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Temporal Probabilistic Agent

* Previous and current states (PDBs, Bayesian networks)

* From visible probabilistic data to derived probabilistic data

* Forecasting (temporal PDBs, dynamic Bayesian networks)

* From visible and current estimated environment state to
estimation about the next environment state
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Time and Uncertainty

e The world changes, we need to track and predict it
— Examples: diabetes management, traffic monitoring

e Basicidea: copy state and evidence variables of
Bayesian network for each time step (snapshots)

e X.:setof unobservable state variables at time t
— e.g., BloodSugar,, StomachContents,

* E.:setof evidence variables at time t
— e.g., MeasuredBloodSugar,, PulseRate,, FoodEaten,
— Observation at time tis E, = e, for some set of values e,

e Assumes discrete time steps
— Notation: X_., denotes the set of variables from X, to X,

e Dynamic Bayesian Network (DBN)
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DBN - Representation

e Problem:

1. Process behavior might change (CPTs of evidence variables change)

2. Evidence and state variables might depend on all previous states
(unbounded number of Parents in CPT)

Solution:

1. Assume that changes in the world state are caused by a
stationary process (unchanging process over time).

P(Ut /Parent(Ut)) is the same for all t

“Dynamic” means we are modeling a dynamic system, not that the
structure of a Bayesian network changes over time.
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DBN - Representation

e Solution cont.:

2. Use Markov assumption - The current state depends on only in a
finite history of previous states.

Usually: First-order Markov process (only previous state matters)

P(Xt /X():t—l) = P(Xz /Xt—l) ;Zr:js;rion

In addition to restricting the parents of the state variable X;, we must
restrict the parents of the evidence variable E;

P(Et /XO:t9EO:t—1) = P(Ef /Xt) SI\'/T;];Z:‘
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Example

Rii | PRiR:1)
T 0.7
F 0.3

"(Raing4 : "(Rain

R, P(U,IR)
T 0.9
F 0.2
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Complete Joint Distribution

e @Given:
— Transition model: P(X.| X, )
— Sensor model: P(E.|X,)
— Prior probability: P(X,)

e Then we can specify complete joint distribution:

t
P(Xg, Xy X B B = P(X) | [ PCX [ X)P(E, | X))
1=1




Inference Tasks

e Filtering: What is the probability that it is raining today, given
all the umbrella observations up through today?

e Prediction: What is the probability that it will rain the day
after tomorrow, given all the umbrella observations up
through today?

e Smoothing: What is the probability that it rained yesterday,
given all the umbrella observations through today?

e Most likely explanation / most probable explanation:
if the umbrella appeared the first three days but not on the
fourth, what is the most likely weather sequence to produce
these umbrella sightings?




DBN — Basic Inference

e Filtering or Monitoring:

Compute the belief state - the posterior distribution over the current state,
given all evidence to date.

P(X,, /e,.)
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DBN — Basic Inference

e Filtering cont.

Given the results of filtering up to time t, one can easily compute the result for

t+1 from the new evidence €.
— (for some function f)
P(Xt+1 /elzt+1) — f(et+1,P(Xt /el:t ))
(dividing up the evidence)
= P(X,,, /elzt,et+1)
P( % )P(X / ) (using Bayes’ Theorem)
=ar\e é,. é,.
t+1 t+1,7 1t t+1 1:¢ (by the Markov property
= aP(eHl /Xt+1 )P(XHI /elzt) of eVidence)

a is a normalizing constant used to make probabilities sum up to 1.
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DBN — Basic Inference

e Filtering cont.

The second term P(X,  /e,) represents a one-step prediction of the

next step, and the first term P(e,,,/ X,,;) updates this with the new
evidence.

Now we obtain the one-step prediction for the next step by
conditioning on the current state X;:

P(Xt+1 /elzt+1) = aP(eHl /Xt+1)EP(Xt+1 /xt’elzt)P(xt /elzt)
X,

= OCP(@HI /Xt+l)z P(Xt+1 /xt,‘)P(xt /elzt)
Xl‘

(using the Markov property)
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Example

Rii | PRiR:1)
T 0.7
F 0.3

"(Raing4 : "(Rain

R, P(U,IR)
T 0.9
F 0.2
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Filtering: Forward Messages

P(Xt+1 /elzt+1) = f(et+1,P(Xt /elzt ))

r+1

=aP(e,/ X,.) Y P(X,../x )P(x,/e,)
Xt

fl:t+1 = FOR\’VAR.D(fl;t, et+1) where f;.; = P(Xt|e1;t)
Time and space constant (independent of %)

