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Motivation: Part Of Speech Tagging

• Annotate each word in a sentence with a part-of-
speech (POS) tags.

• Lowest level of syntactic analysis.

• Useful for subsequent syntactic parsing and word 
sense disambiguation

• Topic modeling as discussed before could be
extended to better consider POS tags

John  saw  the  saw  and  decided  to  take  it     to   the   table.
NNP VBD DT  NN  CC  VBD     TO VB  PRP IN DT    NN

2Abbreviations: https://sites.google.com/site/partofspeechhelp/home
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Information Extraction

• Identify phrases in language that refer to specific types 
of entities and relations in text.

• Named entity recognition is the task of identifying 
names of people, places, organizations, etc. in text.
people organizations places
– Michael Dell is the CEO of  Dell Computer Corporation and lives 

in Austin Texas. 

• Extract pieces of information relevant to a specific  
application, e.g. used car ads:
make model year mileage price
– For sale, 2002 Toyota Prius,  20,000 mi, $15K or best offer. 

Available starting July 30, 2006.
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Semantic Role Labeling

• For each clause, determine the semantic role played by 
each noun phrase that is an argument to the verb.
agent patient source destination instrument
– John drove Mary from Austin to Dallas in his Toyota Prius.
– The hammer broke the window.

• Also referred to a “case role analysis,” “thematic 
analysis,” and “shallow semantic parsing”
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Sequence Labeling as Classification

Using Outputs as Inputs
• Better input features are usually the categories of the 

surrounding tokens, but these are not available yet.
• Can use category of either the preceding or succeeding 

tokens by going forward or back and using previous 
output.
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Forward Classification

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

NNP
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Forward Classification

NNP
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

VBD
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Forward Classification

NNP  VBD
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

DT
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Forward Classification

NNP VBD DT
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

NN
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Forward Classification

NNP VBD DT  NN
John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

CC
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More general perspective…

environment

agent

?

sensors

actuators

t1, t2, t3, …
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Time and Uncertainty

• The world changes, we need to track and predict it
• Examples: diabetes management, traffic monitoring
• Uncertainty is everywhere
• Need temporal probabilistic graphical models
• Basic idea: copy state and evidence variables for each time 

step
• Xt – set of unobservable state variables at time t

– e.g., BloodSugart, StomachContentst
• Et – set of evidence variables at time t

– e.g., MeasuredBloodSugart, PulseRatet, FoodEatent

• Assumes discrete time steps
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States and Observations

• Process of change viewed as series of snapshots, 
each describing the state of the world at a particular time

• Time slice involves a set of random variables indexed by t:
– the set of unobservable state variables Xt

– the set of observable evidence variable Et
• The observation at time t is Et = et for some set of values et

• The notation Xa:b denotes the set of variables from Xa to Xb
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Dynamic Bayesian Networks

• How can we model dynamic situations with a 
Bayesian network?

• Example: Is it raining today?

}{
}{

tt

tt

UE
RX

=

=

next step: specify dependencies among the variables.

The term “dynamic” means we are modeling a dynamic system, not that
the network structure changes over time.
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Example

Raint

Umbrellat

15



• Problem: all previous random variables could have an 
influence on those of the current timestamp

1. Necessity to specify an unbounded number of conditional 
probability tables, one for each variable in each slice,

2. Each one might involve an unbounded number of parents.

• Solution:

1. Assume that changes in the world state are caused by a 
stationary process (unmoving process over time).

))(/( tt UParentUP is the same for all t

DBN - Representation
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Stationary Process/Markov Assumption

• Markov Assumption: Xt depends on some parent Xis
• First-order Markov process: 

P(Xt|X0:t-1) = P(Xt|Xt-1)

– kth order: depends on previous k time steps
• Sensor Markov assumption:

P(Et|X0:t, E0:t-1) = P(Et|Xt)

• Assume stationary process: transition model:
– P(Xt|Xt-1) and sensor model P(Et|Xt) are the same for all t
– Changes in the world state governed by 

laws not changing over time
17
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Dynamic Bayesian Networks

• There are two possible fixes if the approximation is too 
inaccurate:

– Increasing the order of the Markov process model. For 
example, adding as a parent of , which might 
give slightly more accurate predictions.

