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Time-series data is everywhere, 
greater volumes than ever before



What DB for time-series data?

Relational

NoSQL
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Why so much NoSQL?



1.   Schemas are a pain 

2.  Scalability!
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Postgres, MySQL:  
• JSON/JSONB data types 
• Constraint validation!



Why don’t relational DBs scale?



Two Challenges 

1. Scaling up:  Swapping from disk is expensive 

2. Scaling out:  Transactions across machines expensive



Two Challenges 

1. Scaling up:  Swapping from disk is expensive 

2. Scaling out:  Transactions across machines expensive

Not applicable: 
1.   Don’t need for time-series 
2.  NoSQL doesn’t solve anyway



vdts

Postgres 9.6.2 on Azure standard DS4 v2 (8 cores), SSD (premium LRS storage) 
Each row has 12 columns (1 timestamp, indexed 1 host ID, 10 metrics)
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• As table grows large: 
– Data and indexes no longer fit in memory 

– Reads/writes to random locations in B-tree 

– Separate B-tree for each secondary index 

• I/O amplification makes it worse 
– Reads/writes at full-page granularity (8KB), not individual cells 

– Doesn’t help to shrink DB page:  HDD still seeks, SSD has min Flash page size

Challenge in Scaling Up
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Enter NoSQL and Log-Structured Merge Trees  
(and new problems)

• LSM trees avoid small, in-place updates to disk 

– Keep latest inserts/updates in memory table 

– Write immutable sorted batch to disk 

– In-memory indexes typically maps to batches 

• But comes at cost 

– Large memory use:  multiple indexes, no global ordering  

– Poor secondary index support

+



Is there a better way?



Yes. 
Time-series workloads are different



✓ Primarily INSERTs 

✓ Writes to recent time interval 

✓ Writes associated with a 
timestamp and primary key

✗ Primarily UPDATEs 

✗ Writes randomly distributed 

✗ Transactions to multiple 
primary keys

Time SeriesOLTP
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• Strawman:  Just use time as primary index? 
– Yes?  Writes are to recent time, can keep in memory 

– Nope!  Secondary indexes still over entire table
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older

Adaptive time/space partitioning 
(for both scaling up & out)
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How EXACTLY do we partition by time?

Static, fixed duration? 

• Insufficient:  Data 
volumes can change

Fixed target size? 

• Early data can create 
too long intervals 

• Bulk inserts expensive



vds

Adaptive time/space partitioning benefits

New approach:  Adaptive intervals 
• Partitions created with fixed time interval, but 

interval adapts to changes in data volumes  
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Adaptive time/space partitioning benefits

1. Partitions are “right sized”:                       
Recent (hot) partitions fit in memory 

2. Efficient retention policies:                                                 
Drop chunks, don’t delete rows ⇒ avoids vacuuming

New approach:  Adaptive intervals 
• Partitions created with fixed time interval, but 

interval adapts to changes in data volumes  
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• No centralized txn manager or special front-end 
– Any node can handle any INSERT or QUERY  
– Inserts are routed/sub-batched to appropriate servers 
– Partition-aware query optimizations

• Partitions spread across servers

Common mechanism for scaling up & out
Adaptive time/space partitioning benefits
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SELECT time, temp FROM data  

WHERE  time > now() - interval ‘7 days’  

AND device_id = ‘12345’

Common mechanism for scaling up & out

• Avoid querying chunks via constraint exclusion analysis   

Partition-aware Query Optimization
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SELECT time, device_id, temp FROM data  

WHERE  time > now() - interval ‘24 hours’ 

• Avoid querying chunks via constraint exclusion analysis   

Common mechanism for scaling up & out
Partition-aware Query Optimization
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SELECT time_bucket(‘15 minute’, time) fifteen, AVG(temp) FROM data  

WHERE  firmware = “2.3.1” AND wifi_quality < 25 

GROUP BY fifteen 

ORDER BY fifteen DESC LIMIT 6

• Efficient merge appends of time aggregates across partitions

Common mechanism for scaling up & out
Partition-aware Query Optimization



vds

• Efficient merge appends of time aggregates across partitions 

• Perform partial aggregations on distributed data 

• Avoid full scans for last K records of distinct items

Common mechanism for scaling up & out
Partition-aware Query Optimization



SQL made scalable for time-series data

Packaged as a PostgreSQL extension



Full SQL, Fast ingest, Complex queries, Reliable

• High write rates  
• Time-oriented features 

and optimizations 
• Fast complex queries

Scalable

• Engineered up from 
PostgreSQL 

• Inherits 20+ years of 
reliability and tooling

Reliable

• Supports full SQL 
• Connects with any 

client or tool that 
speaks PostgreSQL

Easy to Use
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• Illusion of a single table  