Sy %
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DBN — Basic Inference

P(X, /€)= 0P(e,, ] X))y P(X,, /x )P(x,/e,)
X
lllustration for two steps in the Umbrella example:
e On day 1, the umbrella appears so Ul=true. The prediction from t=0 to t=1is
P(R,) = EP(RI /1)) P(1y)

and updatinr; it with the evidence for t=1 gives

P(R, /u,)=aP(u,/ R)P(R,)
e On day 2, the umbrella appears so U2=true. The prediction from t=1 to t=2 is

P(Rz/%):EP(Rz/’i)P(’”l/ul)

and updating it with the evidence for t=2 gives

P(R,/u,,u,)=aP(u,/R)P(R,/u,)
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SRS Y INSTITUT FUR INFORMATIONSSYSTEME
/////

15



Example cntd.

0.500 0.627

0.500 0.373
True 0.500 0.41 8 0.483
False 0.500 0.182 0.117

D s CD o &I
Clnbretiay  Clmbrelia
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DBN — Basic Inference

P(Xt+1 /elzt+1)= aP(eHl /Xt+1)EP(Xt+1 /X t)P(xt /elzt)
Xt
e Prediction:

Compute the posterior distribution over the future state,
given all evidence to date.

P(X / elzt ) for some k>0

I+k

The task of prediction can be seen simply as filtering

without the addition of new evidence
(e.g., assume uniform distribution for evidence values).
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DBN — Basic Inference

e Smoothing or hindsight inference:

Compute the posterior distribution over the past state,
given all evidence up to the present.

P(Xk / 81:t ) for some k such that 0 < k < t.

Hindsight provides a better estimate of the state than was
available at the time, because it incorporates more
evidence from the “future”.

:::::
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Smoothing

Divide evidence e into e1.;, ey 1.
P(Xiler) = P(Xilerr, €r+1:t)
= Q‘P(Xk|el;k)P(ek+1:t|Xk: el:k)
= aP(Xilerr)P(ery1:4/Xs)
= Q'flzkbk+1:t
Backward message computed by a backwards recursion:
P(ept1.¢|Xy) = Zxk+1P(ek+1:t|XkaXk+1)P(Xk+l|Xk)
= Yixyy Plersrexern)P(xrr1]X)
= zxk+lp(ek+1|Xk+1)P(ek+2:t|xk+1)P(Xk‘+1|Xk)

Forward—backward algorithm: cache forward messages along the way
Time linear in 7 (polytree inference), space O(f|f])
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Example contd.

0.500 0.627
0.500 0.373
True  0.500 0.!18 0.6'53 onward
False 0.500 0.182 0.117 el
o.!% o.&l&s
0117 0.117 Smoothed

0.410 1.000
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DBN — Basic Inference

e Most likely explanation:

Compute the sequence of states that is most likely to have generated a given
sequence of observation.

argmax, P(X,, le,.)

Algorithms for this task are useful in many applications, including, e.g.,
speech recognition.

aaaa
SRS Y INSTITUT FUR INFORMATIONSSYSTEME
C) =

21



Most-likely explanation

Most likely sequence # sequence of most likely states!!!!

Most likely path to each x;
= most likely path to some x; plus one more step

}I{lllaggt P(X17 coey Xty Xt+1|€1:t+1)

P(Xt+1 /elzt+1) = f(et+1,P(Xt /elzt ))

= aP(et+1 /Xt+1)2 P(Xt+1 /x t)P(xt /elzt)

VISR EGR INFoRmaTIONsSYsTEME IM FOCUS DAS LEBEN 22




Most-likely explanation

Most likely sequence # sequence of most likely states!!!!

Most likely path to each x; 4
= most likely path to some x; plus one more step

Jnax P(x1 ..... Xty Xet1|€1:441)
= Plew1|Xi11) max (P(Xt+1|xt) Jax P(xq.....x¢_1, xt|e1:t))

Identical to filtering, except f.; replaced by

my; =  max P(XL o Xeo1, Xiler),

l.e., my.,(7) gives the probability of the most likely path to state i.
Update has sum replaced by max, giving the Viterbi algorithm:

my¢1 = Ples1|Xesq) max (P(Xyy1]x¢)my.)

NSTIEUT FOR INFORMATIONSSYSTEME IM FOCUS DAS LEBEN 23




Rain/Umbrella Example

Rain Rain Rains Rain 4 Rain s
state
space
paths _ , ‘
false false false false false
umbrella false
8182 S155 0361
most
likely <
painis 1818 /X 0401 X 1237
my mj mj3
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DBN — Special Cases

e Hidden Markov Model (HMMs):

Temporal probabilistic model in which the state of the process
is described by a single discrete random variable. (The simplest kind of DBN )

e Kalman Filter Models (KFMs):

Estimate the state of a physical system from noisy observations over time.
Also known as linear dynamical systems (LDSs).

