
Building a scalable time-series database
using Postgres

Mike Freedman
Co-founder / CTO, Timescale

mike@timescale.com

https://github.com/timescale/timescaledb

Time-series data is everywhere,
greater volumes than ever before

What DB for time-series data?

Relational

NoSQL

0% 23.333% 46.667% 70%

68%

32%

https://www.percona.com/blog/2017/02/10/percona-blog-poll-database-engine-using-store-time-series-data/

Why so much NoSQL?

1. Schemas are a pain

2. Scalability!

1. Schemas are a pain

2. Scalability!

Postgres, MySQL:
• JSON/JSONB data types
• Constraint validation!

Why don’t relational DBs scale?

Two Challenges

1. Scaling up: Swapping from disk is expensive

2. Scaling out: Transactions across machines expensive

Two Challenges

1. Scaling up: Swapping from disk is expensive

2. Scaling out: Transactions across machines expensive

Not applicable:
1. Don’t need for time-series
2. NoSQL doesn’t solve anyway

vdts

Postgres 9.6.2 on Azure standard DS4 v2 (8 cores), SSD (premium LRS storage)
Each row has 12 columns (1 timestamp, indexed 1 host ID, 10 metrics)

vdts

• As table grows large:
– Data and indexes no longer fit in memory

– Reads/writes to random locations in B-tree

– Separate B-tree for each secondary index

• I/O amplification makes it worse
– Reads/writes at full-page granularity (8KB), not individual cells

– Doesn’t help to shrink DB page: HDD still seeks, SSD has min Flash page size

Challenge in Scaling Up

vdts

Enter NoSQL and Log-Structured Merge Trees
(and new problems)

• LSM trees avoid small, in-place updates to disk

– Keep latest inserts/updates in memory table

– Write immutable sorted batch to disk

– In-memory indexes typically maps to batches

• But comes at cost

– Large memory use: multiple indexes, no global ordering

– Poor secondary index support

+

Is there a better way?

Yes.
Time-series workloads are different

✓ Primarily INSERTs

✓ Writes to recent time interval

✓ Writes associated with a
timestamp and primary key

✗ Primarily UPDATEs

✗ Writes randomly distributed

✗ Transactions to multiple
primary keys

Time SeriesOLTP

vds

older

vds

older

• Strawman: Just use time as primary index?
– Yes? Writes are to recent time, can keep in memory

– Nope! Secondary indexes still over entire table

vds

older

Adaptive time/space partitioning
(for both scaling up & out)

vds

How EXACTLY do we partition by time?

Static, fixed duration?

• Insufficient: Data
volumes can change

Fixed target size?

• Early data can create
too long intervals

• Bulk inserts expensive

vds

Adaptive time/space partitioning benefits

New approach: Adaptive intervals
• Partitions created with fixed time interval, but

interval adapts to changes in data volumes

vds

Adaptive time/space partitioning benefits

1. Partitions are “right sized”:
Recent (hot) partitions fit in memory

2. Efficient retention policies:
Drop chunks, don’t delete rows ⇒ avoids vacuuming

New approach: Adaptive intervals
• Partitions created with fixed time interval, but

interval adapts to changes in data volumes

vds

• No centralized txn manager or special front-end
– Any node can handle any INSERT or QUERY
– Inserts are routed/sub-batched to appropriate servers
– Partition-aware query optimizations

• Partitions spread across servers

Common mechanism for scaling up & out
Adaptive time/space partitioning benefits

vds

SELECT time, temp FROM data

WHERE time > now() - interval ‘7 days’

AND device_id = ‘12345’

Common mechanism for scaling up & out

• Avoid querying chunks via constraint exclusion analysis

Partition-aware Query Optimization

vds

SELECT time, device_id, temp FROM data

WHERE time > now() - interval ‘24 hours’

• Avoid querying chunks via constraint exclusion analysis

Common mechanism for scaling up & out
Partition-aware Query Optimization

vds

SELECT time_bucket(‘15 minute’, time) fifteen, AVG(temp) FROM data

WHERE firmware = “2.3.1” AND wifi_quality < 25

GROUP BY fifteen

ORDER BY fifteen DESC LIMIT 6

• Efficient merge appends of time aggregates across partitions

Common mechanism for scaling up & out
Partition-aware Query Optimization

vds

• Efficient merge appends of time aggregates across partitions

• Perform partial aggregations on distributed data

• Avoid full scans for last K records of distinct items

Common mechanism for scaling up & out
Partition-aware Query Optimization

SQL made scalable for time-series data

Packaged as a PostgreSQL extension

Full SQL, Fast ingest, Complex queries, Reliable

• High write rates
• Time-oriented features

and optimizations
• Fast complex queries

Scalable

• Engineered up from
PostgreSQL

• Inherits 20+ years of
reliability and tooling

Reliable

• Supports full SQL
• Connects with any

client or tool that
speaks PostgreSQL

Easy to Use

vdts

• Illusion of a single table

• SELECT against a single table
– Distributed query optimizations across partitions

