
Non-Standard Datenbanken und Data Mining
From Clustering to Embedding

Prof. Dr. Ralf Möller
Universität zu Lübeck

Institut für Informationssysteme

Acknowledgments

• Slides have been taken from
– “Improving Distributional Similarity

with Lessons Learned from Word Embeddings”
• Omer Levy, Yoav Goldberg, Ido Dagan

– Stanford CS224d: Deep Learning for NLP
• Richard Socher

– Rensselaer: Natural Language Processing
• Heng Li

2

Word-Word Associations in Document Retrieval

Recap bag-of-words approaches
• LSI: Documents as vectors, dimension reduction

Words are not independent of each other
• Word similarity measures
• Extend query with similar words automatically
• Extend query with most frequent followers/predecessors
• Insert words in anticipated gaps in a string query

Need to represent some aspects of word semantics

3

Approaches for Representing Word Semantics

Distributional Semantics
(Count)
• Used since the 90’s
• Sparse word-context

PMI/PPMI matrix
• Decomposed with SVD

Word Embeddings (Predict)
• Inspired by deep learning
• word2vec

(Mikolov et al., 2013)
• GloVe

(Pennington et al., 2014)

4

Underlying Theory: The Distributional Hypothesis (Harris, ’54; Firth, ‘57)
“Similar words occur in similar contexts”

Beyond bags of words

https://nlp.stanford.edu/projects/glove/

https://www.tensorflow.org/tutorials/word2vec

References

• Harris 54

• Firth 57

• Micholov et al. 13

• Pennington et al. 14

5

Harris, Zellig. Distributional structure.
Word 10(23). 146–162. 1954.

Firth, John R. A synopsis of linguistic theory
1930–1955. In Studies in linguistic analysis,
1–32. Oxford: Blackwell. 1957.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg
Corrado, and Jeffrey Dean. Distributed
representations of words and phrases and their
compositionality. In Proceedings of the 26th
International Conference on Neural Information
Processing Systems - Volume 2 (NIPS‘13). 2013.

Jeffrey Pennington, Richard Socher, and
Christopher D. Manning. GloVe: Global Vectors
for Word Representation. 2014.

Point(wise) Mutual Information: PMI

• Measure of association used in information theory and
statistics

• Positive PMI: PPMI(x, y) = max(pmi(x, y), 0)
• Quantifies the discrepancy between the probability of their

coincidence given their joint distribution and their individual
distributions, assuming independence

• Finding collocations and associations between words
• Countings of occurrences and co-occurrences of words in a

text corpus can be used to approximate the probabilities p(x)
or p(y) and p(x,y) respectively

6[Wikipedia]

PMI – Example

7[Wikipedia]

• Counts of pairs of words
getting the most and the
least PMI scores in the
first 50 millions of words in
Wikipedia (dump of
October 2015)

• Filtering by 1,000 or more
co-occurrences.

• The frequency of each
count can be obtained by
dividing its value by
50,000,952. (Note: natural
log is used to calculate the
PMI values in this
example, instead of log
base 2)

Applications of PMI Data

• Extend query with most frequent followers/predecessors
• Insert words in anticipated gaps in a string query

8

Count(w, context)

PMI – Co-occurrence Matrix

9

1. Clustering Approach to Word Semantics

10

Clustering vectors to
visualize similarity in co-
occurrence matrices
(Rohde et al. 2005)

Use whatever
clustering algorithm
you prefer to determine
”related” words

Application:
Extend query with
related words
automatically

Apply SVD-based Dimension Reduction

11

Word context vectors
Number of clusters

2. Embedding Approaches to Word Semantics

• Represent each word with a low-dimensional vector
• Word similarity = vector similarity
• Key idea: Predict surrounding words of every word

12

Represent the meaning of words – word2vec

• 2 basic structural models:
– Continuous Bag of Words (CBOW): use a window of

words to predict the middle word
– Skip-gram (SG): use a word to predict the surrounding

ones in window.

13

Word2vec – Continuous Bag of Word

• E.g. “The cat <sat> on floor”
– Window size = 2

14

the

cat

on

floor

sat

15

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

cat

on

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

sat

Output layer

one-hot
vector

one-hot
vector

Index of cat in vocabulary

16

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

cat

on

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

sat

Output layer!"×$

!"×$

V-dim

V-dim

N-dim

!′$×"

V-dim

N will be the size of word vector

We must learn W and W’

17

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

xcat

xon

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

sat

Output layer

V-dim

V-dim

N-dim

V-dim

!"×$
%
×&'() = +'()

!"×$
% ×&,-

= +,
-

+ .+ = +'() + +,-
2

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

×

0

1

0

0

0

0

0

0

…

0

!"×$
% ×&'() = +'()

