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Motivation: Part Of Speech Tagging

- Annotate each word in a sentence with a part-of-
speech (POS) tags.

- Lowest level of syntactic analysis.

John saw the saw and decided to take it to the table.
NNP VBD DT NN CC VBD TOVB PRPINDT NN

. Useful for subsequent syntactic parsing and word
sense disambiguation

- Topic modeling as discussed before could be
extended to better consider POS tags

Abbreviations: https://sites.google.com/site/partofspeechhelp/home



Information Extraction

- Identify phrases in language that refer to specific types
of entities and relations in text.

- Named entity recognition is the task of identifying
names of people, places, organizations, etc. in text.
people organizations places

— Michael Dell is the CEO of Dell Computer Corporation and lives
in Austin Texas.

- Extract pieces of information relevant to a specific
application, e.g. used car ads:

make model year mileage

— Forsale, 2002 Toyota Prius, 20,000 mi,
Available starting July 30, 2006.
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Semantic Role Labeling

 For each clause, determine the semantic role played by
each noun phrase that is an argument to the verb.

agent source destination instrument
— John drove Mary from Austin to Dallas in his Toyota Prius.
— The hammer broke the window.

. Also referred to a “case role analysis,” “thematic
analysis,” and “shallow semantic parsing”
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Sequence Labeling as Classification

Using Outputs as Inputs

. Better input features are usually the categories of the
surrounding tokens, but these are not available yet.

. Can use category of either the preceding or succeeding
tokens by going forward or back and using previous

output.
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Forward Classification

John saw the saw and decided to take it to the table.

classifier

l

NNP
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Forward Classification

saw the saw and decided to take it to the table.
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Forward Classification

NNP VBD
JohiM\ saWy the saw and decided to take it to the table.

classifier
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DT
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Forward Classification

NNP VBD DT
John sawx th saw and decided to take it to the table.

L/
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Forward Classification

NNP VBD DT NN
John saw ths saWw and decided to take it to the table.

/

classifier
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CC
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More general perspective... st ligencc
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Time and Uncertainty

- The world changes, we need to track and predict it

- Examples: diabetes management, traffic monitoring
 Uncertainty is everywhere

- Need temporal probabilistic graphical models

- Basic idea: copy state and evidence variables for each time
step

- X, - set of unobservable state variables at time t
— e.g., BloodSugar,, StomachContents,

- E,-setof evidence variables at time t
- e.g. MeasuredBloodSugar,, PulseRate,, FoodEaten,

- Assumes discrete time steps

,,,,,
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States and Observations

Process of change viewed as series of snapshots,
each describing the state of the world at a particular time

Time slice involves a set of random variables indexed by t:
the set of unobservable state variables X,
the set of observable evidence variable E,

The observation at time t is E, = e,for some set of values e,
The notation X, denotes the set of variables from X, to X,
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Dynamic Bayesian Networks

- How can we model dynamic situations with a
Bayesian network?

 Example:Is it raining today?
X, = {Rt}

4

Et = {Ut}

=) next step: specify dependencies among the variables.

The term “dynamic” means we are modeling a dynamic system, not that
the network structure changes over time.
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Example
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DBN - Representation

-  Problem: all previous random variables could have an
influence on those of the current timestamp

1. Necessity to specify an unbounded number of conditional
probability tables, one for each variable in each slice,

2. Each one might involve an unbounded number of parents.

Solution:

1. Assume that changes in the world state are caused by a
stationary process (unmoving process over time).

P(Ut /Parent(Ut )) is the same for all ¢

16



Stationary Process/Markov Assumption

- Markov Assumption: X, depends on some parent X;s
. First-order Markov process:

Transition

P(X¢|Xo..1) = P(X{[X9) Model

— kth order: depends on previous k time steps
.« Sensor Markov assumption:

Sensor

E |X0tl EOt 1 E |X Model

- Assume stationary process: transition model:
- P(X|X.;) and sensor model P(E|X,) are the same for all t

— Changes in the world state governed by
laws not changing over time

Z
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Dynamic Bayesian Networks

. There are two possible fixes if the approximation is too
Inaccurate:

- Increasing the order of the Markov process model. For
example, adding Rain,_, as a parent of Rain,, which might
give slightly more accurate predictions.

- Increasing the set of state variables. For example, adding
Season, to allow to incorporate historical records of rainy
seasons, or adding  Temperature, , Humidity, —and Pressure,
to allow to use a physical model of rainy conditions.

18



Dynamic Bayesian Network

Bayesian network structure corresponding to a first-order of Markov process
with state defined by the variables Xt.

A second order of Markov process
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Example

Rii | PRiR:1)
T 0.7
F 0.3

R, P(U,IR)
T 0.9
F 0.2
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Complete Joint Distribution: Markov-1

- Given:
— Transition model: P(X,|X..)
— Sensor model: P(E,|X,)
— Prior probability: P(X,)

- Then we can specify complete joint distribution:

t
P(Xg, Xy X B B = P(X) | [ PCX [ X)P(E, | X))
1=1

21




Inference Tasks

- Filtering: What is the probability that it is raining today,
given all the umbrella observations up through today?

. Prediction: What is the probability that it will rain the day
after tomorrow, given all the umbrella observations up
through today?

- Smoothing: What is the probability that it rained yesterday,
given all the umbrella observations through today?

- Most likely explanation / most probable explanation:
if the umbrella appeared the first three days but not on the
fourth, what is the most likely weather sequence to produce
these umbrella sightings?

