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Word-Word Associations in Document Retrieval

Recap bag-of-words approaches
• LSI: Documents as vectors, dimension reduction

Words are not independent of each other
• Word similarity measures
• Extend query with similar words automatically
• Extend query with most frequent followers/predecessors
• Insert words in anticipated gaps in a string query

Need to represent some aspects of word semantics
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Approaches for Representing Word Semantics

Distributional Semantics 
(Count)
• Used since the 90’s
• Sparse word-context 

PMI/PPMI matrix
• Decomposed with SVD

Word Embeddings (Predict)
• Inspired by deep learning
• word2vec

(Mikolov et al., 2013)
• GloVe

(Pennington et al., 2014)
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Underlying Theory: The Distributional Hypothesis (Harris, ’54; Firth, ‘57)
“Similar words occur in similar contexts”

Beyond bags of words

https://nlp.stanford.edu/projects/glove/

https://www.tensorflow.org/tutorials/word2vec
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Point(wise) Mutual Information: PMI

• Measure of association used in information theory and 
statistics

• Positive PMI:  PPMI(x, y) = max( pmi(x, y), 0 )
• Quantifies the discrepancy between the probability of their 

coincidence given their joint distribution and their individual 
distributions, assuming independence

• Finding collocations and associations between words 
• Countings of occurrences and co-occurrences of words in a 

text corpus can be used to approximate the probabilities p(x) 
or p(y) and p(x,y) respectively

6[Wikipedia]



PMI – Example

7[Wikipedia]

• Counts of pairs of words 
getting the most and the 
least PMI scores in the 
first 50 millions of words in 
Wikipedia (dump of 
October 2015)

• Filtering by 1,000 or more 
co-occurrences. 

• The frequency of each 
count can be obtained by 
dividing its value by 
50,000,952. (Note: natural 
log is used to calculate the 
PMI values in this 
example, instead of log 
base 2)



Applications of PMI Data

• Extend query with most frequent followers/predecessors
• Insert words in anticipated gaps in a string query
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Count(w, context)

PMI – Co-occurrence Matrix
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1. Clustering Approach to Word Semantics
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Clustering vectors to 
visualize similarity in co-
occurrence matrices
(Rohde et al. 2005) 

Use whatever
clustering algorithm
you prefer to determine 
”related” words

Application:
Extend query with 
related words 
automatically



Apply SVD-based Dimension Reduction
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Word context vectors
Number of clusters



2. Embedding Approaches to Word Semantics

• Represent each word with a low-dimensional vector
• Word similarity = vector similarity
• Key idea: Predict surrounding words of every word
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Represent the meaning of words – word2vec

• 2 basic structural models:
– Continuous Bag of Words (CBOW): use a window of 

words to predict the middle word
– Skip-gram (SG): use a word to predict the surrounding 

ones in window. 
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Word2vec – Continuous Bag of Word

• E.g. “The cat <sat> on floor”
– Window size = 2

14

the

cat

on

floor

sat



15

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

cat

on

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

sat

Output layer

one-hot
vector

one-hot
vector

Index of cat in vocabulary



16

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

cat

on

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

sat

Output layer!"×$

!"×$

V-dim

V-dim

N-dim

!′$×"

V-dim

N will be the size of word vector

We must learn W and W’



17

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

xcat

xon

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

sat

Output layer

V-dim

V-dim

N-dim

V-dim

!"×$
%
×&'() = +'()

!"×$
% ×&,-

= +,
-

+ .+ = +'() + +,-
2

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

×

0

1

0

0

0

0

0

0

…

0

!"×$
% ×&'() = +'()

2.4

2.6

…

…

1.8

=



18

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

xcat

xon

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

sat

Output layer

V-dim

V-dim

N-dim

V-dim

!"×$
%
×&'() = +'()

!"×$
% ×&,-

= +,
-

+ .+ = +'() + +,-
2

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

×

0

0

0

1

0

0

0

0

…

0

!"×$
% ×&,- = +,-

1.8

2.9

…

…

1.9

=



19

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

cat

on

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

!"#$%

Output layer&'×)

&'×)

V-dim

V-dim

N-dim

&)×'
* ×!+ = -

V-dim

N will be the size of word vector

!+

!" = ./01234(-)



Logistic function

20[Wikipedia]



softmax(z)
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The
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Word Analogies
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Word Analogies
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What is word2vec?

