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Ubersicht

e  Semistrukturierte Datenbanken (JSON, XML) und Volltextsuche

e Information Retrieval

e  Mehrdimensionale Indexstrukturen

e  C(Cluster-Bildung

e  Einbettungstechniken

e  First-n-, Top-k-, und Skyline-Anfragen

e  Probabilistische Datenbanken, Anfragebeantwortung, Top-k-Anfragen und Open-World-Annahme
e  Probabilistische Modellierung, Bayes-Netze, Anfragebeantwortungsalgorithmen, Lernverfahren,
e Temporale Datenbanken und das relationale Modell,

e  Probabilistische Temporale Datenbanken

e SQL: neue Entwicklungen (z.B. JSON-Strukturen und Arrays), Zeitreihen (z.B. TimeScaleDB)

e Stromdatenbanken, Prinzipien der Fenster-orientierten inkrementellen Verarbeitung

e  Approximationstechniken fiir Stromdatenverarbeitung, Stream-Mining

e Von NoSQL- zu NewSQL-Datenbanken, CAP-Theorem, CALM-Theorem

e  Blockchain-Datenbanken

e  Analyse von Graphdaten
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Spatio-Temporal Objects

e Moving points (extent does not matter)

— Each object is modeled as a point (e.g., moving vehicles
in a GIS based transportation system)

e Moving regions (extent matters)

— Each object is represented by an MBR, the MBR can
change as the object moves (e.g., thunderstorm, noise)
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Location-aware Queries

Continuously report the number of cars on freeway 71-75
« Type: Range query

« Time: Present

* Duration: Continuous

What are my nearest McDonalds for the next hour?
« Type: Nearest-neighbor query
 Time: Future

* Duration: Continuous / Snapshot
Send E-coupons to all cars that | am their nearest gas station

* Type: Reverse NN query Query: Stationary (gas station)

« Time: Present o ObjeCtS.' MOVing
* Duration: Snapshot
What was the closest distance between Taxi A & me yesterday?

« Type: Closest-point query
 Time: Past
....> Duration: Snapshot

g, -
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* Query: Stationary
* Objects: Moving

* Query: Moving (reference rectangle)
« Objects: Stationary (McDonalds)

* Query: Moving
* Objects: Moving

IM FOCUS DAS LEBEN 5




Snapshot Querying the Past

e Examples:

 Temporal Dimension:

What was the location of a certain object
from 7:00 AM to 10:00 AM yesterday?

e Spatial Dimension:
Find all objects that were in a certain area at
7:00 AM yesterday

e Spatio-temporal Dimension:
Find all objects that were close to each other
from 7:00 AM to 8:00 AM yesterday

e Features:
* Large number of historical trajectories
* Persistent read-only data -
e Query spatial and/or temporal dimensions P \

A ACIIC PDAC = R
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Indexing the Time Dimension

Historical trajectories are represented by their three-dimensional Minimum
Bounding Rectangle (MBR)

ATime

3D R-tree can be used to index MBRs

\

* Technique simple and easy to —]
implement u///d*
* Does not scale well \/

* Does not provide efficient query 2 5>
support for snapshot queries %

(aka timestamp queries) /
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3D R-Tree
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Modeling Evolution: Historical R-Trees
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Multi-Version Index Structures (MVR-Trees)

Maintain an R-tree for each time instance (aka historical r-tree, HR-tree)
R-tree nodes that are not changed across consecutive time instances are
linked together (remove redundancies: MVR-tree)

Timestamp 1

//{’/

* A multi-version R-tree can be combined with a 3D-R-tree to support
interval queries (combination is called MV3R-Tree)

Yufei Tao and Dimitris Papadias. MV3R-Tree: A Spatio-temporal Access Method
for Timestamp and Interval Queries. In Proc. VLDB-01, pp. 431-440, 2001

Timestamp 0
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3D R-tree
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Historical R-trees (HR-trees)

An R-tree is maintained for each timestamp in history.

Trees at consecutive timestamps may share branches to save space.
0
O3 A

timestamp 1

0

timestamp 1 Pi | P2l P3
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Historical R-trees

An R-tree is maintained for each timestamp in history.

