
Non-Standard-Datenbanken
Approximative Analyse von Graphstrukturen

Prof. Dr. Ralf Möller
Universität zu Lübeck

Institut für Informationssysteme

Acknowledgments

Quite a few slides (indicated) have been taken from a
lectures on Leveraging Big Data (2013/14) by Edith Cohen
at Tel-Aviv-University

Presentations are possibly adapted and extended
Faults are mine

2

Graph Datasets

§ Hyperlinks (the Web)

§ Social graphs (Facebook, Twitter, LinkedIn,…)

§ Communication networks

§ Protein interaction networks

§ …

Properties of graphs

§ Snapshot or with time dimension (dynamic)

§ One or more types of abstract entities (node labels: people, pages, products)

possibly with named attributes (integers, reals. …)1

§ One or more types of edges

(edge labels: has-informed, can-communicate-with, …)

§ Directed/undirected edges

3

1 RDF graphs try to be more uniform and use specific edges with label

rdf:type for identifying node labels and also use edges as attributes

Recap: Mining the link structure

Network- and node-level properties

• Similarity of nodes (e.g., distance distribution, reachability size)
– Link prediction, targeted ads, friend/product recommendations, …)

• Centrality (e.g., betweenness w.r.t. all-pairs shortest paths)
- Importance of nodes

• Diameter (longest shortest s-t path)
- Connectedness of the network overall

4

() ()å
<

=
kj

jkijkiB gngnC /

gjk = number of minimal paths between nodes j and k
gjk(n) = number of minimal paths between nodes j and k that contain n

Diameter (longest shortest path between two nodes)

Diameter is 3

5

© Edith Cohen

Computing Diameter

• Can we run all pairs shortest path algorithms on large
graphs with non-negative edge labels?
– O(n·TDijkstra(n,m)) = O(n(n log n + m)) with Fibonacci heaps

• Hardly!

6

Cover (undirected)

Reachability matters

7

© Edith Cohen

or group hubs (in case directed links point to cover nodes)

Distance distribution of

Distance 1: 5
Distance 2: 5
Distance 3: 1

8

© Edith Cohen

Algorithm Design Principles for Big Data

§ Settle for approximations
§ Keep memory polylog in data size
§ Keep total computation/communication

“linear” in the size of the data
§ Parallelize (minimize chains of dependencies)

9

Node Sketches

§ Min-Hash sketches of reachability sets
§ Reachability estimated
§ Do not try shortest path algorithms on two nodes for

which there is no reachability relation
§ All-distances sketches (ADS)

§ Betweenness centrality estimated

Sketching:
§ Compute a sketch for each node, efficiently
§ From sketch(es) one can estimate properties that are

“harder” to compute exactly

10

© Edith Cohen

Sketching Reachability Sets

11

© Edith Cohen

Reachability Set of

Size 4
12

© Edith Cohen

Reachability Set of

Size 13
13

© Edith Cohen

Why sketch reachability sets ?

From reachability sketch(es) we can:
§ Estimate cardinality of reachability set
§ Get a sample of the reachable nodes
§ Estimate relations between reachability sets

(e.g., Jaccard similarity)

§ Min-Hashing comes to the rescue

Ø Exact computation is costly: !(#$) with $ nodes
and # edges, representation size is massive: does
not scale to large networks!

14

Edith Cohen and Haim Kaplan. Summarizing data using bottom-k sketches.
In Proc. Symposium on Principles of distributed computing (PODC '07). ACM,
pp. 225-234, 2007

© Edith Cohen

Recap: Min-Hashing

15

Andrei Broder, On the resemblance and containment of
documents. In SEQUENCES '97 Proceedings of the Compression
and Complexity of Sequences, 1997

Siehe Teil Information Retrieval
in dieser Vorlesung

Siehe
Wörterbucher in AuD

© S. Michel, TU Kaiserslautern

Recap: Min-Hashing (2)

16

© S. Michel, TU Kaiserslautern

Recap: Min-Hashing - Mehrere min-Werte bzw. Hashfunktionen

17

Ohne BeweisNicht Top-k
sondern Bottom-k

© S. Michel, TU Kaiserslautern

Min-Hash sketches of all Reachability sets

hash values !(#) ∼ &[(, *]

0.37

0.23 0.85

0.45

0.06

0.95

0.77
0.69

0.93

0.32

0.28

0.34

0.12

18

© Edith Cohen

Min-Hash sketches of all Reachability Sets: ! = 1

For each $: % & ← ()*
&↝ ,

-(,)

Depending on application, may also want to include
node ID in sketch:

012()*
&↝ ,

-(,)

19

© Edith Cohen

Min-Hash sketches of all Reachability Sets: ! = 1

$ % ← '()
%↝ +

,(+)

0.37

0.23 0.85

0.45

0.06

0.95

0.77
0.69

0.93

0.32

0.28

0.34

0.12
{0.23}

{0.06} {0.06}

{0.06}
{0.06}

{0.12}

{0.12}

{0.12}

{0.12}

{0.12}{0.23}

{0.23}
{0.23}

20

© Edith Cohen

Communities and Reachability

• A group of nodes with the same min-hash value means
that there seems to be one node (the one associated with
the min-hash initially) that can be reached by all other
group nodes

• It may happen, however, that two non-connected nodes
have the same min-hash value due to initial hash collisions
(false positives w.r.t. reachability are possible)

• Min-hash values allow us to identify groups with
important locally central nodes (group hubs)
– Identify 3 groups (with 0.06, 0.12, and 0.23 nodes as hubs)

• With k=1, one cannot easily see which group can reach
which other group

21

Min-Hash sketches of all Reachability Sets: ! = 2

For each $: % & ← ()**)+−,
&↝ .

