Non-Standard-Datenbanken

Dynamische Bayessche Netze

Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme

IM FOCUS DAS LEBEN

Temporal Probabilistic Agent

- Previous and current states (PDBs, Bayesian networks)
 - From visible probabilistic data to derived probabilistic data
- Forecasting (temporal PDBs, dynamic Bayesian networks)
 - From visible and current estimated environment state to estimation about the next environment state

Time and Uncertainty

- The world changes, we need to track and predict it
 - Examples: diabetes management, traffic monitoring
- Basic idea: copy state and evidence variables of Bayesian network for each time step (snapshots)
- X_t: set of unobservable state variables at time t
 - e.g., BloodSugar_t, StomachContents_t
- E_t: set of evidence variables at time t
 - e.g., MeasuredBloodSugar_t, PulseRate_t, FoodEaten_t
 - Observation at time t is $\mathbf{E}_t = \mathbf{e}_t$ for some set of values \mathbf{e}_t
- Assumes discrete time steps
 - Notation: $X_{a:b}$ denotes the set of variables from X_a to X_b
- Dynamic Bayesian Network (DBN)

DBN - Representation

- Problem:
 - 1. Process behavior might change (CPTs of evidence variables change)
 - Evidence and state variables might depend on all previous states (unbounded number of Parents in CPT)

Solution:

ITÄT ZU LÜBECK

1. Assume that changes in the world state are caused by a stationary process (unchanging process over time).

 $P(U_t \mid Parent(U_t))$ is the same for all t

"Dynamic" means we are modeling a dynamic system, not that the structure of a Bayesian network changes over time.

DBN - Representation

- Solution cont.:
 - 2. Use **Markov assumption** The current state depends on only in a finite history of previous states.

Usually: First-order Markov process (only previous state matters)

$$P(X_t / X_{0:t-1}) = P(X_t / X_{t-1})$$
Transition
Model

In addition to restricting the parents of the state variable X_t , we must restrict the parents of the evidence variable E_t

$$P(E_t / X_{0:t}, E_{0:t-1}) = P(E_t / X_t)$$
 Sensor
Model

Complete Joint Distribution

- Given:
 - Transition model: $P(X_t | X_{t-1})$
 - Sensor model: $P(E_t | X_t)$
 - Prior probability: P(X₀)
- Then we can specify complete joint distribution:

$$P(X_0, X_1, ..., X_t, E_1, ..., E_t) = P(X_0) \prod_{i=1}^t P(X_i | X_{i-1}) P(E_i | X_i)$$

Inference Tasks

- **Filtering:** What is the probability that it is raining today, given all the umbrella observations up through today?
- **Prediction:** What is the probability that it will rain the day after tomorrow, given all the umbrella observations up through today?
- **Smoothing:** What is the probability that it rained yesterday, given all the umbrella observations through today?
- Most likely explanation / most probable explanation: if the umbrella appeared the first three days but not on the fourth, what is the most likely weather sequence to produce these umbrella sightings?

• Filtering or Monitoring:

Compute the belief state - the posterior distribution over the *current* state, given all evidence to date.

 $P(X_{t+1} / e_{1:t+1})$

• Filtering cont.

Given the results of filtering up to time *t*, one can easily compute the result for t+1 from the new evidence e_{t+1}

$$\begin{split} P(X_{t+1} / e_{1:t+1}) &= f\left(e_{t+1,} P(X_t / e_{1:t} \)\right) & \text{(for some function } f) \\ &= P(X_{t+1} / e_{1:t,} e_{t+1}) & \text{(dividing up the evidence} \\ &= \alpha P(e_{t+1} / X_{t+1,} e_{1:t}) P(X_{t+1} / e_{1:t}) & \text{(using Bayes' Theorem)} \\ &= \alpha P(e_{t+1} / X_{t+1}) P(X_{t+1} / e_{1:t}) & \text{(by the Markov property} \\ &= \alpha P(e_{t+1} / X_{t+1}) P(X_{t+1} / e_{1:t}) & \text{of evidence} \end{split}$$

 α is a normalizing constant used to make probabilities sum up to 1.