2.4

2.6

…

…

1.8

=

18

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

xcat

xon

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

sat

Output layer

V-dim

V-dim

N-dim

V-dim

!"×$
%
×&'() = +'()

!"×$
% ×&,-

= +,
-

+ .+ = +'() + +,-
2

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

×

0

0

0

1

0

0

0

0

…

0

!"×$
% ×&,- = +,-

1.8

2.9

…

…

1.9

=

19

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

cat

on

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

!"#$%

Output layer&'×)

&'×)

V-dim

V-dim

N-dim

&)×'
* ×!+ = -

V-dim

N will be the size of word vector

!+

!" = ./01234(-)

Logistic function

20[Wikipedia]

softmax(z)

21

The

[Wikipedia]

22

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

cat

on

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

!"#$%

Output layer&'×)

&'×)

V-dim

V-dim

N-dim

&)×'
* ×!+ = -

!" = ./01234(-)

V-dim

N will be the size of word vector

!+

0.01

0.02

0.00

0.02

0.01

0.02

0.01

0.7

…

0.00

!"

We would prefer !" close to !"789

23

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

xcat

xon

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

sat

Output layer

V-dim

V-dim

N-dim

V-dim

!"×$

!"×$

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

!"×$
%

Contains word vectors

!$×"
&

We can consider either W or W’ as the word’s representation.

Word Analogies

24

||wx||

Word Analogies

25

What is word2vec?

• word2vec is not a single algorithm
• It is a software package for representing words as vectors, containing:

– Two distinct models
• CBoW
• Skip-Gram (SG)

– Various training methods
• Negative Sampling (NS)
• Hierarchical Softmax

– A rich preprocessing pipeline
• Dynamic Context Windows
• Subsampling
• Deleting Rare Words

26

Skip-Grams with Negative Sampling (SGNS)

Marco saw a furry little wampimuk hiding in the tree.

“word2vec Explained…”

Goldberg & Levy, arXiv 2014 27

Skip-Grams with Negative Sampling (SGNS)

Marco saw a furry little wampimuk hiding in the tree.

28
“word2vec Explained…”
Goldberg & Levy, arXiv 2014

Skip-Grams with Negative Sampling (SGNS)

Marco saw a furry little wampimuk hiding in the tree.

words contexts
wampimuk furry
wampimuk little
wampimuk hiding
wampimuk in
… …

! (data)

29
“word2vec Explained…”
Goldberg & Levy, arXiv 2014

Skip-Grams with Negative Sampling (SGNS)

• SGNS finds a vector ! for each word ! in our vocabulary "#
• Each such vector has $ latent dimensions (e.g. $ = 100)
• Effectively, it learns a matrix (whose rows represent "#
• Key point: it also derives a similar auxiliary matrix) of

context vectors
• In fact, each word has two embeddings

(

$

" #

!:wampimuk =
(−3.1, 4.15, 9.2, −6.5, …))" 6

$

7:wampimuk =
(−5.6, 2.95, 1.4, −1.3, …)

≠

30
“word2vec Explained…”
Goldberg & Levy, arXiv 2014

Skip-Grams with Negative Sampling (SGNS)

31
“word2vec Explained…”
Goldberg & Levy, arXiv 2014

Skip-Grams with Negative Sampling (SGNS)

• Maximize: ! " ⋅ $
– $ was observed with "

words contexts
wampimuk furry

wampimuk little

wampimuk hiding

wampimuk in

32

“word2vec Explained…”

Goldberg & Levy, arXiv 2014

Skip-Grams with Negative Sampling (SGNS)

• Maximize: ! " ⋅ $
– $ was observed with "

words contexts
wampimuk furry

wampimuk little

wampimuk hiding

wampimuk in

• Minimize: ! " ⋅ $ ′
– $′ was hallucinated

with "

words contexts
wampimuk Australia

wampimuk cyber

wampimuk the

wampimuk 1985

33
“word2vec Explained…”
Goldberg & Levy, arXiv 2014

Skip-Grams with Negative Sampling (SGNS)

• “Negative Sampling”
• SGNS samples ! contexts "# at random

as negative examples
• “Random” = unigram distribution

$ " = #"
'

• Spoiler: Changing this distribution has a significant effect

34

What is SGNS learning?

• Take SGNS’s embedding matrices (! and ")

“Neural Word Embeddings as Implicit Matrix Factorization”
Levy & Goldberg, NIPS 2014

!

#

$ % $ &

#

"

35

What is SGNS learning?

• Take SGNS’s embedding matrices (! and ")
• Multiply them
• What do you get?

!

#

$ % "
$&

#

36
“Neural Word Embeddings as Implicit Matrix Factorization”

Levy & Goldberg, NIPS 2014

What is SGNS learning?