Trees at consecutive timestamps may share branches to save space.
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Building a 3D R-tree on the Leaves of the MVR-tree

e Size of the 3D R-tree is much smaller than a complete 3D
R-tree as the number of leaf nodes is significantly lower
than the number of actual objects.

e Long interval queries can be processed
with auxiliary 3D R-trees

SRs22 5  INSTITUT FUR INFORMATIONSSYSTEME
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Rectangles

Problem of indexing any type of moving objects can be
reduced to indexing discrete rectangles

Discrete rectangles

Ttime

Continuous points

—

Continuous rectangles

Y
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Optimization

* If N objects move with linear functions of time:

 Minimize total volume by splitting in equidistant
points

* Given K splits you can decide the best splits in
O(K log N) time.

Yufei Tao and Dimitris Papadias. MV3R-Tree: A Spatio-temporal Access Method

for Timestamp and Interval Queries. In Proc. VLDB-01, pp. 431-440, 2001 IM FOCUS DAS LEBEN
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Querying the Present

e Time is always NOW
e Example Queries:

— Find the number of objects in a certain area
— What is the current location of a certain object?

e Features:
— Continuously changing data
— Real-time query support is required
— Index structures should be update-tolerant

e Present data is always accessed through
continuous queries

ez, =
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Updating Index Structures

Traditional R-tree updates are
top-down

Updates translated to delete and
insert transactions

To support frequent updates:

— Updates can be managed
“inline” without the need for
deletion or insertions

— Bottom-up approaches through
auxiliary index structures to
locate the object identifier

aaaa
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Querying the Future

e Examples:
— What will my nearest restaurant be
after 30 minutes?
— Does my path conflict with any other
cars for the next hour?
e Features:

— Predict the movement through a
velocity vector

— Prediction could be valid for only a
limited time horizon in the future

5 1
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Example: Location Prediction

Location prediction seems to be a simple task in some cases:

Subway

University -
station

Jonas Luthke. Location Prediction Based on Mobility Patterns in
Location Histories. Master thesis, TU Hamburg-Harburg, 2013

https://www.ifis.uni-luebeck.de/~moeller/publist-sts-pw-and-m/source/papers/2013/luethkel13.pdf
;E U’I‘IEI\ISETIIQ?LIJTT‘.EUZ;JIII.\IUFBOERCJATIONSSYSTEME IM FOCUS DAS LEBEN 19

Master Thesis Jonas Liithke, TUHH, 2013


https://www.ifis.uni-luebeck.de/~moeller/publist-sts-pw-and-m/source/papers/2013/luethke13.pdf

Location Prediction - Approach

Location prediction seems to be a simple task in some cases:

Previous observations can enable an educated guess

IM FOCUS DAS LEBEN 20
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Example: Location History Data

Cabspotting data set:
GPS coordinates collected from
563 cabs in San Francisco over 30
days

Interval between measurements
< 60seconds

Ten taxis selected for testing
(with regard to measurement
density, measurement errors)

 Spatial probability distribution could be estimated from this (e.g., GMM)

* Spatiotemporal probability distribution is needed




Delay Embedding

Embed location time series in 2m-dimensional space using a delay v:

* Time series is iteratively sampled using delay time v

* Every m subsequent locations are combined into one vector
(delay vector)

Starting from each location x», combine x, with m subsequent
locations if they were observed at a time interval v

x= (x ) ,x2 ) location data points, indexn € {1,..., N}
8n = [x]_ (m=1) X4 (m—1)’X27—(m—2)’X/27—(m—2)’""X1n1X2n]

. — X2 1 2
Forexample: m= 2:06n=[x_4,X5_4, X}, X4]

Note: Prior sampling with delay v is omitted for simplification

IM FOCUS DAS

LEBEN
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Delay Embedding — Benefits

Euclidean distance is a measure for similarity between
subsequences

Similar subsequences are close in embedding space

Density is a measure for likelihood of a subsequence

Mobility patterns can be extracted in terms of density

M FOCUS DAS

LEBEN
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Prediction Approach

Learn mobility patterns from large amount of history data:
* Delay embedding to map mobility patterns to density

* Density estimation based on embedding space
P(Xt = X,Xt—l,...,Xt_(m_l))

* Derive conditional distribution
P(Xt = x[Xt-1,...,Xt=(m-1)) = & P(Xt = x,Xt-1, ..., Xt=(m-1))