IM FOCUS DAS LEBEN 25




DBN — Basic Inference

e Filtering
P(X,/ €)= aPe,, | X,,) Y P(X,, | x)P(x, ] e,,)
X

t+1

e Smoothing f
P(.XA-|el:t,) - U'P(,Xk|elzk)P(ek+1;t|Xk)
Pleri1:¢|Xk) = Exkgp(ekﬂ’Xk+1)P(ek+2:t|Xk+1)P(Xk+1|X;;)

e Most likely sequence P(X;leis) = afiibriis
}I(Illd‘i\(.r P(X] ..... X+, X{+1|el't+1)
= P(e,+1|Xf+1)m)g}.x (P(X,H Xt ) (nax Pl(x;..... Xi_1. x,|e“))

g i ®
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Hidden Markov Models

Rit | P(RRe1)
T 0.7
X is a single, discrete variable (usually E; is too) F |03
Domain of X;is {1.....5} N —»—
. . . . 0.7 0.3
Transition matrix T;; = P(X,=j|X;_1=1i), e.g., ~ | old state
03 0'( Umbrella;
. . . . Ri P(Ui|Ry)
Sensor matrix O, for each time step, diagonal elements P(¢¢|X;=i7) [T Tos
U — e O — 090 01 0 \l_lez
e.g., Wi 1=true, Oy = " | U;= false O;= 0 os

Forward and backward messages as column vectors:

-
f1:t.‘+1 = Q'Ot+1T f1:1%
bii1t = TOpi1bgioy

Forward-backward algorithm needs time O(5%) and space O(St)
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Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

f1:t+1 - 0'0t+1TTf1:t
O fie = oT'fy,
Q‘,(TT)_IO;:lfl:t-{—l fl:t

Algorithm: forward pass computes f;, backward pass does f;, b,

IM FOCUS DAS LEBEN 28




Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

f1:t+1 = Q'Ot+1TTf1:t
Ot_-f-llflzt—i—l - O'TTflzt
a-'(TT)_lO;Lllqu = fi4

Algorithm: forward pass computes f;, backward pass does f;, b;

=
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Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

f1:t+1 - aOt—FITTfl:t
Ot_-i-llflzt—i-l - Q'TTfl:t
a"(TT)_lO;Lllqu = fi4

Algorithm: forward pass computes f;, backward pass does f;, b;

=
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Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

fl:t-i~l = aOt—FITTfl:t
Ot_-f-llfl:t-f—l - Q'TTfl:t
a',(TT)_IOt__,_llfl:t-i-l — f1:1“

Algorithm: forward pass computes f;, backward pass does f;, b;

=
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Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

f1:1‘,+1 - Q"Ot+1TTf1:t
Ot_+11f1:t+1 - QTTfl:t
a*'(»TT)_lO;llfl:tH = f14

Algorithm: forward pass computes f;, backward pass does f;, b,
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Country Dance Algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

f1:1‘.+1 — a"OH-lTTfl:t
Ot_+11f1:t+1 — O"TTflzt
Q'I(TT)_lot__;_llfl:t—i—l — flzt

Algorithm: forward pass computes f;, backward pass does f;, b;

IM rULuUd DAD LeseN 33




DBNs vs. HMMs

Every HMM s a single-variable DBN; every discrete DBN is an HMM

/ D\

L4l

e @ N\ /

Consider the transition model
Sparse dependencies = exponentially fewer parameters;

e.g., 20 state variables, three parents each
DBN has 20 x 2° =160 parameters, HMM has 2% x 22 ~ 10'?
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DBN — Special Cases

e Hidden Markov Model (HMMs):

Temporal probabilistic model in which the state of the process
is described by a single discrete random variable. (The simplest kind of DBN )

e Kalman Filter Models (KFMs):

Estimate the state of a physical system from noisy observations over time.
Also known as linear dynamical systems (LDSs).

IM FOCUS DAS LEBEN 37




Kalman Filters

Modelling systems described by a set of continuous variables,
e.g., tracking a bird flying—X, =X, Y. Z. X Y. Z.

