Intelligent Agents

Word Semantics, Embeddings and Latent Sequential Structures

Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme

IM FOCUS DAS LEBEN

Word-Word Associations in Document Retrieval

Recap

- LSI: Documents as vectors, dimension reduction
- Topic Modeling

NIVERSITÄT ZU LÜBECK

- Topic = Word distribution
- From LDA-Model: P(Z | w)
- Assumption: Bag of words model
 - (independence, naïve Bayes, unigram distribution)

Words are not independent of each other

- Word similarity measures
- Extend query with similar words automatically
- Extend query with most frequent followers/predecessors
- Insert words in anticipated gaps in a string query Need to represent more aspects of word semantics

Approaches for Representing Word Semantics

Beyond bags of words

Distributional Semantics(Count)Used since the 90's	 Word Embeddings (Predict) Inspired by deep learning word2vec 			
 Sparse word-context PMI/PPMI matrix Decomposed with SVD 	 (Mikolov et al., 2013) GloVe (Pennington et al., 2014) 			
Underlying Theory: The Distributional Hypothesis (Harris, '54; Firth, '57)				
"Similar words occur in similar contexts"				

https://www.tensorflow.org/tutorials/word2vec https://nlp.stanford.edu/projects/glove/

Point(wise) Mutual Information: PMI

Measure of association used in information theory and statistics

$$ext{pmi}(x;y) \equiv \log rac{p(x,y)}{p(x)p(y)} = \log rac{p(x|y)}{p(x)} = \log rac{p(y|x)}{p(y)}$$

- Positive PMI: PPMI(x, y) = max(pmi(x, y), 0)
- Quantifies the discrepancy between the probability of their coincidence given their joint distribution and their individual distributions, assuming independence
- Finding collocations and associations between words
- Countings of occurrences and co-occurrences of words in a text corpus can be used to approximate the probabilities p(x) or p(y) and p(x,y) respectively

Kenneth Ward Church and Patrick Hanks. "Word association norms, mutual information, and lexicography". Comput. Linguist. 16 (1): 22–29. **1990**.

PMI – Example

word 1	word 2	count word 1	count word 2	count of co-occurrences	PMI
puerto	rico	1938	1311	1159	10.0349081703
hong	kong	2438	2694	2205	9.72831972408
los	angeles	3501	2808	2791	9.56067615065
carbon	dioxide	4265	1353	1032	9.09852946116
prize	laureate	5131	1676	1210	8.85870710982
san	francisco	5237	2477	1779	8.83305176711
nobel	prize	4098	5131	2498	8.68948811416
ice	hockey	5607	3002	1933	8.6555759741
star	trek	8264	1594	1489	8.63974676575
car	driver	5578	2749	1384	8.41470768304
it	the	283891	3293296	3347	-1.72037278119
are	of	234458	1761436	1019	-2.09254205335
this	the	199882	3293296	1211	-2.38612756961
is	of	565679	1761436	1562	-2.54614706831
and	of	1375396	1761436	2949	-2.79911817902
а	and	984442	1375396	1457	-2.92239510038
in	and	1187652	1375396	1537	-3.05660070757
to	and	1025659	1375396	1286	-3.08825363041
to	in	1025659	1187652	1066	-3.12911348956
of	and	1761436	1375396	1190	-3.70663100173

[Wikipedia]

- Counts of pairs of words getting the most and the least PMI scores in the first 50 millions of words in Wikipedia (dump of October 2015)
- Filtering by 1,000 or more co-occurrences.
 - The frequency of each count can be obtained by dividing its value by 50,000,952. (Note: natural log is used to calculate the PMI values in this example, instead of log base 2)

The Contributions of Word Embeddings

Novel Algorithms

(objective + training method)

- Skip Grams + Negative Sampling
- CBOW + Hierarchical Softmax
- Noise Contrastive Estimation
- GloVe
- ..

New Hyperparameters

(preprocessing, smoothing, etc.)