Predict location given the last m — 1 locations (current context):
* Maximization of probability density
to obtain most likely location (MLL problem)

x* = argmax P(Xt¢ = X, Xt-1,...,Xt-(m-1))
X

What about m=2?
Assuming (m-1)-th order Markov process

BEN 24



Density Estimation

Kernel Density Estimation

Optimization problem:
Minimize distance between estimated and unknown underlying
distribution (AMISE, asymptotic mean integrated square error)
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Online Kernel Density Estimation

* Incremental - can be updated as new data arrives

* Uses compression to keep memory footprint small

Christoph Heinz, Kernel Density Estimation over Data Streams,
Dissertation Philipps-Universitat Marburg, 2007

Matej Kristan, Ales Leonardis, and Danijel Skocaj. 2011. Multivariate
online kernel density estimation with Gaussian kernels. Pattern Recogn.
44,10-11, 2630-2642, 2011 IM FOCUS DAS LEBEN 27
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Use hill-climbing search to find position of maximum
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Starting Points for Maxima Search

* Define search region around last observed location

* |If radius large enough, all relevant maxima are found




Summary - Prediction

* Delay embedding:
Map mobility patterns to density

* Density estimation:
Assigns probability to each possible location sequence

* Mode finding:
Searches the most likely future location

L& N maTiONssYsTEME IM FOCUS DAS LEBEN 30
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Test Results

Varied m, fixed v= 6min:

error[m]

4000
3000
2000
1000

Accurate predictions are more uniformly distributed
form = 3and m = 5.

IM FOCUS DAS LEBEN 31



Test Results

Varied v, fixed m = 3:

error[m]

4000
3000
2000
1000

IM FOCUS DAS LEBEN 32



Test Result Analysis

Algorithm is based on sequential correlation in data (delay embedding)

Locations in taxi data only correlated if part of same trip

For each trip the client defines new destination

Recurring similar location sequences only observed when
limiting time span to average trip time

Else prediction falls backtom = 2

Similar Approaches:
* Song et al. - Markov predictor

* Scellato et al. - Nonlinear predictor

L. Song, D. Kotz, R. Jain, and X. He, Evaluating location predictors with extensive
with mobility data, In Proc. IEEE Computer and Communications Societies, pp.
1414-1424, 2004

S. Scellato, M. Musolesi, C. Mascolo, V. Latora, and A. T. Campbell,
NextPlace: a spatio- temporal prediction framework for pervasive systems,
In: Proc. Pervasive Computing, 2011

IM FOCUS DAS LEBEN 33
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Duality Transformation: Avoid 3D-Rtrees?

e Alinear trajectory in two-dimensional space can be transformed
into a point in another dual two-dimensional space

e Trajectory: x(t) = vt + a =2 Point: (v,a)
e Embedding in more dimensions

e All queries will need to be transformed into the dual space

sssssssssssssssssssssssssssssss
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Time Parameterized Queries

Ay axis
10|

e a

6 b moving east

i | atspeed | [~

4} e \ ..... s

the query q
2 at current time
[ NN T NN N NN M | |xa:is

0 2 4 6 8 10

o Result={b}

o Conventional Query

< UNIVERSITAT ZU LUBECK
INSTITUT FUR INFORMATIONSSYSTEME

At time 1 b would be the nearest neighbor, after
that time the results expire and d would be the
new nearest neighbor

Time Parameterized Query

IM FOCUS DAS LEBEN 35




Time Parameterized queries (TP queries)

e Whenever a query is issued, a TP returns:
— Actual result that satisfies the corresponding spatial query.
— Validity period/expiration time of the result.
— Change that cause the expiration of the results

e Can be used for prediction

EBEN 36



Time-Parameterized Data Structures

The Time-Parameterized R-tree (TPR-tree) consists of:
* Minimum bounding rectangles (MBR)

* Velocity bounding rectangles (VBR) A 2 A
4
.\ @
e Abounding rectangle with MBR & e
VBR is guaranteed to contain all its (: t— — 1
moving objects as long as they u o>
maintain their velocity vector l
T A '
e (Optimization: Minimize \&

area of the bounding rectangle

e Time-Parameterized Bounding Rectangles (TPBRSs)
for answering TP queries

,,,,,
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Indexing Past, Present, and Future

* A unified index structure for both past, present, and future data

 Makes use of the partial-persistent R-tree for past data and the
TPR-tree for current and future data

Katerina Raptopoulou, Michael Vassilakopoulos, and Yannis Manolopoulos..
Efficient processing of past-future spatiotemporal queries. In Proc. ACM
Symposium on Applied Computing (SAC '06). ACM, pp. 68-72, 2006 IM FOCUS DAS LEBEN 38