– Increasing the set of state variables. For example, adding
to allow to incorporate historical records of rainy 

seasons, or adding                       ,                  and Pressure
to allow to use a physical model of rainy conditions.

2−tRain

tSeason
teTemperatur ttHumidity

tRain
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Dynamic Bayesian Network

2−tX 1−tX 2+tX1+tXtX

2−tX 1−tX 2+tX1+tXtX

A second order of Markov process

Bayesian network structure corresponding to a first-order of Markov process 
with state defined by the variables Xt.
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Example

Raint-1

Umbrellat-1

Raint

Umbrellat

Raint+1

Umbrellat+1

Rt-1 P(Rt|Rt-1)
T
F

0.7
0.3

Rt P(Ut|Rt)
T
F

0.9
0.2
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Complete Joint Distribution: Markov-1

• Given:
– Transition model: P(Xt|Xt-1)
– Sensor model: P(Et|Xt)
– Prior probability: P(X0)

• Then we can specify complete joint distribution:

∏
=

−=
t

1i
ii1ii0t1t10 )X|E(P)X|X(P)X(P)E,...,E,X,...,X,X(P
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Inference Tasks

• Filtering:  What is the probability that it is raining today, 
given all the umbrella observations up through today?

• Prediction: What is the probability that it will rain the day 
after tomorrow, given all the umbrella observations up 
through today?

• Smoothing: What is the probability that it rained yesterday, 
given all the umbrella observations through today?

• Most likely explanation / most probable explanation: 
if the umbrella appeared the first three days but not on the 
fourth, what is the most likely weather sequence to produce 
these umbrella sightings?
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DBN – Basic Inference 

• Filtering or Monitoring: 

Compute the belief state - the posterior distribution over the current state, 
given all evidence to date.

)/( :1 tt eXP

Filtering is what a rational agent needs to do in order to keep track of 
the current state so that the rational decisions can be made.
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DBN – Basic Inference 

• Filtering cont.

))/(()/( 1:1,11:11 ++++ = ttttt eXPefeXP

)/()/(
)/()/(

)/(

:1111

:11:1,11

1,:11

tttt

ttttt

ttt

eXPXeP
eXPeXeP

eeXP

+++

+++

++

=

=

=

α

α

Given the results of filtering up to time t, one can easily compute the result 
for t+1 from the new evidence        1+te

(dividing up the evidence)

(for some function f)

(using Bayes’ Theorem)

(by the Markov property
of evidence)

α is a normalizing constant used to make probabilities sum up to 1.
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Bayes Rule

P(A | B) = P(A, B) / P(B) 

P(A,B) = P(A | B) P(B) = P(B | A) P(A) = P(B, A)



Application of Bayes Rule

P(A | B, C) = P(A, B, C) / P(B, C) 
= P(C, A, B) / P(B, C)
= P(C | A, B) P(A, B) / P(B, C)
= P(C | A, B) P(A | B) P(B) / (P(C | B) P(B))
= 𝛼 P(C | A, B) P(A | B)

= 



DBN – Basic Inference 

• Filtering cont.

))/(()/( 1:1,11:11 ++++ = ttttt eXPefeXP

)/()/(
)/()/(

)/(

:1111

:11:1,11

1,:11

tttt

ttttt

ttt

eXPXeP
eXPeXeP

eeXP

+++

+++

++

=

=

=

α

α

Given the results of filtering up to time t, one can easily compute the result 
for t+1 from the new evidence        1+te

(dividing up the evidence)

(for some function f)

(using Bayes’ Theorem)

(by the Markov property
of evidence)

α is a normalizing constant used to make probabilities sum up to 1.
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Application of Bayes Rule

P(A | B) = 𝛴c P(A, c | B)
= 𝛴c P(A, c, B) / P(B)
= 𝛴c P(A | c, B) P(c, B) / P(B)
= 𝛴c P(A | c, B) P(c | B) P(B) / P(B)
= 𝛴c P(A | c, B) P(c | B)

=



DBN – Basic Inference 

• Filtering cont.