- Subsampling of Frequent Words
- Dynamic Context Windows
- Context Distribution Smoothing
- Adding Context Vectors

What's really improving performance?

. . .

Improving Distributional Similarity with Lessons Learned from Word Embeddings, Omer Levy, Yoav Goldberg, Ido Dagan, Transactions of the Association for Computational Linguistics, Volume 3, **2015**.

Embedding Approaches

- Represent each word with a low-dimensional vector
- Word similarity = vector similarity
- Key idea: Predict surrounding words of every word
- Faster and can easily incorporate a new sentence/document or add a word to the vocabulary

Represent the meaning of **word** – word2vec

- 2 basic network models:
 - Continuous Bag of Word (CBOW): use a window of word to predict the middle word
 - Skip-gram (SG): use a word to predict the surrounding ones in window.

Word2vec – Continuous Bag of Words

- E.g. "The cat sat on floor"
 - Window size = 2

Distributed Representations of Words and Phrases and their Compositionality Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean, NIPS **2013**

Logistic function

A **logistic function** or **logistic curve** is a common "S" shape (sigmoid curve), with equation:

$$f(x)=rac{L}{1+e^{-k(x-x_0)}}$$

where

- *e* = the natural logarithm base (also known as Euler's number),
- x₀ = the *x*-value of the sigmoid's midpoint,
- L = the curve's maximum value, and
- *k* = the steepness of the curve.^[1]

softmax(z)

The **softmax function**, or **normalized exponential function**, is a generalization of the logistic function that "squashes" a *K*-dimensional vector \mathbf{z} of arbitrary real values to a *K*-dimensional vector $\sigma(\mathbf{z})$ of real values in the range [0, 1] that add up to 1. The function is given by

$$egin{aligned} &\sigma: \mathbb{R}^K o [0,1]^K \ &\sigma(\mathbf{z})_j = rac{e^{z_j}}{\sum_{k=1}^K e^{z_k}} & ext{for } j = 1, \, ..., \, K. \end{aligned}$$

In probability theory, the output of the softmax function can be used to represent a categorical distribution – that is, a probability distribution over K different possible outcomes.

Objective: Given $w_{c-k} \dots, w_{c-1}, w_{c+1}, \dots, w_{c+k}$, predict w_c

Training data: Given sequence of words $\langle w_1, w_2, ..., w_n \rangle$, extract context and target: $(w_{c-k} ..., w_{c-1}, w_{c+1}, ..., w_{c+k}; w_c)$

Knowns:

- Training data { $(w_{c-k} \dots, w_{c-1}, w_{c+1}, \dots, w_{c+k}; w_c)$ }
- Vocabulary $\{w_1, w_2, \dots, wV\}$ of the training corpus

Unknowns:

- Word embedding matrices $W_{V \times N}$ and $W'_{N \times V}$ with N being a hyperparameter

Loss Function for Learning

- How to determine word embedding matrices?
- Cross entropy for comparing probability distributions

$$- H(\hat{y}, y) = -\sum_{j=1}^{V} y_j \log(\hat{y}_j)$$

• y is a one-hot vector with a "one" at position i

$$-H(\hat{y}, y) = -yi \log(\hat{y}_i) = -\log(\hat{y}_i)$$

In this formulation, *c* is the index where the correct word's one hot vector is 1. We can now consider the case where our prediction was perfect and thus $\hat{y}_c = 1$. We can then calculate $H(\hat{y}, y) =$ $-1\log(1) = 0$. Thus, for a perfect prediction, we face no penalty or loss. Now let us consider the opposite case where our prediction was very bad and thus $\hat{y}_c = 0.01$. As before, we can calculate our loss to be $H(\hat{y}, y) = -1\log(0.01) \approx 4.605$. We can thus see that for probability distributions, cross entropy provides us with a good measure of distance.

