) Critical Values of F: A = .05

F(2, 12) = 22.59,
$$p < .05$$
)

degrees of freedom denominator

ν_1				NUMERATOR	DEGREES OF	FREEDOM			
ν_2	1	2	3	4	5	6	7	8	9
1	161.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	240.5
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.3
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.8
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.0
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.7
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.1
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.6
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.3
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.0
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.9
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.8
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.7
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.0
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.5
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.4
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.4
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.3
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.3
22	4.30	3,44	3.05	2.82	2.66	2.55	2.46	2.40	2.3
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.3
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.3
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.2

Rejection of Null Hypothesis



Connections between SST, MST, and standard deviation

If ignore the groups for a moment and just compute the standard deviation of the entire data set, we see

$$s^{2} = \frac{\sum \left(x_{ij} - \overline{\overline{x}}\right)^{2}}{n-1} = \frac{SST}{DFT} = MST$$

So $SST = (n-1) s^2$, and $MST = s^2$. That is, SST and MST measure the TOTAL variation in the data set.

SST: Sum of Squares Total

DFT: Degrees of Freedom Total

MST: Mean Sum of Squares Total

Connections between SSE, MSE, and standard deviation

Remember:
$$S_i^2 = \frac{\sum (x_{ij} - \overline{x}_i)^2}{n_i - 1} = \frac{SS[\text{WithinGroup } i]}{df_i}$$

So $SS[Within Group i] = (s_i^2) (df_i)$

This means that we can compute SSE from the standard deviations and sizes (df) of each group:

$$SSE = SS[Within] = \sum SS[WithinGroup i]$$
$$= \sum s_i^2(n_i - 1) = \sum s_i^2(df_i)$$

Pooled estimate for st. dev

One of the ANOVA assumptions is that all groups have the same standard deviation. We can estimate this with a weighted average:

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2 + \dots + (n_I - 1)s_I^2}{n - I}$$

$$s_p^2 = \frac{(df_1)s_1^2 + (df_2)s_2^2 + \dots + (df_I)s_I^2}{df_1 + df_2 + \dots + df_I}$$

$$s_p^2 = \frac{SSE}{DFE} = MSE$$

so MSE is the pooled estimate of variance

In Summary

$$SST = \sum_{obs} (x_{ij} - \overline{x})^2 = s^2(DFT)$$

$$SSE = \sum_{obs} (x_{ij} - \overline{x_i})^2 = \sum_{groups} s_i^2 (df_i)$$

$$SSG = \sum_{obs} (\overline{x_i} - \overline{x})^2 = \sum_{groups} n_i (\overline{x_i} - \overline{x})^2$$

$$SSE + SSG = SST; \quad MS = \frac{SS}{DF}; \quad F = \frac{MSG}{MSE}$$

IM FOCUS DAS LEBEN

R² Statistic

 R^2 gives the percent of variance due to between group variation

$$R^2 = \frac{SS[Between]}{SS[Total]} = \frac{SSG}{SST}$$

Where's the Difference?

Once ANOVA indicates that the groups do not all appear to have the same means, what do we do?

Analysis	of Var	iance for	days					
Source	DF	SS	MS	F	P			
treatmen	2	34.74	17.37	6.45	0.006			
Error	22	59.26	2.69					
Total	24	94.00						
				Individual	95% CIs	For Me	an	
				Based on Po	ooled St	Dev		
Level	N	Mean	StDev			+		
A	8	7.250	1.669	(*)			
В	8	8.875	1.458		(-*)	
P	9	10.111	1.764			(*	-)
						+		
Pooled St	Dev =	1.641		7.5	5	9.0	10.5	

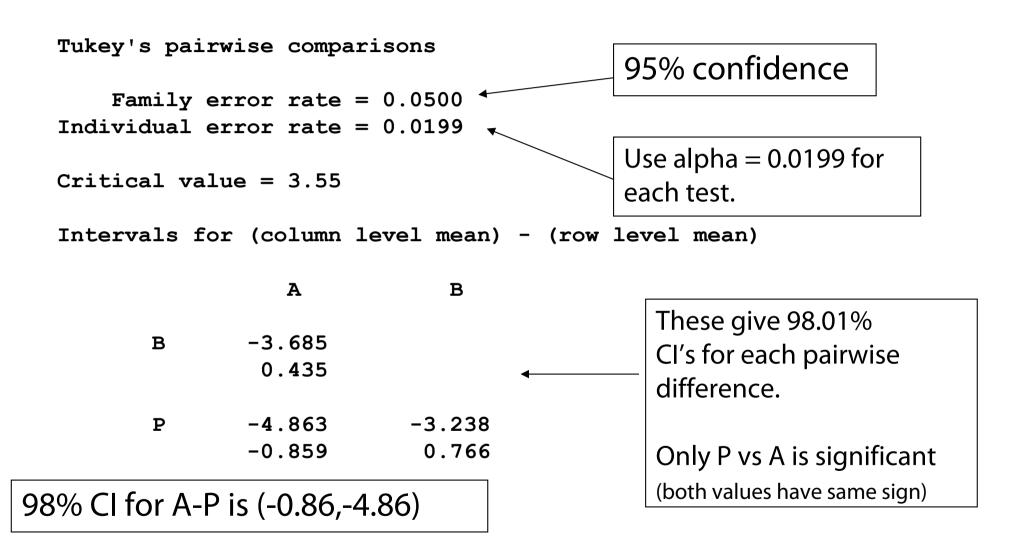
Clearest difference: P is worse than A (Cl's don't overlap)

Multiple Comparisons

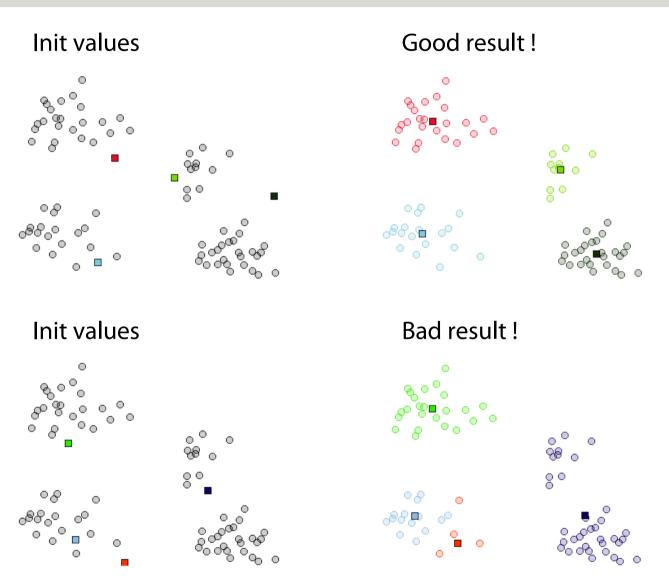
Once ANOVA indicates that the groups do not all have the same means, we can compare them two by two using the 2-sample t test

- · We need to adjust our p-value threshold because we are doing multiple tests with the same data.
- •There are several methods for doing this.
- If we really just want to test the difference between one pair of treatments, we should set the study up that way.

Tuckey's Pairwise Comparisons



ANOVA and Clustering



Tukey's Method in R

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr B-A 1.6250 -0.43650 3.6865 P-A 2.8611 0.85769 4.8645 P-B 1.2361 -0.76731 3.2395

95% family-wise confidence level