Airplanes, robots, ecosystems, economies, chemical plants, planets, . ..

rSI
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UNIVSFTI:'?LIJTT‘;UZI;JIII-\JUF%EI::JATIONSSYSTEME IM FOCUS DAS LEBEN 38




Updating Gaussian Distributions

Prediction step: if P(X;|ei¢) is Gaussian, then prediction
P(Xit1lens) = /Xt P (X y1[x¢) P(x¢]e1:) dx;

is Gaussian. If P(X,,|e;.) is Gaussian, then the updated distribution
P(Xiiilentr1) = aP(eq1| X 1) P(Xit1er)

is Gaussian

Hence P(X;|e ) is multivariate Gaussian N(p,, 23 ) for all

General (nonlinear, non-Gaussian) process: description of posterior grows
unboundedly as t — ~
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2-D Tracking: Filtering

2D filtering
12

—8—  true
+ observed

b /\ —ox- filtered

\_/
> 9k
8 -
7 -
6 1 1 1 1 1 1 1 1 ]
8 10 12 14 16 18 20 22 24 26
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Simple 1-D Example

Gaussian random walk on X—axis, s.d. o,, sensor s.d. 0.

2 2\ 2

(Ut+0) 1+J#t 2 _(Ut+0$)az
t+1 —

o} + 02 + o2 T ot t+oi+o?

Hi+1 =

0.45 _—

04 | -
035 | P
03}
025 - P(x0) / \ |
02 r / ;"-\ y
0.15 - ‘ .
01 P(x1) -
0.05 / \ -

0

| P(xl121=2.5)

z1: first observation

P(X)

X position

e L R— s.d.= standard deviation (M FOCUS DAS LEBEN - 41




General Kalman Update

Transition and sensor models:

P(xty1]x:) = N(Fxq, 3p)(X¢41)
P(Zt|Xt) = i'\'r(HXt, 2:)(Zt)

F' is the matrix for the transition; 22, the transition noise covariance
H is the matrix for the sensors; .. the sensor noise covariance

Filter computes the following update: Details left for your studies

te = Fp+Ki(zep — HE )
Y1 = I-Ki ) (FEFT+ %))

where K 1= (FX,F' + 3, H' (H(FZF' + 3, H' + X.)~!

is the Kalman gain matrix

>+ and K; are independent of observation sequence, so compute offline

IM FOCUS DAS LEBEN 42




2-D Tracking: Smoothing

2D smoothing
12
—a—  true
+ observed
1k %= smoothed
10
> 9
8 -
7 -
6 1 1 1 1 1 1 1 1 ]
8 10 12 14 16 18 20 22 24 26
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Where it breaks

Cannot be applied if the transition model is nonlinear

Extended Kalman Filter models transition as locally linear around x; = p,
Fails if systems is locally unsmooth

Standard solution: switching Kalman filter

) |

Keeping track of many objects: Identity uncertainty
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Learning Dynamic Bayesian Networks

e [earning requires the full smoothing inference, rather
than filtering, because it provides better estimates of
the state of the process.

e Learning the parameters of a BN is done using
Expectation — Maximization (EM) Algorithms.

— Iterative optimization method to estimate some unknown
parameters.

S
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State View: Hidden Markov models

Set of states:  {s,,5,,...,8y}

Process moves from one state to another generating a
sequence of states : S, 5,5,...58,,...

Markov chain property: probability of each subsequent
state depends only on what was the previous state:

P(Sy | 8158050 v0Syy) = P8y | S51)

States are not visible, but each state
generates one of M different observations

Vi Vyyein V), )




,,,,,
\\\\\

=
=

Example of Hidden Markov Model

0.3 0.7

~N
~ 7~
\\ \\ 0.2 /// /
\ S<” ,’
0.6\ -7 N | 0.6
\ .~ o04 047 J
w” A
Rain Dry
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State View: Hidden Markov models

To define a hidden Markov model, the following
probabilities have to be specified:
e Matrix of transition probabilities A=(a;), aj= P(s; | si),

e Matrix of observation probabilities B=(b; (v, )),
bi(V ) = P(vi | si) and a

e Vector of initial probabilities m=(m;), 7 = P(s)).

Model is represented by (A, B, 7).

E
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State View: Learning problem (1)

Given some training observation sequences

0=0,0,... 0. and general structure of HMM (numbers of
hidden and visible states), determine HMM parameters
(A, B, 1t) that best fit training data, i.e., that is
maximizes P(O | A, B, 1) .