• Filtering cont.

The second term $P(X_{t+1} / e_{1:t})$ represents a one-step prediction of the next step, and the first term $P(e_{t+1} / X_{t+1})$ updates this with the new evidence.

Now we obtain the one-step prediction for the next step by conditioning on the current state X_t:

$$P(X_{t+1} / e_{1:t+1}) = \alpha P(e_{t+1} / X_{t+1}) \sum_{X_t} P(X_{t+1} / x_t, e_{1:t}) P(x_t / e_{1:t})$$

$$= \alpha P(e_{t+1} / X_{t+1}) \sum_{X_t} P(X_{t+1} / \mathbf{x_t}) P(x_t / e_{1:t})$$
(using the Markov property)

(using the Markov property)

Anmeldung zur Klausur wird nach der Vorlesung freigeschaltet

atut v Informationssysteme

Lübecĸ

IM FOCUS DAS LEBEN

$$P(X_{t+1} / e_{1:t+1}) = f(e_{t+1}, P(X_t / e_{1:t}))$$

= $\alpha P(e_{t+1} / X_{t+1}) \sum_{X_t} P(X_{t+1} / X_t) P(x_t / e_{1:t})$

 $\mathbf{f}_{1:t+1} = \operatorname{FORWARD}(\mathbf{f}_{1:t}, \mathbf{e}_{t+1}) \text{ where } \mathbf{f}_{1:t} = \mathbf{P}(\mathbf{X}_t | \mathbf{e}_{1:t})$ Time and space **constant** (independent of t)

RSITÄT ZU LÜBECK

MATIONSSYSTEM

$$P(X_{t+1} / e_{1:t+1}) = \alpha P(e_{t+1} / X_{t+1}) \sum_{X_t} P(X_{t+1} / x_t) P(x_t / e_{1:t})$$

Illustration for two steps in the Umbrella example:

• On day 1, the umbrella appears so U1=true. The prediction from t=0 to t=1 is

$$P(R_1) = \sum_{r_0} P(R_1 / r_0) P(r_0)$$

and updating it with the evidence for t=1 gives

$$P(R_1 / u_1) = \alpha P(u_1 / R_1) P(R_1)$$

• On day 2, the umbrella appears so U2=true. The prediction from t=1 to t=2 is

$$P(R_2 / u_1) = \sum_{r_1} P(R_2 / r_1) P(r_1 / u_1)$$

and updating it with the evidence for t=2 gives

$$P(R_2 / u_1, u_2) = \alpha P(u_2 / R_2) P(R_2 / u_1)$$

Example cntd.

$$P(X_{t+1} / e_{1:t+1}) = \alpha P(e_{t+1} / X_{t+1}) \sum_{X_t} P(X_{t+1} / x_t) P(x_t / e_{1:t})$$

• Prediction:

/ERSITÄT ZU LÜBECK

RMATIONSSYSTEM

Compute the posterior distribution over the *future* state, given all evidence to date.

$$P(X_{t+k} \, / \, e_{1:t})$$
 for some k>0

The task of prediction can be seen simply as filtering without the addition of new evidence (e.g., assume uniform distribution for evidence values). • Smoothing or hindsight inference:

Compute the posterior distribution over the *past* state, given all evidence up to the present.

$$P(X_k / e_{1:t})$$

for some k such that $0 \le k < t$.

Hindsight provides a better estimate of the state than was available at the time, because it incorporates more evidence from the "future".