/(.)

bottom-2 (! = 2) 22

© Edith Cohen

Min-Hash sketches of all Reachability Sets: ! = 2

0.37

0.23 0.85

0.45

0.06

0.95

0.77
0.69

0.93

0.32

0.28

0.34

0.12

{0.06,0.12}

{0.12,0.23}
{0.23,0.37}

23

© Edith Cohen

Determine Groups

• K=2:
– Identify 3 groups

• {0.06, 0.12}, {0.12, 0.23}, and {0.23, 0.27}
– Group 0.06 can reach group 0.12 but not vice versa

• Overlap 0.12 is min-hash-2 in 0.06
– Group 0.12 can reach group 0.23 but not vice versa

• Analogous argument
– Group 0.23 cannot reach another group

• For min-hash-2 0.37 there is no overlap

24

Estimating Jaccard Similarity of Nodes

Assume that k>>2

Min-hash overlap large for two nodes u and v
à similar influences from other nodes/groups

Nodes u and v can be seen as similar
(note: there are false positives)

Approximate Jaccard by fraction of identical min-hash values

25

Goal

Sketch size for a node: !(#)
Total computation ≈ !(#&)
Algorithms/methods:
§ Graphs searches (say BFS)
§ Dynamic programming / Distributed

Computing Min-Hash sketches of all reachability sets
efficiently

26

© Edith Cohen

! = 1 BFS method

$ % ← '()
%↝ +

,(+)

Iterate over nodes / by increasing ℎ(/):
Visit nodes 1 through a reverse search from /:

§ IF s 1 = ∅,
§ 5 1 ← ℎ(/)
§ Continue search on inNeighbors(1)

§ ELSE truncate search at 1

27

© Edith Cohen

! " ← $%&
"↝ (

)(()

0.37

0.23 0.85

0.45

0.06

0.95

0.77
0.69

0.93

0.32

0.28

0.34

0.12
{0.23}

{0.06} {0.06}

{0.06}
{0.06}

{0.12}

{0.12}

{0.12}

{0.12}

{0.12}{0.23}

{0.23}
{0.23}

Min-Hash sketches: , = 1, BFS

28

© Edith Cohen

Min-Hash-BFS Analysis

• Each arc is used exactly once: !(#)

• Each graph search depends on all previous ones:
seems like we need to perform % searches
sequentially

• How can we reduce dependencies ?

29

© Edith Cohen

Parallel BFS-based Min-Hash

Idea (! = 1):
§ Create a super-node of the &/2 lowest hash nodes.
§ Perform a (reverse) search from super-node and mark all

nodes that are accessed.
§ Concurrently perform searches:

§ From the lowest-hash &/2 nodes (sequentially)
§ From the highest-hash &/2 (sequentially). Prune

searches also at marked nodes

30

© Edith Cohen

Parallel BFS-based Min-Hash

Correctness:
§ For the lower !/# hash values: computation is the

same.
§ For the higher !/#:

We do not know the minimum reachable hash from
higher-hash nodes, but we do know it is one of the
lower $/2 hash values. This is all we need to know for
correct pruning.

31

© Edith Cohen

Parallel BFS-based Min-Hash: Analysis

ØWe recursively apply this to each of the
lower/higher sets:

Ø This only gives us !/# instead of ! sequential
searches.

How can we obtain more parallelism ?

32

© Edith Cohen

Parallel BFS-based Min-Hash

Super-nodes created in recursion
Nodes ordered by ℎ(#)

Ø The depth of dependencies is at most log()
Ø The total number of edge traversals can increase by

a factor of log()
33

© Edith Cohen

Computing Min-Hash Sketches of all Reachability Sets

! " ← $%&&%'−(
"↝ *

+(*)

Next: Computing sketches using the BFS method
for k>1

34

bottom-., BFS method

© Edith Cohen

Computing Min-Hash Sketches of all Reachability Sets

! " ← $%&&%'−("↝ * +(*)

Iterate over nodes . by increasing ℎ(.):
Visit nodes 0 through a reverse search from .:

§ IF s 0 < 3,
§ 5 0 ← 5 0 ∪ {ℎ . }
§ Continue search on inNeighbors(0)