State View: Learning problem (2)
If training data has information about sequence of hidden

states, then use maximum likelihood estimation of parameters:

Number of transitions from state S;to state S
a;=P(s;| s) = J

Number of transitions out of state S,

Number of times observation V,, occurs in state S.

b(v.)=P(v.| s)=

Number of times in state S,

Otherwise: Use iterative expectation-maximization algorithm to
find local maximum of P(O | A, B, 1t): Baum-Welch Algorithm
Alternative: Viterbi Path Counting Algorithm

Leonard E. Baum, Ted Petrie, George Soules, and Norman Weiss, A Maximization
Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov
Chains, Ann. Math. Statist. Volume 41, Number 1, 164-171, 1970

Leonard E. Baum and Ted Petrie, Statistical Inference for Probabilistic Functions of Finite
@ UUUUUUUUUUUUUU 0BECK State Markov Chains, Ann. Math. Statist. Volume 37, Number 6, 1554-1563, 1966. ‘
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Baum-Welch algorithm

General idea:

Expected number of transitions from state S; to state S;

a="P(s| s)=

Expected number of transitions out of state S

Expected number of times observation V., occurs in state S;

b(v.)=P(v.| s)=

Expected number of times in state S,

.= P(s) = Expected frequency in state S, at time k=1.

2 e -
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Baum-Welch algorithm: Expectation step(1)

Define variable ik(i,j) as the probability of being in state S, at
time k and in state S, at time k+1, given the observation

sequence 0, 0,... O; withk<t
gk(ll.l) = P(Xk= Si ) Xk+1= Sj | 01 02 cee Ot)

E - P(Xk=Si , Xk+1=Sj ,01 03 ... Ot) ]
s P(010;... 07)

P(Xi=si ,010z... 0k) @; b;(0w:) P(Oks2 ... Ot | Xks1=5;)
P(010;... Ot)

OC forwa rdk(l) aij bj(0k+1) baCkwa rdk+1(j)

aaaa
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Baum-Welch algorithm: Expectation step(2)

Define variable Y,(i) as the probability of being in state Xk=Si at
time k, given the observation sequence 0,0,... O..

V= P(Xi=s, | 0,0,... 0)

P(Xx=si,0107... Ot)

Yk(i)= =

P(o10... Ot)

o, forward.i backward.

:::::
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Baum-Welch algorithm: Expectation step(3)

We calculated gk(i,j) = P(Xk= S, Xi= S, | 0.0;... Ot)
and  7V.)=P(X<=s | 0,0,... 0)

Expected number of transitions from state S, to state S, =

= 2, i)

Expected number of transitions out of state S, = 2 Vi)

Expected number of times observation Vi, occurs in state Sj =
-2, Vi), kis such that O,=Vpy
Expected frequency in state Sjat time k=1: V(i) .




Baum-Welch algorithm: Maximization step

Expected number of transitions from state Sj to state S; Zk gk(i,j)
d; = Expected number of transitions out of state S; - > -
k yk(l)
b ( ) _ Expected number of times observation Vi, occurs in state S; _ Zk gk("J)
\Vn) = Expected number of times in state S; - Zk 0= V y (i)
’ —vim k

= (Expected frequency in state S; at time k=1) = Yali).

aaaa
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Learning (1)

e The techniques for learning DBN are mostly straightforward extensions of the
techniques for learning BNs

e Parameter learning
— The transition model P(X; | X;) / The observation model P(Y; | X,)
— Offline learning
e Parameters must be tied across time-slices

e The initial state of the dynamic system can be learned independently of the
transition matrix

— Online learning
e Add the parameters to the state space and then do online inference (filtering)

— The usual criterion is maximume-likelihood(ML)

e The goal of parameter learning is to compute
— 0%y =argmaxgP( Y| 8) = argmaxglog P( Y| 6)
—  B"\ap = argmaxglog P( Y| 8) + logP(8)
— Two standard approaches: gradient ascent and EM(Expectation Maximization)

57/29



Learning (2)

e Structure learning
— Intra-slice connectivity: Structural EM

— Inter-slice connectivity:
For each node in slice t, we must choose its parents from slice t-1

— Given structure is unrolled to a certain extent,
the inter-slice connectivity is identical for all pairs of slices:

e Constraints on Structural EM

IM FOCUS DAS LEBEN

S UNIVERSITAT ZU LUBECK
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Summary

Temporal models use state and sensor variables replicated over time

Markov assumptions and stationarity assumption, so we need
— transition modelP (XX, ;)
— sensor model P (E;|X;)

Tasks are filtering, prediction, smoothing, most likely sequence;
all done recursively with constant cost per time step

Hidden Markov models have a single discrete state variable; used
for speech recognition

Kalman filters allow 7. state variables, linear Gaussian, O(-rz.3) update

Dynamic Bayes nets subsume HMMs, Kalman filters; exact update intractable
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