22



DBN — Basic Inference

- Filtering or Monitoring:

Compute the belief state - the posterior distribution over the current state,
given all evidence to date.

P(Xt /elzt)

Filtering is what a rational agent needs to do in order to keep track of
the current state so that the rational decisions can be made.

23
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DBN - Basic Inference

. Filtering cont.

Given the results of filtering up to time t, one can easily compute the result
for t+1 from the new evidence €,

_ (for some function f)
P(XHI /elzt+1) - f(et+1,P(Xt /el:t+1))
(dividing up the evidence)
= P(Xt+1 /elzt,et+1)
P( 'Y )P(X / ) (using Bayes’ Theorem)
=0olr\e é,. é,.
t+1 t+1,7 Lt t+1 l: (by the Markov property
= O{P(et+1 /Xt+1)P(Xt+1 /eu) of evidence)

a is a normalizing constant used to make probabilities sum up to 1.

24



Bayes Rule

P(A | B) =P(A, B) / P(B)

P(A,B)=P(A|B) P(B)=P(B| A) P(A) =P(B, A)
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Application of Bayes Rule

P(A|B, C) A, B,C) /P8, C)
C, A, B)/P(B,C)

C| A, B)P(A, B)/P(B,C)

C| A, B)P(A|B)P(B)/ (P(C|B)P(B))

P(C| A, B) P(A|B)

(
(
(
(

P
P
P
P
a

P(Xt+1 /elzt,et+1) = aP(eHl /Xt+1,el:t)P(X /elzt)

t+1
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DBN - Basic Inference

. Filtering cont.

Given the results of filtering up to time t, one can easily compute the result
for t+1 from the new evidence €,

_ (for some function f)
P(XHI /elzt+1) - f(et+1,P(Xt /el:t+1))
(dividing up the evidence)
= P(Xt+1 /elzt,et+1)
P( 'Y )P(X / ) (using Bayes’ Theorem)
=0olr\e é,. é,.
t+1 t+1,7 Lt t+1 l: (by the Markov property
= O{P(et+1 /Xt+1)P(Xt+1 /eu) of evidence)

a is a normalizing constant used to make probabilities sum up to 1.
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Application of Bayes Rule

P(A|B) = A, c|B)

A, ¢, B) / P(B)

¢, B) P(c, B) / P(B)
A|c, B)P(c|B)P(B)/P(B)

A|c, B)P(c|B)

AN AN AN SN/~

P( t+1 /el:t) — ZP(XHI /xtaelzt)P(xt /elzt)
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DBN - Basic Inference

. Filtering cont.

The second term P(X,,, /e, ) represents a one-step prediction of the

next step, and the first term P(e,, / X,,) updates this with the new
evidence.

Now we obtain the one-step prediction for the next step by
conditioning on the current state Xt:

P(X,, /e, )= aP(et+1/Xt+l)EP(Xt+l/xt9elt)P(x /e)

=aP(e /X) P(X [ X, )P(x, /e,.,)
t+1 t+1 t+1 l:t

(using the Markov property)

SRs22 5  INSTITUT FUR INFORMATIONSSYSTEME
aaaaa

29



Forward Messages

fi.+.1 = FORWARD(f) . e;,1) where ;=P (X;|e14)
Time and space constant (independent of )

S %
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Example

P(Rainy) = (0.5 0.5)"

Rii | PRiR:D)
T 0.7
F 0.3

R, P(U,|R,)
T 0.9
F 0.2
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DBN - Basic Inference

lllustration for two steps in the umbrella example:
- On day 1, the umbrella appears, so Ul=true. The prediction from t=0 to t=1 is
P(R,) = EP(RI /1)) P(1y)
and updatir:oc_:j it with the evidence for t=1 gives
PR /u,)=aP(u,/R,)P(R,)
- On day 2, the umbrella appears, so U2=true. The prediction from t=1to t=2 is
P(R,/u,) = E P(R, /v)P(r,/u,)

and updating it with the evidence for t=2 gives

PR, /u,u,)=aP(u,/R,)P(R,/u,)

aaaa
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Example cntd.

0.500 0.627

0.500 0.373
True 0.500 0.41 8 0.483
False 0.500 0.182 0.117

D s CD o &I
Clnbretiay  Clmbrelia
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DBN - Basic Inference

« Prediction:

Compute the posterior distribution over the future state,
given all evidence to date.

P(X

for some k>0
t+k / el:t)

The task of prediction can be seen simply as filtering
without the addition of new evidence.
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DBN - Basic Inference

- Smoothing or hindsight:

Compute the posterior distribution over the past state,
given all evidence up to the present.

P(Xk / 81:t ) for some ksuch that 0 <k < t.

Hindsight provides a better estimate of the state than
was available at the time, because it incorporates more
evidence.