Outline

e |Location-aware Continuous Query Processing

e Scalable Execution of Continuous Queries
e |Location-aware Query Optimizer
e Uncertainty in Location-aware Query Processing
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Approaches

e Straightforward Approach

— Abstract the continuous queries to a series of snapshot queries
evaluated periodically (and possibly incrementally)

e Result Validation
e Result Caching
e Result Prediction

e |ncremental Evaluation

D) k3
R Nz,
$W & universiTAT zu LoBECK IM FOCUS DAS LEBEN 40
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Result Validation

e Associate a validation condition with each query answer

* \Valid time (t):
* The query answer is valid for the next
t time units
* Valid region (R)
* The query answer is valid as long as
you are within a region R

* |tis challenging to maintain the computation of valid time/region for
guerying moving objects

* Once the associated validation condition expires, the query will be
reevaluated

,,,,,
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Caching the Result

Observation: Consecutive evaluations of a
continuous query yield very similar results

Idea: Upon evaluation of a continuous query,
retrieve more data that can be used later

K-NN query
— Initially, retrieve more than k

P o o e e e o e e e e e e

Range query
— Evaluate the query with a larger range

How much do we need to pre-compute? ®

aaaa
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Predicting the Result

e Given a future trajectory movement, the query answer can be
pre-computed in advance

O
O
 The trajectory movement is ® ®
divided into N intervals, each o
with its own query answers A; o o O

Nearest-Neighbor Query

 The query is evaluated once (as a snapshot query). Yet, the
answer is valid for longer time periods

* Once the trajectory changes, the query will be reevaluated

,,,,,
xxxxxxxx
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Incremental Evaluation

e The query is evaluated only once. Then, ®
only the updates of the query answer o
are evaluated o
o
e There are two types of updates.
Positive and Negative updates Query Result
oo ©
* Only the objects that cross the query
boundary are taken into account
4+ o
 Need to continuously listen for notifications - o
that someone crosses the query boundary 4+ e

,,,,,
\\\\\
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Outline

e Scalable Execution of Continuous Queries
— Location-aware Centralized Database Systems
— Location-aware Distributed Database Systems
— Location-aware Data Stream Management Systems

e |ocation-aware Query Optimizer
e Uncertainty in Location-aware Query Processing

IM FOCUS DAS LEBEN 45



Queries as Data — Motivation

Continuous Location-aware Continuous
K-NN Query

Range Query

eep me updated by nearest S erver

T~~~

How many cars in
the highlighted
area?

3 hospitals

Make sure that the

nearest 3 airplanes are
FRIENDLY

Alert me if there are less
than 3 police cars within 5

Monitor the traffic
in the red areas

Continuous C t'm”es Continuous
K-NN Query ontinuous
: Range Query Range Query
A B e TIONSSYSTEME IM FOCUS DAS LEBEN 46
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Main Concepts

Continuous queries last for long times at the server side
> While a query is active in the server, other queries will be submitted
Q Shared execution among multiple queries

Should we index data OR queries?
> Data and queries may be stationary or moving
-> Data and queries are of large size
-> Data and queries arrive to the system with very high rates
Q Treat data and queries similarly

Queries are coming to data OR data are coming to queries?
-> Both data and queries are subjected to each other
Q Join data with queries

2 WY
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Main Concepts (Cont.)

Each query is a single thread One thread for all continuous queries
° ° ° Ql Qz o o o QN

D- D- D- D-
Index Index Index Index

Data Data
Objects Objects

Evaluating a large number of concurrent continuous spatio-
temporal queries is abstracted as a spatio-temporal join between
moving objects and moving queries

Data

Objects

5 >

iz, -
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Location-aware Data Stream Management Systems

* Only significant objects are
stored in-memory

 An object is considered
significant if it is either in the )8(
guery area or the cache area

 Due to the query and object movements, a stored object may
become insignificant at any time

* Larger cache area indicates more storage overhead and more
accurate answer
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Location-aware Data Stream Management Systems (Cont.)

The first k objects are considered
an initial answer

K-NN query is reduced to a circular
range query

However, the query area may shrink

or grow K

I
w
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Location-aware Data Stream Management Systems (Cont.)