Smoothing

Divide evidence $\mathbf{e}_{1:t}$ into $\mathbf{e}_{1:k}$, $\mathbf{e}_{k+1:t}$:

$$\mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:t}) = \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k}, \mathbf{e}_{k+1:t})$$

= $\alpha \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k})\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_{k}, \mathbf{e}_{1:k})$
= $\alpha \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k})\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_{k})$
= $\alpha \mathbf{f}_{1:k}\mathbf{b}_{k+1:t}$

Backward message computed by a backwards recursion:

$$\begin{aligned} \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k) &= \sum_{\mathbf{x}_{k+1}} \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k, \mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k) \\ &= \sum_{\mathbf{x}_{k+1}} P(\mathbf{e}_{k+1:t}|\mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k) \\ &= \sum_{\mathbf{x}_{k+1}} P(\mathbf{e}_{k+1}|\mathbf{x}_{k+1}) P(\mathbf{e}_{k+2:t}|\mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k) \end{aligned}$$

Forward-backward algorithm: cache forward messages along the way Time linear in t (polytree inference), space $O(t|\mathbf{f}|)$

Example contd.

• Most likely explanation:

Compute the sequence of states that is most likely to have generated a given sequence of observation.

$$\arg \max_{x_{1:t}} P(X_{1:t} | e_{1:t})$$

Algorithms for this task are useful in many applications, including, e.g., speech recognition.

Most-likely explanation

Most likely sequence \neq sequence of most likely states!!!!

Most likely path to each \mathbf{x}_{t+1} = most likely path to some \mathbf{x}_t plus one more step

 $\max_{\mathbf{x}_1...\mathbf{x}_t} \mathbf{P}(\mathbf{x}_1,\ldots,\mathbf{x}_t,\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1})$

$$P(X_{t+1} / e_{1:t+1}) = f(e_{t+1}, P(X_t / e_{1:t}))$$

= $\alpha P(e_{t+1} / X_{t+1}) \sum_{X_t} P(X_{t+1} / X_t) P(x_t / e_{1:t})$

Most-likely explanation

Most likely sequence \neq sequence of most likely states!!!!

Most likely path to each \mathbf{x}_{t+1} = most likely path to some \mathbf{x}_t plus one more step

 $\max_{\mathbf{x}_{1}...\mathbf{x}_{t}} \mathbf{P}(\mathbf{x}_{1},\ldots,\mathbf{x}_{t},\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1})$ = $\mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \max_{\mathbf{x}_{t}} \left(\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_{t}) \max_{\mathbf{x}_{1}...\mathbf{x}_{t-1}} P(\mathbf{x}_{1},\ldots,\mathbf{x}_{t-1},\mathbf{x}_{t}|\mathbf{e}_{1:t}) \right)$

Identical to filtering, except $\mathbf{f}_{1:t}$ replaced by

$$\mathbf{m}_{1:t} = \max_{\mathbf{x}_1...\mathbf{x}_{t-1}} \mathbf{P}(\mathbf{x}_1,\ldots,\mathbf{x}_{t-1},\mathbf{X}_t | \mathbf{e}_{1:t}),$$

I.e., $\mathbf{m}_{1:t}(i)$ gives the probability of the most likely path to state i. Update has sum replaced by max, giving the Viterbi algorithm:

 $\mathbf{m}_{1:t+1} = \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \max_{\mathbf{X}_t} \left(\mathbf{P}(\mathbf{X}_{t+1} | \mathbf{x}_t) \mathbf{m}_{1:t} \right)$

DBN – Special Cases

• Hidden Markov Model (HMMs):

Temporal probabilistic model in which the state of the process is described by a single discrete random variable. (The simplest kind of DBN)

• Kalman Filter Models (KFMs):

Estimate the state of a physical system from noisy observations over time. Also known as linear dynamical systems (LDSs).

• Filtering

$$P(X_{t+1} / e_{1:t+1}) = \alpha P(e_{t+1} / X_{t+1}) \sum_{X_t} P(X_{t+1} / x_t) P(x_t / e_{1:t})$$

Smoothing

$$\mathbf{P}(\mathbf{X}_k|\mathbf{e}_{1:t}) = \alpha \mathbf{P}(\mathbf{X}_k|\mathbf{e}_{1:k})\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k)$$

 $\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k) = \sum_{\mathbf{x}_{k+1}} P(\mathbf{e}_{k+1}|\mathbf{x}_{k+1}) P(\mathbf{e}_{k+2:t}|\mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k)$