• word2vec is not a single algorithm
• It is a software package for representing words as vectors, containing:

– Two distinct models
• CBoW
• Skip-Gram (SG)

– Various training methods
• Negative Sampling (NS)
• Hierarchical Softmax

– A rich preprocessing pipeline
• Dynamic Context Windows
• Subsampling
• Deleting Rare Words
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Skip-Grams with Negative Sampling (SGNS)

Marco saw a furry little wampimuk hiding in the tree.

“word2vec Explained…”

Goldberg & Levy, arXiv 2014 27



Skip-Grams with Negative Sampling (SGNS)

Marco saw a furry little wampimuk hiding in the tree.

28
“word2vec Explained…”
Goldberg & Levy, arXiv 2014



Skip-Grams with Negative Sampling (SGNS)

Marco saw a furry little wampimuk hiding in the tree.

words contexts
wampimuk furry
wampimuk little
wampimuk hiding
wampimuk in
… …

! (data)

29
“word2vec Explained…”
Goldberg & Levy, arXiv 2014



Skip-Grams with Negative Sampling (SGNS)

• SGNS finds a vector ! for each word ! in our vocabulary "#
• Each such vector has $ latent dimensions (e.g. $ = 100)
• Effectively, it learns a matrix ( whose rows represent "#
• Key point: it also derives a similar auxiliary matrix ) of 

context vectors
• In fact, each word has two embeddings

(

$

" #

!:wampimuk =
(−3.1, 4.15, 9.2, −6.5, … ) )" 6

$

7:wampimuk =
(−5.6, 2.95, 1.4, −1.3, … )

≠
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“word2vec Explained…”
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Skip-Grams with Negative Sampling (SGNS)

31
“word2vec Explained…”
Goldberg & Levy, arXiv 2014



Skip-Grams with Negative Sampling (SGNS)

• Maximize: ! " ⋅ $
– $ was observed with "

words contexts
wampimuk furry

wampimuk little

wampimuk hiding

wampimuk in

32

“word2vec Explained…”

Goldberg & Levy, arXiv 2014



Skip-Grams with Negative Sampling (SGNS)

• Maximize: ! " ⋅ $
– $ was observed with "

words contexts
wampimuk furry

wampimuk little

wampimuk hiding

wampimuk in

• Minimize: ! " ⋅ $ ′
– $′ was hallucinated

with "

words contexts
wampimuk Australia

wampimuk cyber

wampimuk the

wampimuk 1985

33
“word2vec Explained…”
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Skip-Grams with Negative Sampling (SGNS)

• “Negative Sampling”
• SGNS samples ! contexts "# at random 

as negative examples
• “Random” = unigram distribution

$ " = #"
'

• Spoiler: Changing this distribution has a significant effect
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What is SGNS learning?

• Take SGNS’s embedding matrices (! and ")

“Neural Word Embeddings as Implicit Matrix Factorization”
Levy & Goldberg, NIPS 2014

!

#

$ % $ &

#

"
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What is SGNS learning?

• Take SGNS’s embedding matrices (! and ")
• Multiply them
• What do you get?

!

#

$ % "
$&

#

36
“Neural Word Embeddings as Implicit Matrix Factorization”

Levy & Goldberg, NIPS 2014



What is SGNS learning?

• A !"×!$ matrix

• Each cell describes the relation between a specific word-
context pair

% ⋅ (⃗ = ?

+

,

! " -
!$

, ?= ! "

!$
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“Neural Word Embeddings as Implicit Matrix Factorization”

Levy & Goldberg, NIPS 2014



What is SGNS learning?

• Levy&Goldberg [2014] proved that for large enough !
and enough iterations …

• … one obtains the word-context PMI matrix

"

!

# $ %
#&

! '()*= # $

#&

38
“Neural Word Embeddings as Implicit Matrix Factorization”

Levy & Goldberg, NIPS 2014



What is SGNS learning?