• SELECT against a single table 
– Distributed query optimizations across partitions

Familiar SQL interface 

The hyper table abstraction

• INSERT row / batch into single table 
– Rows / sub-batches inserted into proper partitions 

• Engine automatically closes/creates partitions 
– Based on both time intervals and table size
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Familiar SQL interface 

Avoid data silos via SQL JOINs

• Typical time-series DB approaches today: 

– Denormalize data:  Inefficient, expensive to update, 
operationally difficult 

– Maintain separate relational DB:  Application pain 

• TimescaleDB enables easy JOINs 

– Against relational tables stored either within DB     
or externally (via foreign data wrapper)  

– Within DB, data fetched from one node or 
materialized across cluster
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Familiar management 

Engineered up from PostgreSQL

Connect to and query it 
like Postgres

Manage it  
like Postgres
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Familiar management 

Looks/feels/speaks PostgreSQL

     Administration 

• Replication (hot standby) 

• Checkpointing and backup 

• Fine-grain access control

Connectors!
ODBC, JDBC, Postgres
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Familiar management 
Reuse & improve PostgreSQL mechanisms

• Implementation details 
– Partitions stored as “child” Postgres tables of parent hypertable 
– Secondary indexes are local to each partition (table)

• Query improvements 
– Better constrained exclusions avoid querying children 
– New time/partition-aware query optimizations 
– New time-oriented features

• Insert improvements 
– Adaptive auto-creation/closing of partitions 
– More efficient insert path (both single row and batch)
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Familiar management 

Creating/migrating is easy

$ psql 
psql (9.6.2) 
Type "help" for help. 

tsdb=#  

              SELECT create_hypertable (’data’, ’time’, ’device_id’, 16); 

tsdb=#                INSERT INTO data (SELECT * FROM old_data);

              CREATE TABLE data ( 
                   time TIMESTAMP WITH TIME ZONE NOT NULL, 
                   device_id TEXT NOT NULL, 
                   temperature NUMERIC NULL, 
                   humidity NUMERIC NULL 
              ); 

tsdb=#
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Performance benefits
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Performance benefits

• Reduce latency by 
parallelizing queries 

• Reduce network traffic     
(e.g., aggregation pushdown, 
localizing GROUP BYs)

ClustersSingle server

• Carefully sizing chunks 

• Reduce amount of data read 
(e.g., merge appends, GROUP BYs) 

• Parallelize across multiple 
chunks, disks  
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Single-node INSERT scalability

Postgres 9.6.2 on Azure standard DS4 v2 (8 cores), SSD (premium LRS storage) 
Each row has 12 columns (1 timestamp, indexed 1 host ID, 10 metrics)

144K metrics/s 
14.4K inserts/s 
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Postgres 9.6.2 on Azure standard DS4 v2 (8 cores), SSD (premium LRS storage) 
Each row has 12 columns (1 timestamp, indexed 1 host ID, 10 metrics)

Single-node INSERT scalability

1.3M metrics/s 
130K inserts/s 

15x



vds
Mean results for 2500 query, randomly chosen IDs and times for each query

Single-node QUERY performance

21,991%
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21,991%

e.g., query “max per minute for all hosts with limit” is SQL: 

SELECT date_trunc('minute', time) as minute, max(usage) FROM cpu  
  WHERE time < '2017-03-01 12:00:00’ 
  GROUP BY minute  
  ORDER BY minute DESC  
  LIMIT 5

Mean results for 2500 query, randomly chosen IDs and times for each query

Single-node QUERY performance
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✓ Full SQL:  Complex predicates 
or aggregates, JOINs  

✓ Rich indexing  

✓ Mostly structured data  

✓ Desire reliability, ecosystem, 
integrations of Postgres 

Should NOT use if: Should use if:

✗ Simple read requirements:         
KV lookups, single-column rollup 

✗ Heavy compression is priority 

✗ Very sparse or unstructured data
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Open-source release last month 

https://github.com/timescale/timescaledb 

Apache 2.0 license 

Beta release for single-node  

Visit us at booth #316
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