)/()/()/( :1:1111 tt
X

tttt exPxXPXeP
t

∑ +++=α

)/( :11 tt eXP +
The second term                        represents a one-step prediction of the 
next step, and the first term                         updates this with the new 
evidence.

Now we obtain the one-step prediction for the next step by 
conditioning on the current state Xt:

)/( 11 ++ tt XeP

∑ +++++ =
tX

ttttttttt exPexXPXePeXP )/(),/()/()/( :1:11111:11 α

(using the Markov property)
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Forward Messages
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Example               P(Rain0) = (0.5 0.5)T

Raint-1

Umbrellat-1

Raint

Umbrellat

Raint+1

Umbrellat+1

Rt-1 P(Rt|Rt-1)
T
F

0.7
0.3

Rt P(Ut|Rt)
T
F

0.9
0.2
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DBN – Basic Inference 

∑=
0

)()/()( 0011
r

rPrRPRP

)()/()/( 11111 RPRuPuRP α=

Illustration for two steps in the umbrella example:  

• On day 1, the umbrella appears, so U1=true. The prediction from t=0 to t=1 is

and updating it with the evidence for t=1 gives

∑=
1

)/()/()/( 111212
r

urPrRPuRP

)/()/(),/( 1222212 uRPRuPuuRP α=

• On day 2, the umbrella appears, so U2=true. The prediction from t=1 to t=2 is

and updating it with the evidence for t=2 gives
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Example cntd.
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DBN – Basic Inference 

• Prediction: 

Compute the posterior distribution over the future state, 
given all evidence to date.

)/( :1 tkt eXP +
for some k>0

The task of prediction can be seen simply as filtering 
without the addition of new evidence.
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DBN – Basic Inference 

• Smoothing or hindsight: 

Compute the posterior distribution over the past state, 
given all evidence up to the present.

)/( :1 tk eXP for some k such that 0 ≤ k < t.

Hindsight provides a better estimate of the state than 
was available at the time, because it incorporates more 
evidence.
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Smoothing
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Application of Bayes Rule

P(A | B, C) = P(A, B, C) / P(B, C) 
= P(C, A, B) / P(B, C)
= P(C | A, B) P(A, B) / P(B, C)
= P(C | A, B) P(A | B) P(B) / (P(C | B) P(B))
= 𝛼 P(C | A, B) P(A | B)



Smoothing
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Application of Bayes Rule

P(A | B) = 𝛴c P(A, c | B)
= 𝛴c P(A, c, B) / P(B)
= 𝛴c P(A | c, B) P(c, B) / P(B)
= 𝛴c P(A | c, B) P(c | B) P(B) / P(B)
= 𝛴c P(A | c, B) P(c | B)



Smoothing
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Example contd.
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DBN – Basic Inference 

• Filtering cont.

)/()/()/( :1:1111 tt
X

tttt exPxXPXeP
t

∑ +++=α

)/( :11 tt eXP +
The second term                        represents a one-step prediction of the 
next step, and the first term                         updates this with the new 
evidence.

Now we obtain the one-step prediction for the next step by 
conditioning on the current state Xt:

)/( 11 ++ tt XeP

∑ +++++ =
tX

ttttttttt exPexXPXePeXP )/(),/()/()/( :1:11111:11 α

(using the Markov property)
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DBN – Basic Inference 

• Most likely explanation: 

Compute the sequence of states that is most likely to have generated a given 
sequence of observation.

argmaxx1:t P(X1:t | e1:t )

Algorithms for this task are useful in many applications, including, e.g., 
speech recognition.
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Most-likely explanation

44



Rain/Umbrella Example
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Hidden Markov Model (HMM)

Consider special case of a dynamic Bayesian Network:
• Use vector of independent state variables Xt

• Use vector of independent evidence variables Et

• This was already used in the rain-umbrella example
• For high-dimensional vectors the transition and sensor 

models become quite complex: O(d2) space
NB: 
• In a general dynamic Bayesian network, 

state variables are not necessarily independent
• Even evidence variable might be dependent on one 

another (naïve Bayes does not work)
46



How to Incorporate Context into LDA?