35



Smoothing

Divide evidence e into e1.;, ey 1.
P(Xiler) = P(Xilerr, €r+1:t)
= Q‘P(Xk|el;k)P(ek+1:t|Xk: el:k)
= aP(Xilerr)P(ery1:4/Xs)
= Q'flzkbk+1:t
Backward message computed by a backwards recursion:
P(ept1.¢|Xy) = Zxk+1P(ek+1:t|XkaXk+1)P(Xk+l|Xk)
= Yixyy Plersrexern)P(xrr1]X)
= zxk+lp(ek+1|Xk+1)P(ek+2:t|xk+1)P(Xk‘+1|Xk)

Forward—backward algorithm: cache forward messages along the way
Time linear in 7 (polytree inference), space O(f|f])

S %
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Application of Bayes Rule

P(A|B,C) =P(A B, CQ/P(B,C
=P(C, A, B) / P(B, C)
=P(C| A, B)P(A,B)/P(B, Q)
=P(C|A,B)P(A|B)P(B)/(P(C|B)P(B))
=a P(C|A,B)P(A|B)

P(Xklelzkw ek—i—l:t) — Q"P(Xk|el;k)P(ek+1;t|Xk, el:k)

Sy %
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Smoothing

Divide evidence e into e1.;, ey 1.
P(Xiler) = P(Xilerr, €r+1:t)
= Q‘P(Xk|el;k)P(ek+1:t|Xk: el:k)
= aP(Xilerr)P(ery1:4/Xs)
= Q'flzkbk+1:t
Backward message computed by a backwards recursion:
P(ept1.¢|Xy) = Zxk+1P(ek+1:t|XkaXk+1)P(Xk+l|Xk)
= Yixyy Plersrexern)P(xrr1]X)
= zxk+lp(ek+1|Xk+1)P(ek+2:t|xk+1)P(Xk‘+1|Xk)

Forward—backward algorithm: cache forward messages along the way
Time linear in 7 (polytree inference), space O(f|f])
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Application of Bayes Rule

P(A | B) A, c|B)

A, ¢, B) / P(B)

¢, B) P(c, B) / P(B)

¢, B) P(c | B) P(B) / P(B)

¢, B) P(c|B)

=P
=P

>

=2 P
=2.P

>

(
(
=2 P(
(
(

P(ek+1:t|Xk) = 2 P(eA+1t|XL XA+1)P(Xk+1|Xk)

Xk+1

< 2
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Smoothing

Divide evidence e into e1.;, ey 1.
P(Xiler) = P(Xilerr, €r+1:t)
= Q‘P(Xk|el;k)P(ek+1:t|Xk: el:k)
= aP(Xilerr)P(ery1:4/Xs)
= Q'flzkbk+1:t
Backward message computed by a backwards recursion:
P(ept1.¢|Xy) = Zxk+1P(ek+1:t|XkaXk+1)P(Xk+l|Xk)
= Yixyy Plersrexern)P(xrr1]X)
= zxk+lp(ek+1|Xk+1)P(ek+2:t|xk+1)P(Xk‘+1|Xk)

Forward—backward algorithm: cache forward messages along the way
Time linear in 7 (polytree inference), space O(f|f])
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Example contd.

0.500

0.500

True  0.500 0.!1 8
0.500

False 0.182

o

0.117

0.627
0.373

0.&3

0117

o

forward

smoothed

backward
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DBN - Basic Inference

. Filtering cont.

The second term P(X,,, /e, ) represents a one-step prediction of the

next step, and the first term P(e,, / X,,) updates this with the new
evidence.

Now we obtain the one-step prediction for the next step by
conditioning on the current state Xt:

P(X,, /e, )= aP(et+1/Xt+l)EP(Xt+l/xt9elt)P(x /e)

=aP(e /X) P(X [ X, )P(x, /e,.,)
t+1 t+1 t+1 l:t

(using the Markov property)

SRs22 5  INSTITUT FUR INFORMATIONSSYSTEME
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DBN - Basic Inference

« Most likely explanation:

Compute the sequence of states that is most likely to have generated a given
sequence of observation.

argmax, P(X,, le,.)

Algorithms for this task are useful in many applications, including, e.g.,
speech recognition.

aaaa
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Most-likely explanation

Most likely sequence # sequence of most likely states!!!!

Most likely path to each x; 4
= most likely path to some x; plus one more step

Jnax P(x1 ..... Xty Xet1|€1:441)
= Plew1|Xi11) max (P(Xt+1|xt) Jax P(x1.....x¢_1, xt|e1:t))

Identical to filtering, except f.; replaced by

my; = max P(XL o Xeo1, Xiler),

l.e., my.,(7) gives the probability of the most likely path to state i.
Update has sum replaced by max, giving the Viterbi algorithm:

mys1 = Plep1|Xeiq) max (P(Xyy1]x¢)my.)

NSTIEUT FOR INFORMATIONSSYSTEME IM FOCUS DAS LEBEN 44




Rain/Umbrella Example

Rain Rain Rains Rain 4 Rain s
state
space
paths _ , ‘
false false false false false
umbrella false
8182 S155 0361
most
likely <
painis 1818 /X 0401 X 1237
my mj mj3

rSI
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Hidden Markov Model (HMM)

Consider special case of a dynamic Bayesian Network:
- Use vector of independent state variables X,

. Use vector of independent evidence variables E,

- This was already used in the rain-umbrella example

- For high-dimensional vectors the transition and sensor
models become quite complex: O(d?) space

NB:

- In a general dynamic Bayesian network,
state variables are not necessarily independent

- Even evidence variable might be dependent on one
another (naive Bayes does not work)

GERST
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How to Incorporate Context into LDA?

(&
)

(z) (2) LDA

Q @ — HMM (e.g. for POS tagging)
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Dynamic Topic Models

« In LDA the order of documents does not matter

- Not appropriate for sequential corpora (e.g., that span hundreds of years)
- Further, we may want to track how language changes over time

- Let the topics driftin a sequence.

1789 2009

Inaugural addresses
My fellow citizens: I stand here today humbled by the task AMONG the vicissitudes incident to life no event could
before us, grateful for the trust you have bestowed, mindful have filled me with greater anxieties than that of which
of the sacrifices borne by our ancestors... the notification was transmitted by your order...