Each query is a single thread One thread for all continuous queries
Q; Q, QN Q; Q; Qy
+/-| +/- +/-

Shared
Operator

Shared Memory \ Shared Spatio-

Buffer among all temporal Join
C. Queries

Stream of Moving
Objects Stream of Moving  Stream of Moving

Objects Queries

o ©
: o e - o -
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Location-aware Data Stream Management Systems (Cont.)

e Query Load Shedding e ) O

— Reduce the cache area

— Possibly reduce the query area

o

— Immediately drop insignificant tuples

— Intuitive and simple to implement

Object Load Shedding

Objects that satisfy less than k 1 C)
gueries are insignificant o) z
Lazily drop insignificant tuples ,/5_\
Challenge I: How to choose k?

Challenge Il: How to provide a %
lower bound for the query >
accuracy?
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Tutorial Outline

o Location-aware Environrneants

o Location-aware Snapsnot Ouery Processing

2 Location-aware Continuous Query Processing
o Scalaple Execution of Continuous Queries

e Location-aware Query Optimization

e Uncertainty in Location-aware Query Processing

;;;;;
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Location-aware Query Optimization

e Spatio-temporal pipelinable query operators
— Range queries
— Nearest-neighbor queries

e Selectivity estimation for spatio-temporal
queries/operators

— Spatio-temporal histograms
— Sampling

e Adaptive query optimization for continuous queries

)} JS DAS LEBEN
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Spatio-temporal Query Operators

e Existing Approaches are Built on Top of DBMS (at the
Application Level)

Continuously report the
i s trucks in this area

Scalar functions
(Stored procedure)
Only produce objects in the
™ SELECT O. ID
€ performance of | ooy Opjects O Database
scalar functions is ~ EnE e
limited WHERE O.type = truck g

INSIDE Area A Spatio-temporal

S DAS ERE N
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Spatio-temporal Query Operators

“Continuously report the Avis cars in a certain area”

SELECT M.ObjectID 3000
FROM  MovingObjects M, AvisCars A 2500
WHERE M.ID =A.ID o
= 2000
INSIDE RegionR 2 —INSIIDE Operator
g 1500 === Scalar Function
Scalar Function Spatio-temporal & 4y,
Operators 2
T+/- | T +/' %00 /
INSIDE CJOIN D 0 —— . . .
1\ +/- 2 4 8 16 32 64
Query Size

AvisCars  Moving Objects | Moving Objects

::::: ITAT ZU LUBECK
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Spatio-temporal Selectivity Estimation

e Estimating the selectivity of spatio-temporal operators is crucial in
determining the best plan for spatio-temporal queries

SELECT ObjectID
FROM MovingObjects M
WHERE Type = Truck
INSIDE Region R

b

1

L
1

4




Spatio-temporal Histograms

e Moving objects in D-dimensional space are mapped to 2D-
dimensional histogram buckets

X X
A A
£ >
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Spatio-temporal Histograms with Query Feedback

e Estimating the selectivity of spatio-temporal operators is crucial in
determining the best plan for spatio-temporal queries

Query

Gk

e

711%

6.25%

6.25%

Query Optimizer

«<—> Spatio-temporal

Query plan

A4

Histogram

6.15%

6.24%

6.25%

6.25%

Query Executer

Feedback

|

6.25%

6.25%

6.25%

6.25%

6.25%

6.25%

6.25%

6.25%
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Adaptive Query Optimization

e Continuous queries last for long
time (hours, days, weeks)

=» Environment variables are likely to
change

=» The initial decision for building a

query plan may not be valid after a
while

e Need continuous optimization
and ability to change the query
plan:

=» Training period: Spatio-temporal
histogram, periodicity mining
=» Online detection of changes

SELECT ObjectIiD

FROM  MovingObjects M
WHERE Type = Truck
INSIDE Region R

-t |

Moving Objects I Moving Objects

IM FOCUS DAS LEBEN
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Uncertainty in Moving Objects

e Location information from moving objects is inherently
inaccurate

e Sources of uncertainty:

— Sampling. A moving object sends its location information
once every t time units. Within any two consecutive
locations, we have no clue about the object’s exact location

— Reading accuracy. Location-aware devices do not provide the
exact location

— Object movement and network delay. By the time that a
certain reading is received by the server, the moving object
has already changed its location

,,,,,
\\\\\
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Uncertainty in Moving Objects

e Historical data (Trajectories)

