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Temporal Probabilistic Agent

environment
agent

? sensors

actuators

t1, t2, t3, … 2

• Previous and current states (PDBs, Bayesian networks)
• From visible probabilistic data to derived probabilistic data

• Forecasting (temporal PDBs, dynamic Bayesian networks)
• From visible and current estimated environment state to 

estimation about the next environment state



Time and Uncertainty

• The world changes, we need to track and predict it
– Examples: diabetes management, traffic monitoring

• Basic idea: copy state and evidence variables of 
Bayesian network for each time step (snapshots)

• Xt: set of unobservable state variables at time t
– e.g., BloodSugart, StomachContentst

• Et: set of evidence variables at time t
– e.g., MeasuredBloodSugart, PulseRatet, FoodEatent

– Observation at time t is Et = et for some set of values et

• Assumes discrete time steps
– Notation: Xa:b denotes the set of variables from Xa to Xb

• Dynamic Bayesian Network (DBN)
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• Problem:
1. Process behavior might change (CPTs of evidence variables change)

2. Evidence and state variables might depend on all previous states 
(unbounded number of Parents in CPT)

• Solution:
1. Assume that changes in the world state are caused by a 

stationary process (unchanging process over time).

))(/( tt UParentUP is the same for all t

DBN - Representation

4

“Dynamic” means we are modeling a dynamic system, not that the 
structure of a Bayesian network changes over time.



• Solution cont.:

)/()/( 11:0 −− = tttt XXPXXP

2. Use Markov assumption - The current state depends on only in a 
finite history of previous states. 

Usually: First-order Markov process (only previous state matters)

Transition 
Model

In addition to restricting the parents of the state variable  Xt, we must 
restrict the parents of the evidence variable Et

)/(),/( 1:0:0 ttttt XEPEXEP =−
Sensor 
Model

DBN - Representation
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Complete Joint Distribution

• Given:
– Transition model: P(Xt|Xt-1)
– Sensor model: P(Et|Xt)
– Prior probability: P(X0)

• Then we can specify complete joint distribution:

∏
=

−=
t
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ii1ii0t1t10 )X|E(P)X|X(P)X(P)E,...,E,X,...,X,X(P
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Inference Tasks

• Filtering: What is the probability that it is raining today, given 
all the umbrella observations up through today?

• Prediction: What is the probability that it will rain the day 
after tomorrow, given all the umbrella observations up 
through today?

• Smoothing: What is the probability that it rained yesterday, 
given all the umbrella observations through today?

• Most likely explanation / most probable explanation:
if the umbrella appeared the first three days but not on the 
fourth, what is the most likely weather sequence to produce 
these umbrella sightings?

8



DBN – Basic Inference 

• Filtering or Monitoring: 

Compute the belief state - the posterior distribution over the current state, 
given all evidence to date.
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DBN – Basic Inference 

• Filtering cont.
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Given the results of filtering up to time t, one can easily compute the result for 
t+1 from the new evidence        1+te

(dividing up the evidence)

(for some function f)

(using Bayes’ Theorem)

(by the Markov property
of evidence)

α is a normalizing constant used to make probabilities sum up to 1.

10



DBN – Basic Inference 

• Filtering cont.

)/()/()/( :1:1111 tt
X

tttt exPxXPXeP
t

∑ +++=α

)/( :11 tt eXP +
The second term                        represents a one-step prediction of the 
next step, and the first term                         updates this with the new 
evidence.

Now we obtain the one-step prediction for the next step by 
conditioning on the current state Xt:

)/( 11 ++ tt XeP

∑ +++++ =
tX

ttttttttt exPexXPXePeXP )/(),/()/()/( :1:11111:11 α

(using the Markov property)
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Filtering: Forward Messages
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DBN – Basic Inference 

∑=
0

)()/()( 0011
r
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Illustration for two steps in the Umbrella example:  

• On day 1, the umbrella appears so U1=true. The prediction from t=0 to t=1 is

and updating it with the evidence for t=1 gives

∑=
1

)/()/()/( 111212
r

urPrRPuRP
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• On day 2, the umbrella appears so U2=true. The prediction from t=1 to t=2 is

and updating it with the evidence for t=2 gives
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Example cntd.
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DBN – Basic Inference 

• Prediction: 

Compute the posterior distribution over the future state, 
given all evidence to date.