QFRSIT
P T

@ David M. Blei and John D. Lafferty. Dynamic topic models.
BT NI Mebidanonssysrewe In Proc. ICML '06. pp. 113-120. 2006.
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LDA

OO0
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LDA is a simple topic model.

Each document exhibits multiple topics.

e How can we build on this simple model of text?

5 R
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It can be used to find topics that describe a corpus.
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Using and Embedding LDA

GERST
\\\\\
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LDA model used to infer posterior distribution
- P(Z | wd)
Based on Z one can find and rank related documents

~ Infer P(Relevant, | Z, ) for d being the documentsin a
repository and g being the query document

— Previously introduced models for information retrieval can
be extended with topic information

— Works for books, articles, images, videos, and other media
LDA can be embedded in more complicated models

— Model further intuitions about the structure of texts
- Links, citations (“relational” topic models), ...

IIIIIIIIIIIIIIIII
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LDA

. Traditional topic modeling (e.g., LDA):
— Interested in meaning
— Remove most syntactic words (e.g., stopwords)

— Discard much of the structure, and all order
information that the original author intended

— Concerned about long-range topic dependencies
rather document structure

- Not always easy to decide which words to remove
— Keep only nouns? Example: saw vs. saw

GERST
\\\\\
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HMM

- For natural language text: POS tagging

— The standardized nature of grammar means that it stays fairly
constant across different contexts

- HMMs are useful for segmenting text documents into
different classes of words, regardless of meaning

v For example, all nouns can be grouped together because they
play the same role in different passages/documents.

X Syntactic dependencies last at most for a sentence

,,,,,
\\\\\
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Combining Syntax and Semantics: HMM-LDA

. All words (both syntactic and semantic) exhibit short range
dependencies.

« Only content (semantic) words exhibit long range semantic
dependencies.

« This leads to the HMM-LDA

- HMM-LDA is a composite model, in which an HMM decides
the parts of speech, and a topic model (LDA) extracts topics
from only those words which are deemed semantic

Thomas L. Griffiths, Mark Steyvers, David M. Blei, and Joshua B. Tenenbaum.
Integrating topics and syntax. In Proc. of NIPS'04, pp. 537-544. 2004.

,,,,,
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Generative Process 1

Definitions
Words w = {wy,...,w,} form document d where each word w: is one of W words
Topic assignments z = {z1,...2,} for each word, where each z; taking one of T topics
Class assignments ¢ = {ci, ..., c, } for each word, where each ¢; taking one of C word classes

f(d) Multinomial distribution over topics for document d
¢'*) Multinomial distribution over semantic words for topic indicated by z.
¢'°) Multinomial distribution over non-semantic words for class indicated by class c.

7(¢—=1) Transition probability from¢i—1 to ¢;




How to Incorporate Context into LDA?

LDA

HMM (e.g. for POS tagging)
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Dirichlet Distribution

e The Dirichlet is a distribution on the simplex, positive vectors that sum to 1.
e It assumes that components are nearly independent.

¢ Inreal data, an article about fossil fuels is more likely to also be about
geology than about genetics.

3
E UNIVERSITAT ZU LUBECK
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IM FOCUS DAS LEBEN 58

Probabilistic Topic Models, David Blei, 2013



Generative Process 2

6(d) ~ Dirichlet(c)
¢*) . Dirichlet(3)

79 ~ Dirichlet(y) Where 7 Vis the row of the transition matrix indicated by c.

#(¢) ~ Dirichlet()

For document d
Draw topic

distribution —~ 1- Sample 0'Y from a Dirichlet(c) prior

2. For each word w; 1in document d
Drawatopic -~ (a) Draw z; from ¥

for word i (b) Draw ¢; from mlCi—1)
Draw a class for (c) If ¢; = 1, then draw w; from &%), else draw w; from ¢°¢/
. v
wordifrom Semantic class /
transition matrix

Draw a semanticword ~ OR  Draw a syntactic word

IM FOCUS DAS LEBEN




Simplified Example

(b)
One “semantic” classd--
4 \
= _0'4 2 network vccd 00 images
network image kernel
neursl images support 02 image obtamned with kernel
networks object vector .
output objects svmn l output described with objects
/ neural network (rained vl svm images
0.9
Preposition class Verb class

UNIVERSITAT ZU LUBEC
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LDA-HMM: Summary

HMM-LDA is a composite topic model
— Long range semantic dependencies
— Short-range syntactic dependencies

Quite competitive with traditional HMM POS tagger

Outperforms LDA when stop-words and punctuation are not
removed

5 REEYT = UNIVERSITAT ZU LOB
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Dynamic Topic Models

« In LDA the order of documents does not matter

- Not appropriate for sequential corpora (e.g., that span hundreds of years)
- Further, we may want to track how language changes over time

- Let the topics driftin a sequence.

1789 2009

Inaugural addresses
My fellow citizens: I stand here today humbled by the task AMONG the vicissitudes incident to life no event could
before us, grateful for the trust you have bestowed, mindful have filled me with greater anxieties than that of which
of the sacrifices borne by our ancestors... the notification was transmitted by your order...

QFRSIT
P T

@ David M. Blei and John D. Lafferty. Dynamic topic models.
BT NI Mebidanonssysrewe In Proc. ICML '06. pp. 113-120. 2006.



