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Graph Datasets

§ Hyperlinks (the Web)

§ Social graphs (Facebook, Twitter, LinkedIn,…)

§ Communication networks

§ Protein interaction networks

§ …

Properties of graphs

§ Snapshot or with time dimension (dynamic)

§ One or more types of abstract entities (node labels: people, pages, products)

possibly with named attributes (integers, reals. …)1

§ One or more types of edges 

(edge labels: has-informed, can-communicate-with, …)

§ Directed/undirected edges
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1 RDF graphs try to be more uniform and use specific edges with label 

rdf:type for identifying node labels and also use edges as attributes



Recap: Mining the link structure

Network- and node-level properties

• Similarity of nodes (e.g., distance distribution, reachability size)
– Link prediction, targeted ads, friend/product recommendations, …)

• Centrality (e.g., betweenness w.r.t. all-pairs shortest paths)
- Importance of nodes

• Diameter (longest shortest s-t path)
- Connectedness of the network overall
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gjk = number of minimal paths between nodes j and k
gjk(n) = number of minimal paths between nodes j and k that contain n



Diameter (longest shortest path between two nodes)

Diameter is 3
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Computing Diameter

• Can we run all pairs shortest path algorithms on large 
graphs with non-negative edge labels?
– O(n·TDijkstra(n,m)) = O(n(n log n + m)) with Fibonacci heaps

• Hardly!
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Cover (undirected)

Reachability matters
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or group hubs (in case directed links point to cover nodes)



Distance distribution of 

Distance 1:  5
Distance 2: 5
Distance 3: 1
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Algorithm Design Principles for Big Data

§ Settle for approximations
§ Keep memory polylog in data size
§ Keep total computation/communication

“linear” in the size of the data
§ Parallelize (minimize chains of dependencies)
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Node Sketches

§ Min-Hash sketches of reachability sets
§ Reachability estimated
§ Do not try shortest path algorithms on two nodes for 

which there is no reachability relation
§ All-distances sketches (ADS)

§ Betweenness centrality estimated

Sketching:
§ Compute a sketch for each node, efficiently
§ From sketch(es) one can estimate properties that are 

“harder”  to compute exactly
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Sketching Reachability Sets
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Reachability Set of

Size 4
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Reachability Set of

Size 13
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Why sketch reachability sets ?

From reachability sketch(es) we can:  
§ Estimate cardinality  of reachability set
§ Get a sample of the reachable nodes
§ Estimate relations between reachability sets 

(e.g., Jaccard similarity)

§ Min-Hashing comes to the rescue

Ø Exact computation is costly: !(#$) with $ nodes 
and  # edges, representation size is massive: does 
not  scale to large networks! 
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Edith Cohen and Haim Kaplan. Summarizing data using bottom-k sketches. 
In Proc. Symposium on Principles of distributed computing (PODC '07). ACM, 
pp. 225-234, 2007
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Recap: Min-Hashing
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documents. In SEQUENCES '97 Proceedings of the Compression 
and Complexity of Sequences, 1997

Siehe Teil Information Retrieval
in dieser Vorlesung

Siehe 
Wörterbucher in AuD

© S. Michel, TU Kaiserslautern



Recap: Min-Hashing (2)
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Recap: Min-Hashing - Mehrere min-Werte bzw. Hashfunktionen
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Ohne BeweisNicht Top-k
sondern Bottom-k
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Min-Hash sketches of all Reachability sets

hash values !(#) ∼ &[(, *]
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Min-Hash sketches of all Reachability Sets: ! = 1

For each $:   % & ← ()*
&↝ ,

-(,)

Depending on application, may also want to include 
node ID in sketch: 

012()*
&↝ ,

-(,)
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Min-Hash sketches of all Reachability Sets: ! = 1

$ % ← '()
%↝ +

,(+)
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Communities and Reachability

• A group of nodes with the same min-hash value means
that there seems to be one node (the one associated with
the min-hash initially) that can be reached by all other
group nodes

• It may happen, however, that two non-connected nodes
have the same min-hash value due to initial hash collisions
(false positives w.r.t. reachability are possible)

• Min-hash values allow us to identify groups with
important locally central nodes (group hubs)
– Identify 3 groups (with 0.06, 0.12, and 0.23 nodes as hubs)

• With k=1, one cannot easily see which group can reach
which other group
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Min-Hash sketches of all Reachability Sets: ! = 2

For each $:   % & ← ()**)+−,
&↝ .

/(.)

bottom-2 (! = 2) 22
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Min-Hash sketches of all Reachability Sets: ! = 2
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Determine Groups

• K=2: 
– Identify 3 groups 

• {0.06, 0.12}, {0.12, 0.23}, and {0.23, 0.27}
– Group 0.06 can reach group 0.12 but not vice versa

• Overlap 0.12 is min-hash-2 in 0.06
– Group 0.12 can reach group 0.23 but not vice versa

• Analogous argument
– Group 0.23 cannot reach another group 

• For min-hash-2 0.37 there is no overlap
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Estimating Jaccard Similarity of Nodes

Assume that k>>2

Min-hash overlap large for two nodes u and v
à similar influences from other nodes/groups

Nodes u and v can be seen as similar
(note: there are false positives)

Approximate Jaccard by fraction of identical min-hash values
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Goal