• Levy&Goldberg [2014] proved that for large enough !
and enough iterations …

• … one obtains the word-context PMI matrix …
• shifted by a global constant

"#$ % ⋅ (⃗ = *+, %, ( − log 2

3

!

4 5 6
47

! +89:= 4 5

47

− log 2
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“Neural Word Embeddings as Implicit Matrix Factorization”

Levy & Goldberg, NIPS 2014



What is SGNS learning?

• SGNS is doing something very similar to the older 
approaches

• SGNS factorizes the traditional word-context PMI matrix

• So does SVD!

• GloVe factorizes a similar word-context matrix

40



But embeddings are still better, right?

• Plenty of evidence that embeddings outperform 
traditional methods
– “Don’t Count, Predict!” (Baroni et al., ACL 2014)
– GloVe (Pennington et al., EMNLP 2014)

• How does this fit with our story?
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The Big Impact of “Small” Hyperparameters

• word2vec & GloVe are more than just algorithms…

• Introduce new hyperparameters

• May seem minor, but make a big difference in practice
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New Hyperparameters

• Preprocessing (word2vec)
– Dynamic Context Windows
– Subsampling
– Deleting Rare Words

• Postprocessing (GloVe)
– Adding Context Vectors

• Association Metric (SGNS)
– Shifted PMI
– Context Distribution Smoothing
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Dynamic Context Windows

Marco saw a furry little wampimuk hiding in the tree.
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Dynamic Context Windows

Marco saw a furry little wampimuk hiding in the tree.
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Dynamic Context Windows

Marco saw a furry little wampimuk hiding in the tree.

Word2vec: !
"

#
"

$
"

"
"

"
"

$
"

#
"

!
"

GloVe: !
"

!
$

!
#

!
!

!
!

!
#

!
$

!
"

Aggressive:  !%
!
"

!
#

!
!

!
!

!
#

!
"

!
%

The Word-Space Model (Sahlgren, 2006)
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Adding Context Vectors

• SGNS creates word vectors !
• SGNS creates auxiliary context vectors #⃗

– So do GloVe and SVD
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Adding Context Vectors

• SGNS creates word vectors !
• SGNS creates auxiliary context vectors #⃗

– So do GloVe and SVD

• Instead of just !
• Represent a word as: ! + #⃗

• Introduced by Pennington et al. (2014)
• Only applied to GloVe
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Context Distribution Smoothing

• SGNS samples !"~$ to form negative (&, !′) examples

• Our analysis assumes $ is the unigram distribution

$ ! = #!
∑-.∈01 #!"

49



Context Distribution Smoothing

• SGNS samples !"~$ to form negative (&, !′) examples

• Our analysis assumes $ is the unigram distribution

• In practice, it’s a smoothed unigram distribution

$*.,- ! = #! *.,-

∑12∈45 #!" *.,-

• This little change makes a big difference
50



Context Distribution Smoothing

• We can adapt context distribution smoothing to PMI!

• Replace !(#) with !%.'((#):

!)*%.'( +, # = log !(+, #)
! + ⋅ 23.45 6

• Consistently improves PMI on every task

• Always use Context Distribution Smoothing!
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Represent the meaning of sentence/text

• Paragraph vector (2014, Quoc Le, Mikolov)
– Extend word2vec to text level
– Also two models: add paragraph vector as the input
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Don’t Count, Predict! [Baroni et al., 2014]

• “word2vec is better than count-based methods”

• Hyperparameter settings account for most of the 
reported gaps

• Embeddings do not really outperform count-based 
methods

• No unique conclusion available
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What’s really improving performance?

The Contributions of Word Embeddings

Novel Algorithms
(objective + training method)

• Skip Grams + Negative Sampling

• CBOW + Hierarchical Softmax

• Noise Contrastive Estimation

• GloVe

• …

New Hyperparameters
(preprocessing, smoothing, etc.)

• Subsampling

• Dynamic Context Windows

• Context Distribution Smoothing

• Adding Context Vectors

• …

54

Improving Distributional Similarity with Lessons Learned from Word 

Embeddings, Omer Levy, Yoav Goldberg, Ido Dagan