• Most likely sequence

 $\mathbf{P}(\mathbf{X}_k|\mathbf{e}_{1:t}) = \alpha \mathbf{f}_{1:k} \mathbf{b}_{k+1:t}$

$$\max_{\mathbf{x}_{1}...\mathbf{x}_{t}} \mathbf{P}(\mathbf{x}_{1}, \dots, \mathbf{x}_{t}, \mathbf{X}_{t+1} | \mathbf{e}_{1:t+1})$$

= $\mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \max_{\mathbf{x}_{t}} \left(\mathbf{P}(\mathbf{X}_{t+1} | \mathbf{x}_{t}) \max_{\mathbf{x}_{1}...\mathbf{x}_{t-1}} P(\mathbf{x}_{1}, \dots, \mathbf{x}_{t-1}, \mathbf{x}_{t} | \mathbf{e}_{1:t}) \right)$

Forward and backward messages as column vectors:

 $\mathbf{f}_{1:t+1} = \alpha \mathbf{O}_{t+1} \mathbf{T}^{\mathsf{T}} \mathbf{f}_{1:t}$ $\mathbf{b}_{k+1:t} = \mathbf{T} \mathbf{O}_{k+1} \mathbf{b}_{k+2:t}$

Forward-backward algorithm needs time $O(S^2t)$ and space O(St)

$$\mathbf{f}_{1:t+1} = \alpha \mathbf{O}_{t+1} \mathbf{T}^{\mathsf{T}} \mathbf{f}_{1:t}$$
$$\mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \alpha \mathbf{T}^{\mathsf{T}} \mathbf{f}_{1:t}$$
$$\alpha'(\mathbf{T}^{\mathsf{T}})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \mathbf{f}_{1:t}$$

$$\mathbf{f}_{1:t+1} = \alpha \mathbf{O}_{t+1} \mathbf{T}^{\mathsf{T}} \mathbf{f}_{1:t}$$
$$\mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \alpha \mathbf{T}^{\mathsf{T}} \mathbf{f}_{1:t}$$
$$\alpha'(\mathbf{T}^{\mathsf{T}})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \mathbf{f}_{1:t}$$

$$\mathbf{f}_{1:t+1} = \alpha \mathbf{O}_{t+1} \mathbf{T}^{\mathsf{T}} \mathbf{f}_{1:t}$$
$$\mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \alpha \mathbf{T}^{\mathsf{T}} \mathbf{f}_{1:t}$$
$$\alpha'(\mathbf{T}^{\mathsf{T}})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \mathbf{f}_{1:t}$$

$$\mathbf{f}_{1:t+1} = \alpha \mathbf{O}_{t+1} \mathbf{T}^{\mathsf{T}} \mathbf{f}_{1:t}$$
$$\mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \alpha \mathbf{T}^{\mathsf{T}} \mathbf{f}_{1:t}$$
$$\alpha'(\mathbf{T}^{\mathsf{T}})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \mathbf{f}_{1:t}$$

$$\mathbf{f}_{1:t+1} = \alpha \mathbf{O}_{t+1} \mathbf{T}^{\mathsf{T}} \mathbf{f}_{1:t}$$
$$\mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \alpha \mathbf{T}^{\mathsf{T}} \mathbf{f}_{1:t}$$
$$\alpha'(\mathbf{T}^{\mathsf{T}})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \mathbf{f}_{1:t}$$

$$\mathbf{f}_{1:t+1} = \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t}$$
$$\mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \alpha \mathbf{T}^{\top} \mathbf{f}_{1:t}$$
$$\alpha'(\mathbf{T}^{\top})^{-1} \mathbf{O}_{t+1}^{-1} \mathbf{f}_{1:t+1} = \mathbf{f}_{1:t}$$

Algorithm: forward pass computes f_t , backward pass does f_i , b_i

(

Every HMM is a single-variable DBN; every discrete DBN is an HMM

Consider the **transition model**

Sparse dependencies \Rightarrow exponentially fewer parameters;

e.g., 20 state variables, three parents each DBN has $20 \times 2^3 = 160$ parameters, HMM has $2^{20} \times 2^{20} \approx 10^{12}$

DBN – Special Cases

• Hidden Markov Model (HMMs):

Temporal probabilistic model in which the state of the process is described by a single discrete random variable. (The simplest kind of DBN)

• Kalman Filter Models (KFMs):

Estimate the state of a physical system from noisy observations over time. Also known as linear dynamical systems (LDSs).