Minimize $-\log P(w_c | w_{c-k}, ..., w_{c-1}, w_{c+1}, ..., w_{c+k})$ $= -\log P(W'[c] | \hat{v})$ (and due to the softmax) $= -\log \frac{e^{W'[c]^T \hat{v}}}{\sum_{i=1}^V e^{W'[c]^T_j \hat{v}}}$ $= -W'[c]^T\hat{v} + \log\sum_{j=1}^V e^{W'[j]'\hat{v}}$ where Use gradient decent to update word $\hat{v} = (2k)^{-1} \sum_{i=-k}^{k} W^{T} W_{c+i}$ vectors

NSTITUT FÜR INFORMATIONSSYSTEME

IM FOCUS DAS LEBEN 21

Intrinsic Evaluation

Word Analogies

Test for linear relationships, examined by Mikolov et al. (2014)

Word analogies

UNIVERSITAT 20 LOBECK

Extrinsic Evaluation

- Evaluate in applications
 - Sentiment analysis

Intelligent Agents

Word Semantics, Embeddings and Latent Sequential Structures

Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme

IM FOCUS DAS LEBEN

NSTITUT FÜR INFORMATIONSSYSTEME

IM FOCUS DAS LEBEN 26

Objective: Given w_c , predict $w_{c-k} \dots, w_{c-1}, w_{c+1}, \dots, w_{c+k}$

Training data: Given sequence of words $\langle w_1, w_2, ..., w_n \rangle$, extract input and output: $(w_c; w_{c-k}, ..., w_{c-1}, w_{c+1}, ..., w_{c+k})$

Knowns:

- Training data { $(w_c; w_{c-k} \dots, w_{c-1}, w_{c+1}, \dots, w_{c+k})$ }
- Vocabulary $\{w_1, w_2, \dots, w_V\}$ of the training corpus

Unknowns:

- Word embedding matrices $W_{V \times N}$ and $W'_{N \times V}$ with N being a hyperparameter

Skip-Gram: Derivation of Learning Procedure

word2vec Explained: Deriving Mikolov et al.'s Negative-Sampling Word-Embedding Method, Yoav Goldberg and Omer Levy, arxiv, **2014**.

What is word2vec?

- word2vec is not a single algorithm
- It is a software package for representing words as vectors, containing:
 - Two distinct models
 - CBoW
 - Skip-Gram
 - Various training methods
 - Softmax is a bottleneck (discussed next)
 - A rich preprocessing pipeline
 - Dynamic Context Windows
 - Subsampling of Frequent Words
 - Deleting Rare Words (left out)

Softmax is a Bottleneck (CBOW and Skip-Gram)

- The denominator is a sum across entire vocabulary
- $-\sum_{j=0, j\neq m}^{2m} W_{c-m+j} v_c + 2m \log \sum_{k=1}^{V} e^{W_k v_c}$
- To be computed for every window
- Too expensive
- Single update of parameters requires iteration of entire vocabulary (which usually is in millions)
- Various optimized training methods
 - Hierarchical Softmax
 - Noise Contrastive Estimation (left out)
 - Negative Sampling

Hierarchical softmax using Trees

target word	w(t)
word history	\mathbf{w}_1^{t-1}
path to target word at node j	n(w(t), j)
predicted word vector	$\hat{\mathbf{z}}(t)$
vector at node j of target word	$\mathbf{Z}_{n(w,j)}$
sigmoid	$\sigma(x) = \frac{1}{1 + e^{-x}}$
$P(w_t = v \mid \mathbf{w}_1^{t-1}) = \prod_{j=1}^{L(w)-1} \sigma(z)$	$\pm 1_{n(w,j+1)=ch(n(w,j))} \mathbf{z}_{n(w,j)}^{T} \hat{\mathbf{z}} $
ch(n) = left(+) or right o	child(-) Mikolov, T., Cher Efficient Estimati In: ICLR Worksho

Replace computation with V vectors of target words by computation with log(V)n(w,1)vectors 1 n(w, j)L(w)n(w, L(w))

32

• Need to learn $\mathbf{z}_{n(w,j)}$

Aikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient Estimation of Word Representations in Vector Space. n: ICLR Workshop. **2013**. IM FOCUS DAS LEBEN

•

Huffman Trees instead of Balanced Trees

word	count	
fat	3	
fridge	2	
zebra	1	
potato	3	
and	14	
in	7	
today	4	
kangaroo	2	

Skip-Grams with Negative Sampling (SGNS)

Marco saw a furry little wampimuk hiding in the tree.

