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Today’s lecture

e Social Network Analysis
e Anchor text

e Link analysis for ranking
— PageRank and variants
— Hyperlink-Induced Topic Search (HITS)
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Social Network Analysis (SNA)

e Mapping and measuring of relationships and flows
between people, groups, organizations, computers or other
information/knowledge processing entities.

e The nodes in the network are the people and groups while
the links show relationships or flows between the nodes.
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Kite Network

Fernando

Garth

e \Who is the Connecter or Hub in the Network?
e \Who has control over what flows in the Network?

e Who has best visibility of what is happening in the
Network?

e Who are peripheral players? Are they Important?




Measures

1. Degree Centrality:

The number of direct connections a node has. What really matters is where
those connections lead to and how they connect the otherwise unconnected.

CD(ni):d(ni) Cl’)(ni):%
2. Betweenness Centrality:

A node with high betweenness has great influence over what flows in the
network indicating important links and single points of failure.
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3. Closeness Centrality:

The measure of closeness of a node to everyone else.

Determined by the sum of the length of the shortest paths between
the node and all other nodes in the graph.
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https://en.wikipedia.org/wiki/Shortest_path_problem

Legend

e g =sijze of graph (hnumber of nodes)
* d(.)=(in)degree
* g =number of minimal paths between nodes j and k

* gy(n)=number of minimal paths between nodes j and k that
contain n

° (g-1)(g-2)/2 = number of potential paths without node n
2. Yx=(u+l)u/2 fir u=(g-2)

e d(.,.)=distance between two nodes
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Example: Kite-Network
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The Web as a Directed Graph

hyperlink Page B

Assumption 1: A hyperlink between pages denotes
author perceived relevance (quality signal)

Assumption 2: The anchor of the hyperlink
describes the target page (textual context)
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Anchor Text

e For IBM how to distinguish between:
— IBM’s home page (mostly graphical)
— IBM'’s copyright page (high term freq. for ‘ibm’)
— Rival’s spam page (arbitrarily high term freq.)

. 7 ”
“bm” “ibm.com” IBM home page

A million pieces 01\A l /

anchor text with “ibm”
send a strong signal www.ibm.com

Oliver A. McBryan. GENVL and WWWW: Tools for Taming the Web. Research explained at First
International Conference on the World Wide Web. CERN, Geneva (Switzerland), May 25-26-27 1994
(WWWW=World Wide Web Worm, first serach engine for the web)
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Indexing anchor text

e When indexing a document D, include anchor text from
links pointing to D.

Armonk, NY-based computer
giant IBM announced today

www.ibm.com

) ) Big Blue today announced
Joe’s computer hardware links _

record profits for the quarter
Compaq
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The Web as a Resource for NLP

Same pronunciation, Same spelling,
differentmeaning  differentmeaning

Same pronunciation

Words with differentspeliing,
pronunciation and meaning

[Wikipedia] IM FOCUS DAS LEBEN 13




The Web as a Resource for Ranking

e First generation: using link counts as simple
measures of popularity.

e Two basic suggestions:

— Undirected popularity:

e Each page gets a score = the number of in-links plus the
number of out-links (3+2=5).

— Directed popularity:

e Score of a page = number of its in-links (3).
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Query processing

e First retrieve all pages matching the text query
(say venture capital).

e QOrder these by their link popularity
(either variant on the previous page).
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Spamming simple popularity

e Fxercise: How do you spam each of the following
heuristics so your page gets a high score?

e Each page gets a score = the number of in-links plus the
number of out-links.

e Score of a page = number of its in-links.

"Search Engine
Optimization"
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PageRank scoring

e |magine a browser doing a random walk on web pages:
1/3

— Start at a random page ©<:1/3

1/3

— At each step, go out of the current page along one of the
links on that page, equiprobably

e Each page has a long-term visit rate - use this as the
page’s score
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Not quite enough

e The web is full of dead-ends.
— Random walk can get stuck in dead-ends.
— Makes no sense to talk about long-term visit rates.
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Teleporting / damping

e At a dead end, jump to a random web page.

e At any non-dead end, with probability 10%, jump to
a random web page.

— With remaining probability (90%), go out on a random link.

— 10% - a parameter.

e There is a long-term rate at which any page is visited.

— How do we compute this visit rate?
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Markov chains

e A Markov chain consists of n states, plus an nxn
transition matrix P.

e At each step, we are in exactly one of the states.

* For 1<i,j<n,the matrix entry P; tells us the relative
frequency of j being the next state, given we are
currently in state J. ~

P;;>0
is OK.
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Markov chains

e Clearly, for all i, Z P, =1.
j=1
e Markov chains are abstractions of random walks.

e FExercise: represent the teleporting random walk from 3
slides ago as a Markov chain, for this case:
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Ergodic Markov chains

e A Markov chain is ergodic if

— you have a path from any state to any other (reducibility)
— returns to states occur at irregular times (aperiodicity)

— For any start state, after a finite transient time T,, the
probability of being in any state at a fixed time T>T_is
nonzero. (positive recurrence)

Not

CLO (e

odd).