Recap: Smoothed LDA Model

to each topic

— [ is KXV matrix (V vocabulary
0 size), each row denotes word
distribution of a topic

@ . Give a different word distribution

« For each document d
— Choose 04 ~ Dirichlet(a)
— Choose (3~ Dirichlet(n)
By, — For each positioni=1, ..., Ny
- Generate a topic z, ~ Mult(- | 0,)

=
~

. Generate a word w, ~ Mult(- | z,[3,)
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Dynamic Topic Models

Br.1 B2 Br.1
Q Q ... =O

- Use a logit normal distribution to model topics evolving
over time

- Embed it in a state-space model on the log of the topic
distribution

Bkl Bi—1ix ~ N (Bt-1x 10°)
p(wlBik) o exp{Bik}

. Lets us make inferences about sequences of documents
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Logistic Normal Distribution

e The logistic normal is a distribution on the simplex that can model
dependence between components (Aitchison, 1980).

e The log of the parameters of the multinomial are drawn from a multivariate
Gaussian distribution,

X ~ Nk(wX)
0, x expix}.

IM FOCUS DAS LEBEN 66




Normal Distribution
1

Logit Normal Distribution fa) = ——e3(F)
o2

The probability density function (PDF) of a logit-normal

distribution, for0 s x< 1, is: 5-
: 2
1 1 _ (logit(z)—p) 4-
fX(w; Ky 0) - € 2°
ov2r z(1—x) 3-
where u and o are the mean and standard deviation of 5 ﬁ
the variable’s logit (by definition, the variable’s logit is B i gma
normally distributed). 1-
— 0.32
ﬂ 20 - — 056
6 —f{x)=log %X & -
fix)=log I1-x qc_, 6 - — 1
4 ©
/ 5= - 1.78
2 / /’/ 4- I — 3.16
0 L 3- =
0 2//61/ 0.6 0.8 1.0 5-
-9 //
1-
-4 / 0- ,
Logit = log of odds | ! ! . | .
-6 - . | ’ ‘ ‘ 0.0 0.2 0.4 0.6 0.8 1.0
Plot of logit(p) in the domain of 0 to 1, where the base of =?
logarithm is e
[Wikipedial M FOCUS DAS LEBEN 67
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Original article

TECHVIEW: DNA SEQUENCING

Sequencing the Genome, Fast

James C. Mullikin and Amanda A. McMurray

enome sequencing projects reveal
Gm Senctic makeup of an crganiam
by reading off the sequence of the
DNA bases, which encodes all of the infor-
mation necessary for the life of the organ-
ism. The base sequence contains four nu-
cleotides—adenine, thymidine, guanosine,
and cytosine—which are linked together
into long double-helical chains. Over the
last two decades, automated DNA se-
encers have made the process of obtain-
ing the base-by-base sequence of DNA
casier. By application of an electric ficld
across a gel matrix, these sequencers sepa-
rate fluorescently labeled DNA molecules
that differ in size by one base. As the
molecules move past a given point in the
gel, laser excitation of a fluorescent dye
specific o the base at the end of the
molecule yields a base-specific signal that
can be automatically resorded.

The latest sequencer to be launched is
Perkin-Elmer's much-anticipated ABI
Prism 3700 DNA Analyzer which. like the
Molecular Dynamics MegaBACE 1000
launched last year, incorporates a capillary
tube to hold the sequence gel rather than a
traditional slab-shaped gel apparatus. Extra
interest in the ABI 3700 has been generat
ed because Craig Venter of Celera Ge-
nomics Corporation anticipates that ~230
of these machines (/) will enable the com-
pany to produce raw sequence for the en-
tire 3 gigabases (Gb) of the human
in 3 years. The specifications of the ABI
3700 machine say that, with less than |
hour of human labor per day, it can se-
quence 768 samples per day. Assuming
that each sample gives an average of 400
base pairs (bp) of usable sequence data (its
read length) and any section from the en-
tire human genome is covered by an aver-
age of 10 overlapping independent reads
(2), the 75 million samples that Celera
must process will require ~100,000 ABI
3700 machine days. With ~230 machines,
that works out to less than 2 years or about
434 days, which affords some margin of er-
ror for unexpected developments.

At the Sanger Centre, we have finished
146 Mb of genomic sequence from a vari-

The authors are at The Sanger Centre, Wellcome
Trust Conome Campus, Minxton, Cambs, CB10 15A,
UK E-mast jome@sangera< ok

ety of genomes, including 81 Mb of se-
quence from the human genome, the
largest amount of any center so far (3). We
are aiming to sequence 1 Gb of human se-
quence in rough-draft form by 2001, with
a finished version by 2003. Our sequenc-
ing equipment includes 44 ABI 373XL, 61
ABI 377XL, and 31 ABI 377XL-96 slab

gel sequencers from Perkin-Elmer plus 6
Mal«ul-r Dynamics MegaBACE 1000
capillary sequencers, allowing a maximum
throughput of 32,000 samples per day. Two
ABI 3700 capillary sequencers—delivered

TECH.SIGHT

ples from the plates into wells that open in-
to the capillaries. This and the rest of the
sequencing operation is fully automatic.
The machine can currently process four
96-well plates of DNA samples unattended,
taking approximately 16 hours before oper-
ator intervention is required. This rate falls
short of the design specification of four
96-well plates in 12 hours.

“The main innovation of the ABI 3700 is
the use of a sheath flow fluorescence detec-
tion system (4). Detection of the DNA frag-
ments occurs 300 pum past the end of the cap-
illary within a fused silica cuvette. A laminar
fluid flows over the ends of the capillaries,
drawing the DNA fragments as they emerge
from the capillarics through a fixed laser
beam that simultancously intersects with all
of the samples. The emitted fluorescence is
detected with a spectral CCD (charge-cou-
pled device) detector. This arrangement
means that there are no moving parts in the
detection system, other than a shutter in front

of the CCD detector.