Distributed Representations of Words and Phrases and their Compositionality Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean, NIPS **2013**

Skip-Grams with Negative Sampling (SGNS)

Marco saw a furry little wampimuk hiding in the tree.

<u>words</u>

wampimuk wampimuk wampimuk wampimuk

contexts furry little hiding D (data) in

"word2vec Explained..." Goldberg & Levy, arXiv 2014

Skip-Grams with Negative Sampling (SGNS)

- SGNS finds a vector \vec{w} for each word w in our vocabulary V_W
- Each such vector has d latent dimensions (e.g. d = 100)
- Effectively, it learns a matrix W whose rows represent V_W
- Key point: it also learns a similar auxiliary matrix C of context vectors
- In fact, each word has two embeddings

d was called N before

"word2vec Explained..." Goldberg & Levy, arXiv 2014
Coming back to Negative Sampling

- Given (*w*, *c*): word and context
- Let P(D = 1 | w, c) be the probability that (w, c) came from the corpus data
- P(D = 0 | w, c) = probability that (w, c) are not from the corpus data
- Let us model P(D = 1 | w, c) with *sigmoid*
- $P(D = 1 | w, c) = sigmoid(u_w^T v_c) = \frac{1}{1 + e^{-u_w^T v_c}}$ $u_v = Ww \ v_c = Cc$
- Objective:
 - Maximize P(D = 1 | w, c) if (w, c) is in the corpus data
 - MinimizeP(D = 1 | w, c) if (w, c) not in the corpus data

Distributed Representations of Words and Phrases and their Compositionality Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean, NIPS **2013** IM FOCUS DAS LEBEN 41

Skip-Grams with Negative Sampling (SGNS)

• Maximize: $\sigma(\vec{w} \cdot \vec{c})$							
 c was observed with 							
W							
<u>words</u>	<u>contexts</u>						
wampimuk	furry						
wampimuk	little						
wampimuk	hiding						
wampimuk	in						

"word2vec Explained..." Goldberg & Levy, arXiv 2014

Skip-Grams with Negative Sampling (SGNS)

• Maximize: – <i>c</i> was obs <i>w</i>	$\sigma(\vec{w} \cdot \vec{c})$ served with	• Minimize: $\sigma(\vec{w} \cdot \vec{c'})$ - c' was hallucinated with w				
<u>words</u> wampimuk	<u>contexts</u>	<u>words</u> wampimuk	<u>contexts</u> Australia			
wampimuk	little	wampimuk	cyber			
wampimuk	hiding	wampimuk	the			
wampimuk	in	wampimuk	1985			

"word2vec Explained..." Goldberg & Levy, arXiv 2014

Math behind Negative Sampling

Maximum Likelihood approach for learning θ

$$\begin{aligned} \theta &= \operatorname*{argmax}_{\theta} \prod_{(w,c)\in D} P(D=1|w,c,\theta) \prod_{(w,c)\in \tilde{D}} P(D=0|w,c,\theta) \\ &= \operatorname*{argmax}_{\theta} \prod_{(w,c)\in D} P(D=1|w,c,\theta) \prod_{(w,c)\in \tilde{D}} (1-P(D=1|w,c,\theta)) \\ &= \operatorname*{argmax}_{\theta} \sum_{(w,c)\in D} \log P(D=1|w,c,\theta) + \sum_{(w,c)\in \tilde{D}} \log(1-P(D=1|w,c,\theta)) \\ &= \operatorname*{argmax}_{\theta} \sum_{(w,c)\in D} \log \frac{1}{1+\exp(-u_w^T v_c)} + \sum_{(w,c)\in \tilde{D}} \log(1-\frac{1}{1+\exp(-u_w^T v_c)}) \\ &= \operatorname*{argmax}_{\theta} \sum_{(w,c)\in D} \log \frac{1}{1+\exp(-u_w^T v_c)} + \sum_{(w,c)\in \tilde{D}} \log(1-\frac{1}{1+\exp(-u_w^T v_c)}) \end{aligned}$$