22
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Ergodic Markov chains

e For any ergodic Markov chain, there is a unique long-
term visit rate for each state.

— "Steady-state" distribution.

e Over a long time-period, we visit each state in
proportion to this rate.

e |t doesn’t matter where we start.
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State vectors

e A (row) vector (state vector) x = (x4, ... X)) tells us
where the walk is at any point.

1 i n

More generally, the vector x = (x, ... X,) means the walk
is in state i with relative frequency x..
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Change in state vector

e |f the state vector is
X = (X4, ... x,) at this step,
what is it at the next step?

e Recall that row i of the transition matrix P tells us
where we go next from state j

e So from x, our next state is distributed as xP.
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Steady state example

e The steady state looks like a vector of
probabilitiesa = (a,, ... a,):

— a; is the relative frequency that we are in state i.
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How do we compute this vector?

e Leta=(a, ... a,) denote the row vector of steady-
state rates.

e |f we our current position is described by a, then the
next step is distributed as aP.

e Butais the steady state, so a=aP.
e Solving this matrix equation gives us a.

— So a is the (left) eigenvector for P.

— (Corresponds to the “principal” eigenvector of P with the
largest eigenvalue)

— Transition matrices always have largest eigenvalue 1.

GERST
\\\\\



Eigenvectors and Eigenvalues Mx = Ax

[Wikipedia]
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One way of computing a

e Recall, regardless of where we start, we eventually
reach the steady state a.

e Start with any distribution (say x=(10...0)).
e After one step, we're at xP;

e after two steps at xP?, then xP3 and so on.
e “Eventually” means for “large” k, xPk= a.

e Algorithm: multiply x by increasing powers of P until
the product looks stable.
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Google PageRank

e |nstead of rates, Google uses a logarithmic scale

e Links are weighted according to the importance of the
source node

— Page C has a higher
PageRank than Page E,
even though there
are fewer links to C;
the one linkto C
comes from an
important page
and hence is
of high value.
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PageRank Summary

e Preprocessing:
— Given graph of links, build matrix P
— From it compute a
— The entry a;is a number between 0 and 1: the pagerank of
page /.
e Query processing:
— Retrieve pages meeting query
— Rank them by their pagerank
— Order is query-independent

e PageRank is used in Google,
but also many other clever heuristics
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PageRank: Issues and Variants

e How realistic is the random surfer model?
— What if we modeled the back button?
— Surfer behavior sharply skewed towards short paths

— Search engines, bookmarks & directories make jumps non-
random

e Biased Surfer Models

— Weight edge traversal probabilities based on match with
topic/query (non-uniform edge selection)

— Bias jumps to pages on topic (e.g., based on personal
bookmarks & categories of interest)

32
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Hyperlink-Induced Topic Search (HITS)

e |n response to a query, instead of an ordered list of
pages each meeting the query, find two sets of inter-
related pages:

— Hub pages are good lists of links on a subject

e e.g., “Bob’s list of cancer-related links.”
— Authority pages occur recurrently on good hubs for the
subject
e Best suited for “broad topic” queries rather than for
page-finding queries
e Gets at a broader slice of common opinion
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Hubs and Authorities

e Thus, a good hub page for a topic points to many
authoritative pages for that topic

e A good authority page for a topic is pointed to by
many good hubs for that topic

e Circular definition - will turn this into an iterative
computation
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High-level scheme

e Extract from the web a base set of pages that
could be good hubs or authorities

e From these, identify a small set of top hub and
authority pages;
—iterative algorithm
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Base set

e Given text query (say browser), use a text index to get all
pages containing browser

— Call this the root set of pages

e Add in any page that either
— points to a page in the root set, or
— is pointed to by a page in the root set

e Call this the base set
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Visualization
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Assembling the base set

e Root set typically 200-1000 nodes
e Base set may have up to 5000 nodes
e How do you find the base set nodes?

— Follow out-links by parsing root set pages
— Get in-links (and out-links) from a connectivity server

— Actually, suffices to text-index strings of the form
href="URL" to get in-links to URL
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Distilling hubs and authorities

e Compute, for each page x in the base set, a hub
score h(x) and an authority score a(x)

e |nitialize: for all x, h(x)«1; a(x) «1;

e |teratively update all h(x), a(x);

e After iterations
— output pages with highest h() scores as top hubs

— highest a() scores as top authorities
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Iterative update

e Repeat the following updates, for all x:

h(x) < ) a(y) @%@

a(x) < ) h(y)

V=X
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Scaling

e To prevent the h() and a() values from getting too
big, can scale down after each iteration

e Scaling factor doesn’t really matter:

— we only care about the relative values of the scores
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How many iterations?

e Claim: relative values of scores will converge after a
few iterations:
— In fact, suitably scaled, h() and a() scores settle into a steady state!

e We only require the relative orders of the h() and af)
scores - not their absolute values

e |n practice, ~5 iterations get you close to stability
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Things to note

e Pulled together good pages regardless of language of
page content

e Use only link analysis after base set assembled
— lterative scoring is query-independent

e |terative computation after text index retrieval -
significant overhead
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