HMM (e.g. for POS tagging)

LDA

𝛼



Dynamic Topic Models

• In LDA the order of documents does not matter
• Not appropriate for sequential corpora (e.g., that span hundreds of years)
• Further, we may want to track how language changes over time
• Let the topics drift in a sequence. 

48
David M. Blei and John D. Lafferty. Dynamic topic models. 
In Proc. ICML '06. pp. 113-120. 2006.
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LDA
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Using and Embedding LDA

• LDA model used to infer posterior distribution
– 𝑃 𝑍 𝑤𝑑)

• Based on 𝑍 one can find and rank related documents
– Infer 𝑃 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝑑 𝑍𝑞 ) for 𝑑 being the documents in a 

repository and 𝑞 being the query document
– Previously introduced models for information retrieval can 

be extended with topic information
– Works for books, articles, images, videos, and other media

• LDA can be embedded in more complicated models
– Model further intuitions about the structure of texts

• Links, citations (“relational” topic models), …
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LDA

• Traditional topic modeling (e.g., LDA):
– Interested in meaning
– Remove most syntactic words (e.g., stopwords)
– Discard much of the structure, and all order 

information that the original author intended
– Concerned about long-range topic dependencies 

rather document structure

• Not always easy to decide which words to remove
– Keep only nouns? Example: saw vs. saw
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HMM

• For natural language text: POS tagging
– The standardized nature of grammar means that it stays fairly 

constant across different contexts

• HMMs are useful for segmenting text documents into 
different classes of words, regardless of meaning
✓ For example, all nouns can be grouped together because they 

play the same role in different passages/documents.

✗Syntactic dependencies last at most for a sentence



Combining Syntax and Semantics: HMM-LDA

• All words (both syntactic and semantic) exhibit short range 
dependencies.

• Only content (semantic) words exhibit long range semantic 
dependencies.

• This leads to the HMM-LDA

• HMM-LDA is a composite model,  in which an HMM decides 
the parts of speech, and a topic model (LDA) extracts topics 
from only those words which are deemed semantic

Thomas L. Griffiths, Mark Steyvers, David M. Blei, and Joshua B. Tenenbaum. 
Integrating topics and syntax. In Proc. of NIPS'04, pp. 537-544. 2004.



Generative Process 1

Class assignments for each word, where each      taking one of C word classes

Topic assignments for each word, where each      taking one of T topics 

Words form document d where each word       is one of W words 

Definitions

Multinomial distribution over topics for document d

Multinomial distribution over semantic words for topic indicated by z. 

Multinomial distribution over non-semantic words for class indicated by class c. 

Transition probability from          to  



How to Incorporate Context into LDA?

HMM (e.g. for POS tagging)

LDA

𝛼

c1 c2 c3 c4



Dirichlet Distribution
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Generative Process 2

)(cp

~

~

~

~

Where          is the row of the transition matrix indicated by c.
)(cp

Draw topic 
distribution

Draw a topic 
for word i

Draw a class for 
word i from 
transition matrix

Draw a semantic word Draw a syntactic wordOR

For document d

Semantic class



Simplified Example

One “semantic” class

Verb classPreposition class



LDA-HMM: Summary

• HMM-LDA is a composite topic model 
– Long range semantic dependencies
– Short-range syntactic dependencies

• Quite competitive with traditional HMM POS tagger
• Outperforms LDA when stop-words and punctuation are not 

removed



Dynamic Topic Models

• In LDA the order of documents does not matter
• Not appropriate for sequential corpora (e.g., that span hundreds of years)
• Further, we may want to track how language changes over time
• Let the topics drift in a sequence. 