——rn
: e

et g S

We have cvaluated these ma-
chines for their performans
eration, ease of use, and rel
ty in comparison to the more
commonly used slab gel se-
quencing machines. In automat-
ed sequencers, there are two
methods for containing the gel
matrix. One is o polymerize a
gel matrix between two finely
separated glass plates (0.4 mm or

e we we e e we o w less) —the slab gel method. The

other is 1o inject a polymer ma-

Fig. 1. Comparison of read-length histograms for se-
machine and
the ABI 377XL-96 slab gel machine. The capillary machine

quences coliected with the ABI 3700 capillary

trix into a capillary (internal di-
.2 mm). Most sequenc-
es use the slab gel

under-performs the sab gel machine by about 200 bases. Method, because multicapillary
1l

Both sets of reads are from runs with ABI Big Dye Termina-  Sequencers have only reces

tly
tor chemistries. Read length is computed as the number of  become commercially available.
bases per read where the predicted error rate is less thanor  With cither type of system,
equal o 1.0% (Q = 20). The “phred” Q value was recali-  the aim is to read as many bases

beated for each type of read.

10 the Sanger Centre in December 1998—
are in our Research and Development de-
partment for evaluation. Thus, the ABI
3700 willuimately be added to ur pres-
ent capacity o reach our goal

The ABI 3700 DNA sequencer is built
into a floor-standing cabinet, which con-
tains in its base all the reagents required
for its operation. The

as possible for a given sample of

DNA-—that is, long read lengths
are desirable. In fact, a system that could
read twice as many bases but at half the
speed of another system is preferable, if
both systems cost the same. This is be-
cause assembling relatively fewer long-se-
quenced fragments is easier than assem-
bling many short ones, So, read length is
an important parameter when evaluating

readily accessible for replenishment, which
is required every day under high-through-
put operation. At bench height within the
cabinet is a four-position bed. on which mi-
crotiter plates of DNA samples are located.
The operator places the prepared plates in-
to position, closes the front of the machine
and programs it by using a personal com-
puter. A robotic arm transfers DNA sam-

new sequenc
We have directly compared the ABI
3700 sequencer to the ABI 377XL slab gel
by evaluating the sequence data
obtained from both machines with human
DNA samples. These samples were sub-
cloned into plasmid or m13 phage and pre-
pared and sequenced with our standard
protocols for Perkin-Elmer Big Dye Ter-
‘minator chemistry.

Topic proportions

www.sciencemag.org  SCIENCE  VOL 283 19 MARCH 1999 1867 —_J— _J_
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Dynamic Topic Models

Original article

TECHVIEW: DNA SEQUENCING

Sequencing the Genome, Fast

James C. Mullikin and Amanda A. McMurray

enome sequencing projects reveal
Gm: genetic makicup of an organism
by reading off the sequence of the
DNA bases, which encodes all of the infor-
mation necessary for the life of the ongan-
ism. The base sequence contains four nu-
cleotides—adenine, thymidine, guanosine,
and cytosine—which are linked together
into long double-helical chains. Over the
last two decades, automated DNA se-
quencers have made the process of obtain-
ing the base-by-base sequence of DNA
casier. By application of an electric ficld
across a gel matrix, these sequencers sepa-
rate fluorescently labeled DNA molecules
that differ in size by one base. As the
molccules move past a given point in the
gel. laser excitation of a fluorescent dye
specific o the base at the end of the
molecule yields a base-specific signal that
can be automatically resorded
The latest sequencer to be launched is
Perkin-Elmer's much-anticipated ABI

ety of genomes, including 81 Mb of se-
quence from the human genome, the
largest amount of any center so far (3). We
are aiming to sequence | Gb of human se-
quence in rough-draft form by 2001, with
a finished version by 2003, Our sequenc-
ing equipment includes 44 ABI 373XL, 61
ABI 377XL, and 31 ABI 377XL-96 slab
gel sequencers from Perkin-Elmer plus 6
Molecular Dynamics MegaBACE 1000
capillary sequencers, allowing a maximum
throughput of 32,000 samples per day. Two
ABI 3700 capillary sequencers—delivered

TECH.SIGHT

ples from the plates into wells that open in-
to the capillaries. This and the rest of the
sequencing operation is fully automatic
The machine can currently process four
96-well plates of DNA samples unattended,
taking approximately 16 hours before oper-
ator intervention is required. This rate falls
short of the design specification of four
96-well plates in 12 hours.

“The main innovation of the ABI 3700 is
the use of a sheath flow fluorescence detec-
tion system (4). Detection of the DNA frag-
ments occurs 300 pm past the end of the cap-
illary within a fused silica cuvette. A laminar
fluid flows over the ends of the capillaries,
drawing the DNA fragments as they emerge
from the capillaries through a fixed laser
beam that simultancously intersects with all
of the samples. The emitted fluorescence is
detected with a spectral CCD (change-cou-
pled device) detector. This arrangement
means that there are no moving parts in the
detection system, other than a shutter in front
of the CCD detector.