Familiar SQL interface

The hyper table abstraction

• INSERT row / batch into single table
– Rows / sub-batches inserted into proper partitions

• Engine automatically closes/creates partitions
– Based on both time intervals and table size

vdts

Familiar SQL interface

Avoid data silos via SQL JOINs

• Typical time-series DB approaches today:

– Denormalize data: Inefficient, expensive to update,
operationally difficult

– Maintain separate relational DB: Application pain

• TimescaleDB enables easy JOINs

– Against relational tables stored either within DB
or externally (via foreign data wrapper)

– Within DB, data fetched from one node or
materialized across cluster

vds

Familiar management

Engineered up from PostgreSQL

Connect to and query it
like Postgres

Manage it
like Postgres

vds

Familiar management

Looks/feels/speaks PostgreSQL

 Administration

• Replication (hot standby)

• Checkpointing and backup

• Fine-grain access control

Connectors!
ODBC, JDBC, Postgres

vds

Familiar management
Reuse & improve PostgreSQL mechanisms

• Implementation details
– Partitions stored as “child” Postgres tables of parent hypertable
– Secondary indexes are local to each partition (table)

• Query improvements
– Better constrained exclusions avoid querying children
– New time/partition-aware query optimizations
– New time-oriented features

• Insert improvements
– Adaptive auto-creation/closing of partitions
– More efficient insert path (both single row and batch)

vds

Familiar management

Creating/migrating is easy

$ psql
psql (9.6.2)
Type "help" for help.

tsdb=#

 SELECT create_hypertable (’data’, ’time’, ’device_id’, 16);

tsdb=# INSERT INTO data (SELECT * FROM old_data);

 CREATE TABLE data (
 time TIMESTAMP WITH TIME ZONE NOT NULL,
 device_id TEXT NOT NULL,
 temperature NUMERIC NULL,
 humidity NUMERIC NULL
);

tsdb=#

vds

Performance benefits

vds

Performance benefits

• Reduce latency by
parallelizing queries

• Reduce network traffic
(e.g., aggregation pushdown,
localizing GROUP BYs)

ClustersSingle server

• Carefully sizing chunks

• Reduce amount of data read
(e.g., merge appends, GROUP BYs)

• Parallelize across multiple
chunks, disks

vdts

Single-node INSERT scalability

Postgres 9.6.2 on Azure standard DS4 v2 (8 cores), SSD (premium LRS storage)
Each row has 12 columns (1 timestamp, indexed 1 host ID, 10 metrics)

144K metrics/s
14.4K inserts/s

vdts

Postgres 9.6.2 on Azure standard DS4 v2 (8 cores), SSD (premium LRS storage)
Each row has 12 columns (1 timestamp, indexed 1 host ID, 10 metrics)

Single-node INSERT scalability

144K metrics/s
14.4K inserts/s

vdts

Postgres 9.6.2 on Azure standard DS4 v2 (8 cores), SSD (premium LRS storage)
Each row has 12 columns (1 timestamp, indexed 1 host ID, 10 metrics)

Single-node INSERT scalability

1.3M metrics/s
130K inserts/s

15x

vds
Mean results for 2500 query, randomly chosen IDs and times for each query

Single-node QUERY performance

21,991%

vds

21,991%

e.g., query “max per minute for all hosts with limit” is SQL:

SELECT date_trunc('minute', time) as minute, max(usage) FROM cpu
 WHERE time < '2017-03-01 12:00:00’
 GROUP BY minute
 ORDER BY minute DESC
 LIMIT 5

Mean results for 2500 query, randomly chosen IDs and times for each query

Single-node QUERY performance

vds

✓ Full SQL: Complex predicates
or aggregates, JOINs

✓ Rich indexing

✓ Mostly structured data

✓ Desire reliability, ecosystem,
integrations of Postgres

Should NOT use if: Should use if:

✗ Simple read requirements:
KV lookups, single-column rollup

✗ Heavy compression is priority

✗ Very sparse or unstructured data

vds

Open-source release last month

https://github.com/timescale/timescaledb

Apache 2.0 license

Beta release for single-node

Visit us at booth #316

vds

Open-source release last month

https://github.com/timescale/timescaledb

Apache 2.0 license

Beta release for single-node

Visit us at booth #316