Modelling systems described by a set of continuous variables,

e.g., tracking a bird flying— $\mathbf{X}_t = X, Y, Z, \dot{X}, \dot{Y}, \dot{Z}$.

Airplanes, robots, ecosystems, economies, chemical plants, planets, ...

Gaussian prior, linear Gaussian transition model and sensor model

Prediction step: if $P(\mathbf{X}_t | \mathbf{e}_{1:t})$ is Gaussian, then prediction

 $\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t}) = \int_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t) P(\mathbf{x}_t|\mathbf{e}_{1:t}) \, d\mathbf{x}_t$

is Gaussian. If $\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$ is Gaussian, then the updated distribution

 $\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$

is Gaussian

Hence $\mathbf{P}(\mathbf{X}_t | \mathbf{e}_{1:t})$ is multivariate Gaussian $N(\boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t)$ for all t

General (nonlinear, non-Gaussian) process: description of posterior grows unboundedly as $t \to \infty$

2-D Tracking: Filtering

Simple 1-D Example

Transition and sensor models:

 $P(\mathbf{x}_{t+1}|\mathbf{x}_t) = N(\mathbf{F}\mathbf{x}_t, \mathbf{\Sigma}_x)(\mathbf{x}_{t+1})$ $P(\mathbf{z}_t|\mathbf{x}_t) = N(\mathbf{H}\mathbf{x}_t, \mathbf{\Sigma}_z)(\mathbf{z}_t)$

F is the matrix for the transition; Σ_x the transition noise covariance H is the matrix for the sensors; Σ_z the sensor noise covariance

Filter computes the following update: Details left for your studies

$$\boldsymbol{\mu}_{t+1} = \mathbf{F}\boldsymbol{\mu}_t + \mathbf{K}_{t+1}(\mathbf{z}_{t+1} - \mathbf{H}\mathbf{F}\boldsymbol{\mu}_t) \boldsymbol{\Sigma}_{t+1} = (\mathbf{I} - \mathbf{K}_{t+1})(\mathbf{F}\boldsymbol{\Sigma}_t\mathbf{F}^\top + \boldsymbol{\Sigma}_x)$$

where $\mathbf{K}_{t+1} = (\mathbf{F} \boldsymbol{\Sigma}_t \mathbf{F}^\top + \boldsymbol{\Sigma}_x) \mathbf{H}^\top (\mathbf{H} (\mathbf{F} \boldsymbol{\Sigma}_t \mathbf{F}^\top + \boldsymbol{\Sigma}_x) \mathbf{H}^\top + \boldsymbol{\Sigma}_z)^{-1}$ is the Kalman gain matrix

 $\mathbf{\Sigma}_t$ and \mathbf{K}_t are independent of observation sequence, so compute offline

2-D Tracking: Smoothing

Cannot be applied if the transition model is nonlinear

Extended Kalman Filter models transition as locally linear around $\mathbf{x}_t = \boldsymbol{\mu}_t$ Fails if systems is locally unsmooth

Standard solution: switching Kalman filter

Keeping track of many objects: Identity uncertainty

Non-Standard-Datenbanken

Dynamische Bayessche Netze

Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme

IM FOCUS DAS LEBEN

Learning Dynamic Bayesian Networks

- *Learning* requires the full smoothing inference, rather than filtering, because it provides better estimates of the state of the process.
- Learning the parameters of a BN is done using Expectation – Maximization (EM) Algorithms.
 - Iterative optimization method to estimate some unknown parameters.