§ ELSE truncate search at 0

35

bottom-3, BFS method

© Edith Cohen

0.37

0.23 0.85

0.45

0.06

0.95

0.77
0.69

0.93

0.32

0.28

0.34

0.12

{0.06, }

{0.12, }
{0.23, }

0.12

0.23
0.37

Min-Hash sketches of all Reachability Sets: bottom-2

36

© Edith Cohen

Computing Min-Hash Sketches of all Reachability Sets

! = 1 Distributed (DP)

Next: back to ! = 1.
We present another method to compute the sketches. The
algorithm has fewer dependencies. It is specified for each
node. It is suitable for computation that is:

§ Distributed, Asynchronous
§ Dynamic Programming (DP)
§ Multiple passes on the set of arcs

37

© Edith Cohen

Computing Min-Hash Sketches of all Reachability Sets:

! = 1 Distributed (DP)

$ % ← '()
%↝ +

,(+)

Initialize $ % ← ,(%)
§ IF s 0 is initialized/updated, send 1(0) to
inNeighbors(0)

§ IF value ; is received from neighbor:
§ 1 0 ← min{1 0 , ;}

38

© Edith Cohen

DP computation of Min-Hash sketches ! = 1

Initialize: $ % ← '(%)

0.37

0.23 0.85

0.45

0.06

0.95

0.77
0.69

0.93

0.32

0.28

0.34

0.12
{0.45}

{0.95} {0.32}

{0.69}
{0.06}

{0.28}

{0.93}

{0.77}

{0.34}

{0.12}{0.37}

{0.85}
{0.23}

39

© Edith Cohen

DP computation of Min-Hash sketches ! = 1

Send to inNeighbors

0.37

0.23 0.85

0.45

0.06

0.95

0.77
0.69

0.93

0.32

0.28

0.34

0.12
{0.45}

{0.95} {0.32}

{0.69}
{0.06}

{0.28}

{0.93}

{0.77}

{0.34}

{0.12}{0.37}

{0.85}
{0.23}

40

© Edith Cohen

DP computation of Min-Hash sketches ! = 1

Update

0.37

0.23 0.85

0.45

0.06

0.95

0.77
0.69

0.93

0.32

0.28

0.34

0.12
{0.45}

{0.32} {0.32}

{0.06}
{0.06}

{0.12}

{0.28}

{0.12}

{0.12}

{0.12}{0.37}

{0.23}
{0.23}

41

© Edith Cohen

DP computation of Min-Hash sketches ! = 1

If updated, send
to inNeighbors

0.37

0.23 0.85

0.45

0.06

0.95

0.77
0.69

0.93

0.32

0.28

0.34

0.12
{0.45}

{0.32} {0.32}

{0.06}
{0.06}

{0.12}

{0.28}

{0.12}

{0.12}

{0.12}{0.37}

{0.23}
{0.23}

42

© Edith Cohen

DP computation of Min-Hash sketches ! = 1

Update

0.37

0.23 0.85

0.45

0.06

0.95

0.77
0.69

0.93

0.32

0.28

0.34

0.12
{0.45}

{0.32} {0.32}

{0.06}
{0.06}

{0.12}

{0.28}

{0.12}

{0.12}

{0.12}{0.37}

{0.23}
{0.23}

43

© Edith Cohen

DP computation of Min-Hash sketches ! = 1

If updated, send to
inNeighbors. Done.

0.37

0.23 0.85

0.45

0.06

0.95

0.77
0.69

0.93

0.32

0.28

0.34

0.12
{0.23}

{0.06} {0.06}

{0.06}
{0.06}

{0.12}

{0.12}

{0.12}

{0.12}

{0.12}{0.23}

{0.23}
{0.23}

44

© Edith Cohen

Analysis of DP: Edge traversals

Lemma: Each arc is used in expectation < ln $ times.

Proof: We bound the expected number of updates of %(')
§ Consider nodes) = +,, +., … in order that ℎ(+1) is

propagated to (can reach)).
§ The probability that h(+1) updates s()) :

45[7 89 < :;<7 8=
=>9

] = @
9

§ Summing over nodes (linearity of expectation):
∑9B@$ @

9 = C$ < ln $

45

Harmonische Reihe

© Edith Cohen

Analysis of DP: dependencies

The longest chain of dependencies is at most the
longest shortest path (the diameter of the graph)

46

© Edith Cohen

All-Distances Sketches (ADS)

Often we care about distance, not only reachability:
§ Nodes that are closer to a particular, in distance or in Dijkstra

(Nearest-Neighbor) rank, are more meaningful for the node
§ We want a sketch that supports distance-based queries (node

hops)
§ ADS-Sketch: Inclusion probability of the min-hash of a node u

decreases with its distance from v (more precisely, inversely
proportional to the number of nodes closer to v than u)

§ Estimating similarity between neighborhoods of two nodes,
distances, closeness similarities, etc.

47

Edith Cohen. All-distances sketches, revisited: HIP estimators for massive
graphs analysis. In Proc. Symposium on Principles of database systems
(PODS '14). ACM, New York, NY, USA, 88-99, 2014