)/( :1 tkt eXP +
for some k>0

The task of prediction can be seen simply as filtering 
without the addition of new evidence 
(e.g., assume uniform distribution for evidence values).
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DBN – Basic Inference 

• Smoothing or hindsight inference: 

Compute the posterior distribution over the past state, 
given all evidence up to the present.

)/( :1 tk eXP for some k such that 0 ≤ k < t.

Hindsight provides a better estimate of the state than was 
available at the time, because it incorporates more 
evidence from the “future”.

18



Smoothing
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Example contd.
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DBN – Basic Inference 

• Most likely explanation: 

Compute the sequence of states that is most likely to have generated a given 
sequence of observation.

argmaxx1:t P(X1:t | e1:t )

Algorithms for this task are useful in many applications, including, e.g., 
speech recognition.
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Most-likely explanation
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Most-likely explanation
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Rain/Umbrella Example
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DBN – Special Cases

• Hidden Markov Model (HMMs):
Temporal probabilistic model in which the state of the process 
is described by a single discrete random variable. (The simplest kind of DBN )

• Kalman Filter Models (KFMs):
Estimate the state of a physical system from noisy observations over time. 
Also known as linear dynamical systems (LDSs).
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DBN – Basic Inference 

• Filtering

• Smoothing

• Most likely sequence

P(Xt+1 / e1:t+1) =αP(et+1 / Xt+1) P(Xt+1 / xt )P(xt / e1:t )
Xt

∑
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Hidden Markov Models

new state

old state

U3 = false O3 =
0.1 0
0 0.8( )
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Country Dance Algorithm
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Country Dance Algorithm
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Country Dance Algorithm
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Country Dance Algorithm
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Country Dance Algorithm
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Country Dance Algorithm
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DBNs vs. HMMs

Consider the transition model
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DBN – Special Cases

• Hidden Markov Model (HMMs):
Temporal probabilistic model in which the state of the process 
is described by a single discrete random variable. (The simplest kind of DBN )

• Kalman Filter Models (KFMs):
Estimate the state of a physical system from noisy observations over time. 
Also known as linear dynamical systems (LDSs).
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Kalman Filters
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Updating Gaussian Distributions
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2-D Tracking: Filtering
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Simple 1-D Example

41s.d.= standard deviation

z1: first observation



General Kalman Update

Details left for your studies
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2-D Tracking: Smoothing
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Where it breaks

Standard solution: switching Kalman filter
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Keeping track of many objects: Identity uncertainty
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• Learning requires the full smoothing inference, rather 
than filtering, because it provides better estimates of 
the state of the process.

• Learning the parameters of a BN is done using 
Expectation – Maximization (EM) Algorithms. 
– Iterative optimization method to estimate some unknown 

parameters.

Learning Dynamic Bayesian Networks
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State View: Hidden Markov models

Set of states: 

Process moves from one state to another generating a 
sequence of states :
Markov chain property:  probability of each subsequent 
state depends only on what was the previous state:

States are not visible, but each state 
generates one of M different observations

},,,{ 21 Nsss !

!! ,,,, 21 ikii sss

)|(),,,|( 1121 -- = ikikikiiik ssPssssP !

},,,{ 21 Mvvv !



Low High

0.70.3

0.2 0.8

DryRain

0.6 0.6
0.4 0.4

Example of Hidden Markov Model



State View: Hidden Markov models

To define a hidden Markov model, the following 
probabilities  have to be specified: 
• Matrix of transition probabilities A=(aij), aij= P(sj | si) , 

• Matrix of observation probabilities B=(bi (vm )), 
bi(vm ) = P(vm | si) and a 

• Vector of initial probabilities  p=(pi),  pi = P(si) . 

Model is represented by (A, B, p).
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Given some training observation sequences
O=o1 o2 ... ot and general structure of HMM (numbers of 
hidden and visible states), determine HMM parameters 
(A, B, p) that best fit training data, i.e., that is 
maximizes P(O |A, B, p) . 