We have evaluated these ma-
chines for their performance, op-
eration, case of use, and reliabili-
ty in comparison o the more
commonly used slab gel se-
quencing machines. In automat-
ed sequencers, there are two
methods for containing the gel
matrix. One is to polymerize a
gel matrix between two finely
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Molecular Dynamics MegaBACE 1000 Ef separated glass plates (0.4 mm or : 1: .
launched last year, incorpoates a capillary ST s w s N e Revmante]  logs)—the slab go) method. The Se u e nCI n I I n
tube to hold the sequence gel rather thana | St g bme & other is to inject a polymer ma-

traditional slab-shaped gel apparatus. Extra
interest in the ABI 3700 has been generat-
ed because Craig Venter of Celera Ge-
nomics Corporation anticipates that ~230
of these machines (/) will enable the com-
pany to produce raw sequence for the en-
tire 3 gigabases (Gb) of the human genome
in 3 years. The specifications of the ABI
3700 machine say that, with less than |
hour of human labor per day, it can se-
quence 768 samples per day. Assuming
that each sample gives an average of 400
base pairs (bp) of usable sequence data (its
read length) and any section from the en-
tire human genome is covered by an aver-
age of 10 overlapping independent reads
(2), the 75 million samples that Celera
must process will require ~100,000 ABI
3700 machine days. With ~230 machines,
that works out to less than 2 years or about
434 days, which affords some margin of er-
ror for unexpected developments.

At the Sanger Centre, we have finished
146 Mb of genomic sequence from a vari-
The authors are at The Sanger Centre, Wellcome
Trust Canome Campus, Minxton, Carmbs, C810 154,
UK E-mat jom@sanger.ac ok
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Fig. 1. Comparison of read

ngth histograms for se-

trix into a capillary (internal di-

quences collected with the ABI 3700 capillary machine and  Ameter <0.2 mm). Most sequenc-

the ABI 377XL-96 slab gel machine. The capillary machine I8 facilities use the slab gel

under-performs the slab gel machine by about 200 bases. Method, because multicapillary

Both sets of reads are from runs with ABI Big Dye Termina-  Sequencers have only recently

tor chemistries. Read length is computed as the number of become commercially available.
w

bases per read where the predicted error rate is less than or

ith either type of system,

equal to 1.0% (Q = 20). The “phred” Q value was recali- the aim is to read as many bases

beated for each type of read.

10 the Sanger Centre in December 1998—
are in our Research and Development de-
partment for evaluation. Thus, the ABI
3700 will ultimately be added to our pres-
ent capacity to reach our goal

The ABI 3700 DNA sequencer is built
into a floor-standing cabinet, which con-
tains in its base all the reagents required
for its operation. The reagent containers are
readily accessible for replenishment, which
is required every day under high-through-
put operation. At bench height within the
cabinet is a four-position bed, on which mi-
crotiter plates of DNA samples are located.
The operator places the prepared plates in-
to position, closes the front of the machine
and programs it by using a personal com-
puter. A robotic arm transfers DNA sam-
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as possible for a given sample of

DNA-—that is, long read lengths
are desirable. In fact, a system that could
read twice as many bases but at half the
speed of another system is preferable, if
both systems cost the same. This is be-
cause assembling relatively fewer long-se-
quenced fragments is easier than assem-
bling many short ones. So, read length is
an important parameter when evaluating
new sequencing technologies,

We have directly compared the ABI
3700 sequencer 1o the ABI 377XL slab gel
sequencer by evaluating the sequence data
obtained from both machines with human
DNA samples. These samples were sub-
cloned into plasmid or m13 phage and pre-
pared and sequenced with our standard
protocols for Perkin-Elmer Big Dye Ter-
minator chemistry.

Probabilistic Topic Models, David Blei, 2013
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Dynamic Topic Models

(1880 ) (1890 ) (1900 ) (1910 ) (1920 ) (1930 ) (1940 )
electric electric apparatus air apparatus tube air
machine power steam water tube apparatus tube
power company power engineering air glass apparatus
engine steam engine apparatus pressure air glass
steam [—| electrical —¥»| engineering —» room —»| water [—®| mercury —| laboratory

two machine water laboratory glass laboratory rubber
machines two construction engineer gas pressure pressure

iron system engineer made made made small
battery motor room gas laboratory gas mercury

. Wwire ) __engine | . feet ) | tube | | mercury | small gas

v
(1950 ) ( 1960 ) ( 1970 ) ( 1980 | ( 1990 ) ( 2000
tube tube air high materials devices
apparatus system heat power high device
glass temperature power design power materials
air air system heat current current
chamber » heat —»| temperature —» system || applications gate
instrument chamber chamber systems technology high
small power high devices devices light
laboratory high flow instruments design silicon
pressure instrument tube control device material
rubber | ( control | ( design J ( large ) | heat ) | technology }
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Dynamic Topic Models

"Theoretical Physics" "Neuroscience"

OXYGEN

1880 1900 1920 1940 1960 1980 2000 1880 1900 1920 1940 1960 1980 2000

5 David M. Blei and John D. Lafferty. Dynamic topic models.
£ UNIVERSITAT ZU LUBECK In Proc. ICML '06. pp. 113-120. 2006. IM FOCUS DAS LEBEN 71
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Dynamic Topic Models

- Understand developments
. Distributions of topics over time
- Discretization of time might be a problem

— Runtime increases dramatically
— Continuous dynamic topic models

- Many applications

— E.g., comparison of science areas,
analysis of scientific work

- How can we compare distributions?