$$\theta = (W, C), \qquad u_v = Ww \quad v_c = Cc$$

Distributed Representations of Words and Phrases and their Compositionality Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean, NIPS **2013** IM FOCUS DAS LEBEN

44

Math behind Negative Sampling

Maximize log likelihood = minimize –log likelihood

$$-\sum_{(w,c)\in D}\log\frac{1}{1+\exp(-u_w^Tv_c)}-\sum_{(w,c)\in \tilde{D}}\log(\frac{1}{1+\exp(u_w^Tv_c)})$$

- \widetilde{D} is the negative corpus with wrong contexts
- Generate \widetilde{D} on the fly by randomly sampling from the vocabulary
- New objective function for observing context word w_{c-m+j} (j = 0..2m) given the center word w_c would be

 $-\sum_{i=0,i\neq m}^{2m} W_{c-m+i} v_c + 2m \log \sum_{k=1}^{V} e^{W_k v_c}$

$$-\log \sigma(u_{c-m+j}^T \cdot v_c) - \sum_{k=1}^K \log \sigma(-\tilde{u}_k^T \cdot v_c)$$

 $-u_{c-m+j}^T v_c + \log \sum_{k=1}^{|V|} \exp(u_k^T v_c)$

regular softmax loss for skip-gram

IM FOCUS DAS LEBEN

45

Skip-Grams with Negative Sampling (SGNS)

- "Negative Sampling"
- SGNS samples k contexts c' at random as negative examples
- "Random" = unigram distribution

$$P(c) = \frac{\#c}{\sum_{c' \in V_C} (\#c')}$$

• Changing this distribution has a significant effect

Distributed Representations of Words and Phrases and their Compositionality Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean, NIPS **2013** IM FOCUS DAS LEBEN 46

Context Distribution Smoothing

 In practice, it's a smoothed unigram distribution

VERSITÄT ZU LÜBECK

$$P^{0.75}(c) = \frac{(\#c)^{0.75}}{\sum_{c' \in V_C} (\#c')^{0.75}}$$

• This little change makes a big difference

Context Distribution Smoothing

- We can **adapt** context distribution smoothing to PMI!
- Replace P(c) with $P^{0.75}(c)$ $PMI^{0.75}(w,c) = \log \frac{P(w,c)}{P(w) \cdot P^{0.75}(c)}$
- Consistently improves
 PMI on every task
- Always use Context Distribution Smoothing!

Math behind CBOW with Negative Sampling

- Likewise for CBOW $\hat{v} = \frac{v_{c-m} + v_{c-m+1} + \dots + v_{c+m}}{2m}$
- Objective: $-\log \sigma(u_c^T \cdot \hat{v}) - \sum_{k=1}^{K} \log \sigma(-\tilde{u}_k^T \cdot \hat{v})$

where $\{\tilde{u}_k \mid k = 1..K\}$ is sampled from vocabulary (also use context distribution smoothing)

• Rather than:

$$-u_c^T \hat{v} + \log \sum_{j=1}^{|V|} \exp(u_j^T \hat{v})$$
 regular softmax loss for CBOW

• Take SGNS's embedding matrices (*W* and *C*)

- Take SGNS's embedding matrices (*W* and *C*)
- Multiply them
- What do you get?

- A $V_W \times V_C$ matrix
- Each cell describes the relation between a specific word-context pair

$$\vec{w} \cdot \vec{c} = ?$$

 Levy&Goldberg [2014] proved that for large enough d and enough iterations ...