State View: Learning problem (1)



If training data has information about sequence of hidden 

states, then use maximum likelihood estimation of parameters:

aij= P(sj | si) =
Number of transitions from state si to  state sj

Number of transitions out of state si

bi(vm)= P(vm| si)=
Number of times observation vm occurs in state si

Number of times in state si

State View: Learning problem (2)

Otherwise: Use iterative expectation-maximization algorithm to 

find local maximum of  P(O | A, B, p):  Baum-Welch Algorithm

Alternative: Viterbi Path Counting Algorithm

Leonard E. Baum, Ted Petrie, George Soules, and Norman Weiss, A Maximization

Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov

Chains, Ann. Math. Statist. Volume 41, Number 1, 164-171, 1970

Leonard E. Baum and Ted Petrie, Statistical Inference for Probabilistic Functions of Finite 

State Markov Chains, Ann. Math. Statist. Volume 37, Number 6, 1554-1563, 1966.



General idea:

aij= P(sj | si) =
Expected number of transitions from state si to  state sj

Expected number of transitions out of state si

bi(vm )= P(vm | si)=
Expected number of times observation vm occurs in state si

Expected number of times in state si

pi = P(si) = Expected frequency in state si at time k=1. 

Baum-Welch algorithm



Define variable xk(i,j) as  the probability of being in state si at 

time k and in state sj at  time k+1, given the observation 

sequence o1 o2 ... oT with k < t
xk(i,j) = P(Xk= si ,Xk+1= sj |o1 o2 ... ot) 

xk(i,j) =
P(Xk= si , Xk+1= sj , o1 o2 ... ot)

P(o1 o2 ... ot)
=

P(Xk= si , o1 o2 ... ok) aij bj (ok+1 ) P(ok+2  ... ot | Xk+1= sj ) 
P(o1 o2 ... ot)

=

a forwardk(i) aij bj (ok+1 ) backwardk+1(j)

Baum-Welch algorithm: Expectation step(1)



Define variable gk(i) as  the probability of being in state Xk=si at 

time k, given the observation sequence o1 o2 ... ot . 

gk(i)= P(Xk= si |o1 o2 ... ot) 

gk(i)=
P(Xk= si , o1 o2 ... ot)

P(o1 o2 ... ot)
=

a forwardk(i) backwardk(i) 

Baum-Welch algorithm: Expectation step(2)



We calculated xk(i,j) = P(Xk= si ,Xk+1= sj |o1 o2 ... ot) 

and      gk(i)= P(Xk= si |o1 o2 ... ot) 

Expected number of transitions from state si to state sj =

=  Sk  xk(i,j)

Expected number of transitions out of state si = Sk  gk(i)

Expected number of times observation vm occurs in state si =

= Sk  gk(i) , k is such that ok= vm

Expected frequency in state si at time k=1 :  g1(i) . 

Baum-Welch algorithm: Expectation step(3)



aij  = Expected number of transitions from state sj to  state si
Expected number of transitions out of state sj

bi(vm ) = Expected number of times observation vm occurs in state si

Expected number of times in state si

pi = (Expected frequency in state si at time k=1) = g1(i). 

=
Sk  xk(i,j)

Sk  gk(i)

=
Sk  xk(i,j)

Sk,ok= vmgk(i)

Baum-Welch algorithm: Maximization step



Learning (1)

• The techniques for learning DBN are mostly straightforward extensions of the 
techniques for learning BNs

• Parameter learning

– The transition model P(Xt | Xt-1)  / The observation model P(Yt | Xt) 

– Offline learning

• Parameters must be tied across time-slices

• The initial state of the dynamic system can be learned independently of the 
transition matrix

– Online learning

• Add the parameters to the state space and then do online inference (filtering)

– The usual criterion is maximum-likelihood(ML) 

• The goal of parameter learning is to compute
– θ*

ML = argmaxθP( Y| θ) = argmaxθlog P( Y| θ) 

– θ*
MAP = argmaxθlog P( Y| θ) + logP(θ)

– Two standard approaches: gradient ascent and EM(Expectation Maximization)
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Learning (2)

• Structure learning
– Intra-slice connectivity: Structural EM
– Inter-slice connectivity: 

For each node in slice t, we must choose its parents from slice t-1
– Given structure is unrolled to a certain extent, 

the inter-slice connectivity is identical for all pairs of slices: 
• Constraints on Structural EM
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Summary
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Literature

http://aima.cs.berkeley.edu
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