Sketch size for a node: !(#)
Total computation ≈ !(#&)
Algorithms/methods:
§ Graphs searches (say BFS)
§ Dynamic programming / Distributed

Computing Min-Hash sketches of all reachability sets 
efficiently
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! = 1 BFS method

$ % ← '()
%↝ +

,(+)

Iterate over nodes / by increasing  ℎ(/): 
Visit nodes 1 through a reverse search from /: 

§ IF s 1 = ∅,
§ 5 1 ← ℎ(/)
§ Continue search on inNeighbors(1)

§ ELSE truncate search at 1
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! " ← $%&
"↝ (

)(()
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Min-Hash-BFS Analysis

• Each arc is used exactly once: !(#)

• Each graph search depends on all previous ones: 
seems like we need to perform % searches 
sequentially

• How can we reduce dependencies ?
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Parallel BFS-based Min-Hash

Idea (! = 1):
§ Create a super-node of  the &/2 lowest hash nodes.
§ Perform a (reverse) search from super-node and mark all 

nodes that are accessed. 
§ Concurrently perform searches:

§ From the lowest-hash &/2 nodes (sequentially)
§ From the highest-hash  &/2 (sequentially). Prune 

searches also at marked nodes
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Parallel BFS-based Min-Hash

Correctness:
§ For the lower !/# hash values: computation is the 

same.  
§ For the higher !/#:

We do not know the minimum reachable hash from 
higher-hash nodes, but we do know it is one of the 
lower $/2 hash values.  This is all we need to know for 
correct pruning.
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Parallel BFS-based Min-Hash: Analysis

ØWe recursively apply this to each of the 
lower/higher sets:

Ø This only gives us !/# instead of ! sequential 
searches.

How can we obtain more parallelism ?
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Parallel BFS-based Min-Hash

Super-nodes created in recursion
Nodes ordered by ℎ(#)

Ø The depth of dependencies is at most log()
Ø The total number of edge traversals can increase by 

a factor of log()
33
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Computing Min-Hash Sketches of all Reachability Sets

! " ← $%&&%'−(
"↝ *

+(*)

Next: Computing sketches using the BFS method 
for k>1
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bottom-.,  BFS method
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Computing Min-Hash Sketches of all Reachability Sets

! " ← $%&&%'−("↝ * +(*)

Iterate over nodes . by increasing  ℎ(.): 
Visit nodes 0 through a reverse search from .: 

§ IF s 0 < 3,
§ 5 0 ← 5 0 ∪ {ℎ . }
§ Continue search on inNeighbors(0)

§ ELSE truncate search at 0
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bottom-3,  BFS method
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Computing Min-Hash Sketches of all Reachability Sets

! = 1 Distributed (DP)

Next: back to ! = 1.
We present another method to compute the sketches.  The 
algorithm has fewer dependencies. It is specified for each 
node.  It is suitable for computation that is:

§ Distributed, Asynchronous
§ Dynamic Programming (DP)
§ Multiple passes on the set of arcs
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Computing Min-Hash Sketches of all Reachability Sets: 

! = 1 Distributed (DP)

$ % ← '()
%↝ +

,(+)

Initialize $ % ← ,(%)
§ IF s 0 is initialized/updated, send 1(0) to 
inNeighbors(0)

§ IF value ; is received from neighbor:
§ 1 0 ← min{1 0 , ;}

38

© Edith Cohen



DP computation of Min-Hash sketches ! = 1

Initialize: $ % ← '(%)
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DP computation of Min-Hash sketches ! = 1

Send to inNeighbors

0.37

0.23 0.85

0.45

0.06

0.95

0.77
0.69

0.93

0.32

0.28

0.34

0.12
{0.45}

{0.95} {0.32}

{0.69}
{0.06}

{0.28}

{0.93}

{0.77}

{0.34}

{0.12}{0.37}

{0.85}
{0.23}

40

© Edith Cohen



DP computation of Min-Hash sketches ! = 1

Update
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DP computation of Min-Hash sketches ! = 1

If updated, send 
to inNeighbors
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DP computation of Min-Hash sketches ! = 1

Update
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DP computation of Min-Hash sketches ! = 1

If updated, send to 
inNeighbors.  Done.
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Analysis of DP: Edge traversals 

Lemma: Each arc is used in expectation < ln $ times. 

Proof:  We bound the expected number of updates of %(')
§ Consider nodes ) = +,, +., … in order  that ℎ(+1) is 

propagated to (can reach) ).
§ The probability that h(+1) updates s()) : 

45[7 89 < :;<7 8=
=>9

] = @
9

§ Summing over nodes (linearity of expectation): 
∑9B@$ @

9 = C$ < ln $
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Analysis of DP: dependencies

The longest chain of dependencies is at most the 
longest shortest path (the diameter of the graph)
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All-Distances Sketches (ADS)

Often we care about distance, not only reachability:  
§ Nodes that are closer to a particular, in distance or in Dijkstra 

(Nearest-Neighbor) rank, are more meaningful for the node
§ We want a sketch that supports distance-based queries (node 

hops)
§ ADS-Sketch: Inclusion probability of the min-hash of a node u 

decreases with its distance from v (more precisely, inversely 
proportional to the number of nodes closer to v than u)

§ Estimating similarity between neighborhoods of two nodes, 
distances, closeness similarities, etc.
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