- Levy&Goldberg [2014] proved that for large enough d and enough iterations ...
- ... one obtains the word-context PMI matrix

- Levy&Goldberg [2014] proved that for large enough d and enough iterations ...
- ... one obtains the word-context PMI matrix ...
- shifted by a global constant

where k is the number of negative examples

- SGNS is doing something very similar to the older approaches
- SGNS factorizes the traditional word-context PMI matrix
- So does SVD!
- GloVe factorizes a similar word-context matrix

But embeddings are still better, right?

- Plenty of evidence that embeddings outperform traditional methods
 - "Don't Count, Predict!" (Baroni et al., ACL 2014)
 - GloVe (Pennington et al., EMNLP 2014)
- How does this fit with our story?

Marco Baroni, Georgiana Dinu, Germán Kruszewski. Don't count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors. In: Proc. ACL-14, 238–247, **2014**.

Jeffrey Pennington, Richard Socher, Christopher Manning. GloVe: Global Vectors for Word Representation. In: Proc. EMNLP-.14, 1532–1543, **2014**.

The Big Impact of "Small" Hyperparameters

- word2vec & GloVe are more than just algorithms...
- Introduce new hyperparameters
- May seem minor, but **make a big difference** in practice

New Hyperparameters

Preprocessing

- Dynamic Context Windows
- Subsampling of Frequent Words
- Deleting Rare Words

Postprocessing

- Adding Context Vectors

Association Metric

- Shifted PMI
- Context Distribution Smoothing

(word2vec)

(GloVe)

(SGNS)

Dynamic Context Windows

Marco saw a furry little wampimuk hiding in the tree.

Dynamic Context Windows

saw a furry little wampimuk hiding in the tree

saw a furry little wampimuk hiding in the tree

Word2vec:	$\frac{1}{4}$	$\frac{2}{4}$	<u>3</u> 4	$\frac{4}{4}$	$\frac{4}{4}$	3 4	$\frac{2}{4}$	$\frac{1}{4}$	
GloVe:	$\frac{1}{4}$	$\frac{1}{3}$	<u>1</u> 2	$\frac{1}{1}$	$\frac{1}{1}$	<u>1</u> 2	$\frac{1}{3}$	$\frac{1}{4}$	
Aggressive:	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{1}$	$\frac{1}{1}$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	

The Word-Space Model (Sahlgren, 2006)

Magnus Sahlgren, The Word-Space Model, Dissertation, Stockholm Univ., **2006**.

Subsampling of Frequent Words

- Counter imbalance of rare and frequent words
- Each word in the training set is discarded with a probability computed by

$$P(w_i) = 1 - \sqrt{\frac{t}{f(w_i)}}$$

where f(w_i) is the frequency of word w_i and t is a chosen threshold

Distributed Representations of Words and Phrases and their Compositionality Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean, NIPS **2013**

Adding Context Vectors

- SGNS creates word vectors \vec{w}
- SGNS creates auxiliary context vectors \vec{c}
 - So do GloVe and SVD
- Instead of just \vec{w}
- Represent a word as: $\vec{w} + \vec{c}$
- Introduced by Pennington et al. (2014)
- Only applied to GloVe

Don't Count, Predict! ?

- "word2vec is better than count-based methods" [Baroni et al., 2014]
- Hyperparameter settings account for most of the reported gaps in count-based approaches
- Embeddings do **not** really outperform count-based methods
- No unique conclusion available

Marco Baroni, Georgiana Dinu, Germán Kruszewski. Don't count, predict! A systematic comparison of context-counting vs. contextpredicting semantic vectors. In: Proc. ACL-14, 238–247, **2014**. Represent the meaning of sentence/paragraph/doc

- Paragraph Vector (Le and Mikolov, 2014)
 - Extend word2vec to text level
 - Also two models: add paragraph vector as the input

Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In Proceedings ICML'14. **2014**.