S W=

« Current data

US DAS LEBEN

62



Error in Query Answer

e Range Queries

Q
g

R
Vet

Nearest Neighbor Queries

US DAS LEBEN
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Representing Uncertain Data using Ellipses

e Given:
— Start point
— End point
— Maximum possible speed = Maximum traveling distance S

e |fSis greater than the distance between the two end points,
then the moving object may have deviated from the given route

,,,,,
\\\\\
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SXRSS2 Y INSTITUT FUR INFORMATIONSSYSTEME
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Representing Uncertain Data using Cylinders

e @Given:
— Start and end points
e (Constraint:

— An object would report its location only if it is deviated by a
certain distance r from the predicted trajectory

DAS LEBEN
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Representing Uncertain Data in Road Networks

e @Given:
— Start and end points
e Constraints :
— Deviation threshold r
— Speed threshold v

-
-
-
-
-

M FOCUS DAS LEBEN
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Querying Uncertain Data Uncertain Keywords

e KEYWORDS:
— Probability: possibly, definitely
— Temporal: sometimes, always

— Spatial: somewhere, everywhere

e Examples:

— What are the objects that are possibly sometimes within area R at time
interval T?

— What are the objects that definitely passed through a certain region?
— Retrieve all the objects that are always inside a certain region
— Retrieve all the objects that are sometimes definitely inside region R

= ol =
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Querying Uncertain Data Uncertain Keywords (Cont.)

Q,

e R
N

Q;

Q;

e Object O is definitely always in Q;
Object O is possibly always in Q,
Object O is definitely sometimes in Qg
Object O is possibly sometimes in Q,




Querying Uncertain Data Probabilistic Queries

e With each query answer, associate a probability that this
answer is true

e The answer set of a query Q is represented as a set of tuples
<ID, p> where ID is the tuple identifier and p is the probability
that the object ID belongs to the answer set of Q

e Assumptions:

— Objects can lie anywhere uniformly within their
uncertainty region




Querying Uncertain Data Probabilistic Range Queries

e Query Answer:
— (B, 50%)

— (C, 90%)

- D

— E

— (F, 30%)

aaaa
SESSE Y INSTITUT FUR INFORMATIONSSYSTEME
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Querying Uncertain Data Probabilistic NN Queries
Qe

e Query Answer (k=1):
- (C, p,)
- (D, p,)
- (E, p3)

aaaa
SESSE Y INSTITUT FUR INFORMATIONSSYSTEME
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Typicality Potential Fields (TyPoFs)

UNIVERSITAT ZU LUBECK
INSTITUT FUR INFORMATIONSSYSTEME
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Typicality Potential Fields

. /',' 7 -‘\\,
./ -...
;. \\
4 ( I 4
1 ?
'i.‘ ,'
~, '/
TyPoFs for medium (left) and high speeds (right)
) b
J.R.J. Schirra: Bildbeschreibung als Verbindung von visuellem und sprachlichem
Raum — Eine interdisziplindre Untersuchung von Bildvorstellungen in einem
unversitar zu toseck e HOrermodell. Dissertation. Infix, St. Augustin, 1994
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Recap: Skyline Queries

e Numeric space D = (D4, ..., D,),
larger values more preferable

e Two points, u dominates v (u >v),if

-V Di (1 < i< n), U.Di > V.Di gA
— 3AD;(1< j< n),u.D;>vD, E oA
|
Q |
. . 5| i e
e Given a set of points S, _g *B .
Skyline ={u | u € Sand uis not : 2
. ___-. -
dominated by
any other point} O Number ofPoint;

 Example:
C >B, C>D skyline ={A, C, E}

IM FOCUS DAS LEBEN
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Skylines on Uncertain Data

e Limitations of conventional methods Ay e 4
— Aggregates may be misled by outliers ° s BB
e & . dy
— Data distribution is not captured ) b2 x
v 4/ @
o . X Cy blz
e Probabilistic skylines e
/ /
— Objects vs. instances it
: y xC) X
— An instance has a probability >

to represent the object
— An object has a probability to be in the skyline

Jian Pei, Bin Jiang, Xuemin Lin, and Yidong Yuan. 2007. Probabilistic
skylines on uncertain data. In Proc. VLDB ‘07, 15-26, 2007.
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A Probabilistic Skyline Model

e Asetof objects S = {A, B, C}, AY e /
instances of each ° e B
with probability 0.5 to appear *h . x

* Probabilistic Dominance x/ ks

—Pr{A > C) =3/4 “2 °q

1
—Pr(B>C)=1/2 - /
—Pr((A>C) V (B >C))=1 ¢ .