62
David M. Blei and John D. Lafferty. Dynamic topic models. 
In Proc. ICML '06. pp. 113-120. 2006.



Recap: Smoothed LDA Model

• Give a different word distribution 
to each topic
– 𝛽 is 𝐾×𝑉 matrix (V vocabulary 

size), each row denotes word 
distribution of a topic

• For each document d
– Choose qd ~ Dirichlet(a)
– Choose 𝛽"~ Dirichlet(𝜂)
– For each position i = 1, ... , Nd

• Generate a topic zi ~ Mult(∙ | qd)
• Generate a word wi ~ Mult(∙ | zi,bk)
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Dynamic Topic Models

• Use a logit normal distribution to model topics evolving 
over time

• Embed it in a state-space model on the log of the topic 
distribution 

• Lets us make inferences about sequences of documents
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Logistic Normal Distribution
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Logit Normal Distribution

67[Wikipedia]

Logit = log of odds

Normal Distribution

𝜇
= 

𝜇
= 



Dynamic Topic Models
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Dynamic Topic Models
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Dynamic Topic Models
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Dynamic Topic Models
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David M. Blei and John D. Lafferty. Dynamic topic models. 
In Proc. ICML '06. pp. 113-120. 2006.



Dynamic Topic Models

• Understand developments
• Distributions of topics over time
• Discretization of time might be a problem

– Runtime increases dramatically
– Continuous dynamic topic models

• Many applications
– E.g., comparison of science areas, 

analysis of scientific work

• How can we compare distributions?

72
Wang, Chong; Blei, David; Heckerman, David. "Continuous Time 
Dynamic Topic Models". Proceedings of ICML'08, 2008.



Recap: Huffman code example

.5.5

1

.125.125

.25

A

C

B

D

.25

0 1

0

0 1

1

M code length prob
A 000 3 0,125 0,375
B 001 3 0,125 0,375
C 01 2 0,250 0,500
D 1 1 0,500 0,500

average message length 1,750

If we need to send many messages 
(A,B,C or D) and they have this 
probability distribution and we 
use this code, then over time, the 
average bits/message should 
approach 1.75
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Recap: Information Theory Background

• Assume that you need to send messages from a repertoire of n messages
• If there are n equally probable possible messages, then the probability p of 

each is 1/n or n = 1/p 
• Information (number of bits) conveyed by a message is 

log(n) = log(1/p)= -log(p) 
• E.g., if there are 16 messages, then log(16) = 4 and we need 4 bits to 

identify/send each message.
• In general, if we are given a probability distribution 

P = (p1, p2, .., pn)
• Information conveyed by distribution (aka entropy of P) is: 

I(P) = -(p1*log(p1) + p2*log(p2) + .. + pn*log(pn))
= - ∑i pi*log(pi) = ∑i pi*log(1/pi)
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The KL Divergence

• The cross-entropy, or Kullback-Leibler divergence, 
between two distributions p and q measures the 
expected information gain (reduction in average 
number of bits per event) due to replacing the 
“wrong” distribution q with the “right” distribution p:

• Not symmetric 



Hellinger Distance

• The Hellinger distance is a symmetric measure of distance 
between two distributions that is popular in machine 
learning applications: 

• Sometimes value should be in [0, 1]

∈ [0, 2]

[Wikipedia]



Dynamic Topic Models

• Time-corrected similarity shows a new way of using the 
posterior

• Consider the expected Hellinger distance between the topic 
proportions of two documents, 

• Uses the latent structure to define similarity 
• Time has been factored out because the topics associated to 

the components are different from year to year
• Similarity of documents based only on topic proportions 
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Dynamic Topic Models
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Dynamic Topic Models
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Dynamic Topic Models: Summary

• Can model changes of topics (= word distributions) in 
corpora over time

• Uses HMM as a technique for 
modeling temporal influences

• As a by-product we have discussed 
techniques for comparing distributions
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