Wang, Chong; Blei, David; Heckerman, David. "Continuous Time
Dynamic Topic Models". Proceedings of ICML'08, 2008. 72
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Recap: Huffman code example

M code length  prob

A 000 3 0,125
B 001 3 0,125
C 01 2 0,250
D 1 1 0,500

average message length

If we need to send many messages

Exp. len
0,375

0,375
0,500
0,500
1,750

(A,B,C or D) and they have this
probability distribution and we
use this code, then over time, the
average bits/message should

approach 1.75
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Recap: Information Theory Background

- Assume that you need to send messages from a repertoire of n messages

- If there are n equally probable possible messages, then the probability p of
eachis1/norn=1/p

« Information (number of bits) conveyed by a message is
log(n) =log(1/p)=-log(p)

- E.g., ifthere are 16 messages, then log(16) =4 and we need 4 bits to
identify/send each message.

- In general, if we are given a probability distribution
P=(p1, P2 - Pr)
- Information conveyed by distribution (aka entropy of P) is:
I(P) = -(p;*log(p1) + py*log(p,) + .. + p,*log(py,))
=-2; pi*log(p) = Z; pi*log(1/p)

D) k)

iz, =
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3

23

S=>= > INSTITUT FUR INFORMATIONSSYSTEME



The KL Divergence

« The cross-entropy, or Kullback-Leibler divergence,
between two distributions p and q measures the

expected information gain (reduction in average
number of bits per event) due to replacing the
“wrong” distribution q with the “right” distribution p:

DR (p,q) = sz'(hl(l/qz') —In(1/pi)) = Ep[ln(p/q)]

- Not symmetric




Hellinger Distance

- The Hellinger distance is a symmetric measure of distance
between two distributions that is popular in machine
learning applications:

D" q) = |vp - valy, = | S (VBT — V&)

j=1

€ [0,v2]

« Sometimes value should bein [0, 1]

1/2

For two discrete probability distributions P = (p1,...,pr) and Q@ = (q1,---,4k),
their Hellinger distance is defined as

k
H(P,Q) = \IZ - V),

[Wikipedia]



Dynamic Topic Models

- Time-corrected similarity shows a new way of using the
posterior

- Consider the expected Hellinger distance between the topic
proportions of two documents,

K
dijZE Z(V 0/, " Hf,k)zlwi’wf
k=1

. Uses the latent structure to define similarity

- Time has been factored out because the topics associated to
the components are different from year to year

- Similarity of documents based only on topic proportions

GERST
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ynamic Topic Models

The Brain of the Orang (1880
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Dynamic Topic Models

Representation of the Visual Field on the Medial Wall
of Occipital-Parietal Cortex in the Owl Monkey (1976

project, the visuolopic organization of the
medial occipital-parictal cortex was ex-
plored with ekectrophysiological mapping
techaiques in five owl monkeys (2). The
monkeys were anesthetized with srethan
and prepared for recording. Tungsten and
platinum-iridiom  microclectrodes  were
used to record from small clusters of neu-
rons or occasionally from single nesrons in
tangential penetrations parallel to the me
surface of occipital-parietal corten.
Receptive fiekds were plotted by moving
circular spots or rectangalar slts and bars
on the surface of a translucent plastic
hemisphere centered in front of the coa-
tralateral eye. The position of the opt
disk was projected onto the plastic hemi-
sphere with the method of Fernald and
Chase (3). The ipsitateral eye usually was

. ot 1200
Ly o o

"
72-485

Fig. 1. Microclectrode

covered with an opaque shield. Electrode
tracks and recording sites were recon-
structed from histological sections and
photographs of the intact braia.

Figure | illustrates the data from our
most complete mapping of the medial
area: data obtained in the other four ex-
periments revealed the same pattern of vis-
wtopic organization. Tangeatial penc-
trations | through 4 ran parallel to the me-
dial surface of occipital-parictal cortex at a
distance of approximately | mm from the
medial surface. In previously published ex-
periments, we found that the receptive
fields recorded adjacent 10 the medial area
in the seond visual area (V 11) were lo-
cated in the lower quadrant ncar the hori-
zontal meridian aboat S0 0 60" from the
center (4). Thus. as is shown in Fig. I, and

9" +60°
0305¢@es

“or

20"

-20°

—40*
Catearine
N

view of the posterior half of the medial wall

area in owl monkey
s

also in Fig. 2, which illustrates the organi-
zation of the other cortical visual areas
that have been mapped in the owl monkey.
the border between the medial arca and the
second vissal arca corresponds to a periph-
eral portion of the horizontal meridian. In
other experiments in the dorsomedial arca.
we found that receptive fickds recorded
near its common border with the medial
area began near the vertical meridi
an in the lower quadrant and proceeded in
a broad loop in the periphery toward the
horizontal meridian (5). Thus, as is shown
in Figs. 1 and 2. the common border be-
tweea the dorsomedial and the medial
areas corresponds to part of the lower fickd
vertical meridian and the peripheral por.
tions of the lower visual quadrant. Dor-
sally. the medial area is adjoined by posic-

Adaa,
Aa
a

aaas

2455, The diagram oa the lower left s 3

sal i 10 the eft in this diagram. Microclectrode penetrations are number

sponding recep
area. The crcles indicate e

e left the

the visual field; the

lam removed. Anterior is up and dor-

rod. and recording stes are indicated by short bars denoted by letiers. The corre.
ids arc shown in the perimeter chart on the right. In the upper lef is an expanded map of the visuotopi org

ization of the medial

tralateral half of the visaal field; the triangles

meridian of the con-

e DM is the dorsomed)
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e the temporal periphery of
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e opti disk or blind spot.
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Dynamic Topic Models: Summary

- Can model changes of topics (= word distributions) in
corpora over time

- Uses HMM as a technique for
modeling temporal influences

« As a by-product we have discussed
techniques for comparing distributions

80