Set of states:
$$\{s_1, s_2, ..., s_N\}$$

Process moves from one state to another generating a sequence of states : $S_{i1}, S_{i2}, \dots, S_{ik}, \dots$

Markov chain property: probability of each subsequent state depends only on what was the previous state:

$$P(s_{ik} | s_{i1}, s_{i2}, \dots, s_{ik-1}) = P(s_{ik} | s_{ik-1})$$

States are not visible, but each state generates one of M different observations

$$\{v_1, v_2, \dots, v_M\}$$

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME

IM FOCUS DAS LEBEN

Example of Hidden Markov Model

IM FOCUS DAS LEBEN

State View: Hidden Markov models

To define a hidden Markov model, the following probabilities have to be specified:

- Matrix of transition probabilities A=(a_{ij}), a_{ij}= P(s_j | s_i),
- Matrix of observation probabilities B=(b_i (v_m)), b_i(v_m) = P(v_m | s_i) and a
- Vector of initial probabilities $\pi = (\pi_i), \pi_i = P(s_i)$.

Model is represented by (A, B, π).

Given some training observation sequences $O=O_1O_2...O_t$ and general structure of HMM (numbers of hidden and visible states), determine HMM parameters (A, B, π) that best fit training data, i.e., that is maximizes P(O | A, B, π).

State View: Learning problem (2)

If training data has information about sequence of hidden states, then use maximum likelihood estimation of parameters:

 $a_{ij} = P(s_i | s_i) =$

Number of transitions from state S_i to state S_j

Number of transitions out of state S_i

 $b_i(v_m) = P(v_m | s_i) =$

Number of times observation V_m occurs in state S_i

Number of times in state S_i

Otherwise: Use iterative expectation-maximization algorithm to find local maximum of $P(O \mid A, B, \pi)$: Baum-Welch Algorithm

Alternative: Viterbi Path Counting Algorithm

Leonard E. Baum, Ted Petrie, George Soules, and Norman Weiss, A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains, Ann. Math. Statist. Volume 41, Number 1, 164-171, **1970**

Leonard E. Baum and Ted Petrie, Statistical Inference for Probabilistic Functions of Finite State Markov Chains, Ann. Math. Statist. Volume 37, Number 6, 1554-1563, **1966**. IM FOCUS DAS LEBEN

Baum-Welch algorithm

General idea:

 $a_{ij} = P(s_j | s_i) =$

Expected number of transitions from state S_i to state S_j

Expected number of transitions out of state S_i

 $b_i(v_m) = P(v_m | s_i) =$

Expected number of times observation V_m occurs in state S_i

Expected number of times in state S_i

 $\pi_i = P(s_i) = Expected frequency in state S_i at time k=1.$

IM FOCUS DAS LEBEN

Baum-Welch algorithm: Expectation step(1)

Define variable $\xi_k(i,j)$ as the probability of being in state S_i at time k and in state S_j at time k+1, given the observation sequence $O_1 O_2 \dots O_T$ with k < t $\xi_k(i,j) = P(X_k = S_i, X_{k+1} = S_j | O_1 O_2 \dots O_t)$

$$\xi_{k}(i,j) = \frac{P(X_{k} = s_{i}, X_{k+1} = s_{j}, o_{1} o_{2} \dots o_{t})}{P(o_{1} o_{2} \dots o_{t})} =$$

$$\frac{P(X_{k}=s_{i}, o_{1} o_{2} ... o_{k}) a_{ij} b_{j}(o_{k+1}) P(o_{k+2} ... o_{t} | X_{k+1}=s_{j})}{P(o_{1} o_{2} ... o_{t})} = 0$$

Define variable $\gamma_k(i)$ as the probability of being in state $X_k = S_i$ at time k, given the observation sequence $O_1 O_2 \dots O_t$.