• A !"×!$ matrix

• Each cell describes the relation between a specific word-
context pair

% ⋅ (⃗ = ?

+

,

! " -
!$

, ?= ! "

!$

37
“Neural Word Embeddings as Implicit Matrix Factorization”

Levy & Goldberg, NIPS 2014

What is SGNS learning?

• Levy&Goldberg [2014] proved that for large enough !
and enough iterations …

• … one obtains the word-context PMI matrix

"

!

$ %
#&

! '()*= # $

#&

38
“Neural Word Embeddings as Implicit Matrix Factorization”

Levy & Goldberg, NIPS 2014

What is SGNS learning?

• Levy&Goldberg [2014] proved that for large enough !
and enough iterations …

• … one obtains the word-context PMI matrix …
• shifted by a global constant

"#$ % ⋅ (⃗ = *+, %, (− log 2

3

!

4 5 6
47

! +89:= 4 5

47

− log 2

39
“Neural Word Embeddings as Implicit Matrix Factorization”

Levy & Goldberg, NIPS 2014

What is SGNS learning?

• SGNS is doing something very similar to the older
approaches

• SGNS factorizes the traditional word-context PMI matrix

• So does SVD!

• GloVe factorizes a similar word-context matrix

40

But embeddings are still better, right?

• Plenty of evidence that embeddings outperform
traditional methods
– “Don’t Count, Predict!” (Baroni et al., ACL 2014)
– GloVe (Pennington et al., EMNLP 2014)

• How does this fit with our story?

41

The Big Impact of “Small” Hyperparameters

• word2vec & GloVe are more than just algorithms…

• Introduce new hyperparameters

• May seem minor, but make a big difference in practice

42

New Hyperparameters

• Preprocessing (word2vec)
– Dynamic Context Windows
– Subsampling
– Deleting Rare Words

• Postprocessing (GloVe)
– Adding Context Vectors

• Association Metric (SGNS)
– Shifted PMI
– Context Distribution Smoothing

43

Dynamic Context Windows

Marco saw a furry little wampimuk hiding in the tree.

44

Dynamic Context Windows

Marco saw a furry little wampimuk hiding in the tree.

45

Dynamic Context Windows

Marco saw a furry little wampimuk hiding in the tree.

Word2vec: !
"

#
"

$
"

"
"

"
"

$
"

#
"

!
"

GloVe: !
"

!
$

!
#

!
!

!
!

!
#

!
$

!
"

Aggressive: !%
!
"

!
#

!
!

!
!

!
#

!
"

!
%

The Word-Space Model (Sahlgren, 2006)

46

Adding Context Vectors

• SGNS creates word vectors !
• SGNS creates auxiliary context vectors #⃗

– So do GloVe and SVD

47

Adding Context Vectors

• SGNS creates word vectors !
• SGNS creates auxiliary context vectors #⃗

– So do GloVe and SVD

• Instead of just !
• Represent a word as: ! + #⃗

• Introduced by Pennington et al. (2014)
• Only applied to GloVe

48

Context Distribution Smoothing

• SGNS samples !"~$ to form negative (&, !′) examples

• Our analysis assumes $ is the unigram distribution

$! = #!
∑-.∈01 #!"

49

Context Distribution Smoothing

• SGNS samples !"~$ to form negative (&, !′) examples

• Our analysis assumes $ is the unigram distribution

• In practice, it’s a smoothed unigram distribution

$*.,- ! = #! *.,-

∑12∈45 #!" *.,-

• This little change makes a big difference
50

Context Distribution Smoothing

• We can adapt context distribution smoothing to PMI!

• Replace !(#) with !%.'((#):

!)*%.'(+, # = log !(+, #)
! + ⋅ 23.45 6

• Consistently improves PMI on every task

• Always use Context Distribution Smoothing!

51

Represent the meaning of sentence/text

• Paragraph vector (2014, Quoc Le, Mikolov)
– Extend word2vec to text level
– Also two models: add paragraph vector as the input

52

Don’t Count, Predict! [Baroni et al., 2014]

• “word2vec is better than count-based methods”

• Hyperparameter settings account for most of the
reported gaps

• Embeddings do not really outperform count-based
methods

• No unique conclusion available

53

What’s really improving performance?

The Contributions of Word Embeddings

Novel Algorithms
(objective + training method)

• Skip Grams + Negative Sampling

• CBOW + Hierarchical Softmax

• Noise Contrastive Estimation

• GloVe

• …

New Hyperparameters
(preprocessing, smoothing, etc.)

• Subsampling

• Dynamic Context Windows

• Context Distribution Smoothing

• Adding Context Vectors

• …

54

Improving Distributional Similarity with Lessons Learned from Word

Embeddings, Omer Levy, Yoav Goldberg, Ido Dagan