Pr(Cis in the skyline) # (1-Pr(A>C)) X (1-Pr(B>C))

Probabilistic dominance =% Probabilistic skyline

IM FOCUS DAS LEBEN
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Skyline Probabilities

e Possible world: W =<g;, b;, ¢> (i, j, k=1 or 2)
— Pr(W)=0.5 X 0.5 X 0.5=0.125, 3yeq Pr(W)=1

e SKY(<ay, by, c>) ={ay, by}
— Objects A and B are in
SKY(<ay, by, c1>)

e Bisin the skyline of possible

worlds <a;, by, c,>,

<a4, by, ¢,>, <aq, by, c;>, and

<aj, by, >

—Pr(B)=4 X 0.125=0.5
e Pr(A)=1,Pr(C)=0

INSTITUT FUR INFORMATIONSSYSTEME

Y
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Problem Statement

- Skyline probability: Pr{U)= Y Pr(%)
UeSKY (W)
. For object: PrU)= ZH( 1 [weVlve v,
ueU V+U | V |
* Forinstance: Pr(u)= H(l— (e V|v-uj |)
U V|
+ Pr(U)= ZPr(u) Vandicates

ueU

p-skyline = {U | Pr(U) = p} for a given threshold p

IM FOCUS DAS LEBEN
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Probabilistic Skyline Computation

e Iteration: Bounding-Pruning-Refining
* Bounding
o Bound Pr(u): lower bound Pr (1) and upper bound Pr'(u)
1
o Bound Pr(1)): Pr(U) = |7|ZP’”(M)
uelU

e Pruning

o In p-skyline if lower bound Pr(U) =z p

o Not in p-skyline if upper bound Pr*(U) < p
e Refining

o Bottom-up method
o Top-down method

D) k3

<\

= NS = . . .
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The Bottom-Up Method

e Sortinstances of an object according to dominance relation
such that their skyline probabilities are in descending order

e Two instances u;and u; € U,
if u; >u, then Pr(uy) = Pr(u,)

U

Identifiy
V candidates

= Nofs =

UUUUUUUUUUUUUUUUUUUUUUU IM FOCUS DAS EBEN
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The Layer Structure

layer-1
layer-2 Y
e |ayer-1: skyline of all instances U3 . LUy,
e layer-k (k> 1): skyline of instances ‘
except those at Usi g |
layer-1, ..., layer-(k-1)
layer-3

 VYuatlayer-k: 3 u’ at layer-(k-1) :
u” >u and Pr(u’) 2 Pr(u)
e max{Pr(u) | uis at layer-(k-1)} > max{Pr(u) | uis at layer-k}

e Bounding example
— max{Pr(ul), Pr(u2)} = max{Pr(u3), Pr(u4)} =Pr(u5)

5 R *'.‘5 UNIVERSITAT ZU LUBECK h l_ OCUS DAS L.B ll’ N
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The Top-Down Method

* Forinstances u, and u, € U, ki Nona
if u, > u,, then Pr(u,) > Pr(u,)

— N is a subset of instances of U, :
Vue N, Pr(N,.)=>Pru)>Pr(N,.) :

. Object U has k partitions N1, I B N

Z| Ni|-Pr(Nimax) = Pr(U) = —Z| Ni|-Pr(Ni, min)
U |5 (U7

 Build a partition tree for each object to organize
partitions

ERY
3RS22 ¢ INSTITUT FUR INFORMATIONSSYSTEME
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Partition Tree

e Binarytree U ?;4 U
U, | |
Uy Ul U2
U
=, i B S
ul UZ ll3 u4

Uj

e Growing one level of the tree in each iteration

— Choose one dimension in a round-robin fashion

— Each leaf node is partitioned into two children nodes, each of which
has half of instances

e Bound Pr(N,,.) and Pr(N,,,) of a partition N

IM FOCUS DAS LEBEN



Summary

e |Location-aware Environments

e Location-aware Snapshot Query Processing

e Location-aware Continuous Query Processing
e Scalable Execution of Continuous Queries

e |ocation-aware Query Optimizer

e Uncertainty in Location-aware Query Processing
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