$$\gamma_{k}(i) = \mathbf{P}(\mathbf{X}_{k} = \mathbf{S}_{i} | \mathbf{O}_{1}\mathbf{O}_{2} \dots \mathbf{O}_{t})$$

$$\gamma_{k}(i) = \frac{P(X_{k} = s_{i}, O_{1} O_{2} \dots O_{t})}{P(O_{1} O_{2} \dots O_{t})} =$$

 α forward_k(i) backward_k(i)

IM FOCUS DAS LEBEN

Baum-Welch algorithm: Expectation step(3)

We calculated
$$\xi_k(i,j) = P(X_k = S_i, X_{k+1} = S_j | O_1 O_2 \dots O_t)$$

and $\gamma_k(i) = P(X_k = S_i | O_1 O_2 \dots O_t)$

Expected number of transitions from state S_i to state S_j =

$$= \sum_{k} \xi_{k}(i,j)$$

Expected number of transitions out of state $S_i = \sum_k \gamma_k(i)$

Expected number of times observation V_m occurs in state S_i = = $\sum_{k} \gamma_{k}(i)$, k is such that O_k= V_m Expected frequency in state S_i at time k=1 : $\gamma_{1}(i)$.

Baum-Welch algorithm: Maximization step

 $\mathbf{a}_{ij} = \frac{\text{Expected number of transitions from state } \mathbf{S}_j \text{ to state } \mathbf{S}_i}{\text{Expected number of transitions out of state } \mathbf{S}_j} = \frac{\sum_k \xi_k(i,j)}{\sum_k \gamma_k(i)}$

$$\mathbf{b}_{i}(\mathbf{v}_{m}) = \frac{\text{Expected number of times observation } \mathbf{v}_{m} \text{ occurs in state } \mathbf{s}_{i}}{\text{Expected number of times in state } \mathbf{s}_{i}} = \frac{\sum_{k} \xi_{k}(i,j)}{\sum_{k,o_{k}=v_{m}} \gamma_{k}(i)}$$

 $\pi_i = (\text{Expected frequency in state } S_i \text{ at time } k=1) = \gamma_1(i).$

Learning (1)

- The techniques for learning DBN are mostly straightforward extensions of the techniques for learning BNs
- Parameter learning
 - The transition model $P(X_t | X_{t-1})$ / The observation model $P(Y_t | X_t)$
 - Offline learning
 - Parameters must be tied across time-slices
 - The initial state of the dynamic system can be learned independently of the transition matrix
 - Online learning
 - Add the parameters to the state space and then do online inference (filtering)
 - The usual criterion is maximum-likelihood(ML)
- The goal of parameter learning is to compute
 - $\theta^*_{ML} = \operatorname{argmax}_{\theta} P(Y \mid \theta) = \operatorname{argmax}_{\theta} \log P(Y \mid \theta)$
 - $\theta^*_{MAP} = \operatorname{argmax}_{\theta} \log P(Y \mid \theta) + \log P(\theta)$
 - Two standard approaches: gradient ascent and EM(Expectation Maximization)

Learning (2)

- Structure learning
 - Intra-slice connectivity: Structural EM
 - Inter-slice connectivity:
 For each node in slice t, we must choose its parents from slice t-1
 - Given structure is unrolled to a certain extent,
 the inter-slice connectivity is identical for all pairs of slices:
 - Constraints on Structural EM

58/29

Summary

Temporal models use state and sensor variables replicated over time

Markov assumptions and stationarity assumption, so we need

- transition model $\mathbf{P}(\mathbf{X}_t | \mathbf{X}_{t-1})$
- sensor model $\mathbf{P}(\mathbf{E}_t | \mathbf{X}_t)$

Tasks are filtering, prediction, smoothing, most likely sequence; all done recursively with constant cost per time step

Hidden Markov models have a single discrete state variable; used for speech recognition

Kalman filters allow n state variables, linear Gaussian, $O(n^3)$ update

Dynamic Bayes nets subsume HMMs, Kalman filters; exact update intractable

Literature

SECOND EDITION

Stuart Russell • Peter Norvig Prentice Hall Series in Artificial Intelligence

http://aima.cs.berkeley.edu