IM FOCUS DAS LEBEN 66

Problem

- Learn low-dimensional, dense representations (or embeddings) for documents.
- Document embeddings can be used off-the-shelf to solve many IR applications such as,
 - Document Classification
 - Document Retrieval
 - Document Ranking

IM FOCUS DAS LEBEN

Power of 2Vec Representations

- Bag-of-words (BOW) or Bag-of-n-grams
 - Data sparsity
 - High dimensionality
 - Not/hardly capturing word order
- Latent Dirichlet Allocation (LDA)
 - Computationally inefficient for larger dataset.
- Paragraph Vector
 - Dense representation
 - Compact representation
 - Captures word order
 - Efficient to estimate

IM FOCUS DAS LEBEN

Paragraph Vector

NIVERSITÄT ZU LÜBECK

- Learn document embedding by predicting the next word in the document using the context of the word and the ('unknown') document vector as features.
- Resulting vector captures the topic of the document.
- Update the document vectors, but not the word vectors
 [Le et al.]
- Update the document vectors, along with the word vectors [Dai et al.]
 - Improvement in the accuracy for document similarity tasks.

Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In Proceedings ICML'14. **2014**.

Dai, A.M., Olah, C., Le, Q.V., Corrado, G.S.: Document embedding with paragraph vectors. In: NIPS Deep Learning Workshop. **2014**

IM FOCUS DAS LEBEN

Doc2Sent2Vec Idea - Being granular helps

- Should we learn the document embedding from the word context directly?
- Can we learn the document embedding from the sentence context?
 - Explicitly exploit the sentence-level and word-level coherence to learn document and sentence embedding respectively.

IM FOCUS DAS LEBEN

Notation

- **Document Set:** $D = \{d_1, d_2, ..., d_M\}$; 'M' documents;
- **Document:** $d_m = \{s(m,1), s(m,2), ..., s(m,T_m)\}; T_m' \text{ sentences};$
- Sentence: $s(m,n) = \{w(n,1), w(n,2), ..., w(n,T_n)\}; T_n' words;$
- Word: w(n,t);

Doc2Sent2Vec's goal is to learn low-dimensional representations of words, sentences and documents as a continuous feature vector of dimensionality D_w , D_s and D_d respectively.

IM FOCUS DAS LEBEN

Architecture Diagram

words within sentence (word-level coherence)

IM FOCUS DAS LEBEN

Phase 1: Learn Sentence Embedding

Idea: Learn sentence representation from the word sequence within the sentence.

Input Features:

- Context words for target word w(n,t): w(n,t-c_w), ..., w(n,t-1), w(n,t+1), ..., w(n,t+c_w) (where 'c_w' is the word context size)
- Target Sentence: s(m,n) (where 'm' is the document id)

Output: w(n,t)

Task: Predict the target word using the concatenation of word vectors of context words along with the sentence vector as features.

Maximize the word likelihood:

 $L_{word} = P(w(n,t)|w(n,t-c_w), ..., w(n,t-1), w(n,t+1), ..., w(n,t+c_w), s(m,n))$

IM FOCUS DAS LEBEN

Phase 2: Learn Document Embedding

Idea: Learn document representation from the sentence sequence within the document.

Input Features:

- Context sentences for target sentence s(m,t): s(m,t-c_s), ..., s(m,t-1), s(m,t+1), ..., s(m,t+c_s) (where 'c_s' is the sentence context size)
- Target Document: d(m)

Output: s(m,t)

Novel Task: Predict the target sentence using the concatenation of sentence vectors of context sentences along with the document vector as features.

Maximize the sentence likelihood:

 $L_{sent} = P(s(m,t)|s(m,t-c_s), ..., s(m,t-1), s(m,t+1), ..., s(m,t+c_s), d(m))$

IM FOCUS DAS LEBEN

Training

- Overall objective function: $L = L_{word} + L_{sent}$
- Use Stochastic Gradient Descent (SGD) to learn parameters
- Use Hierarchical Softmax (Mikolov et al.) to facilitate faster training

IM FOCUS DAS LEBEN

Latent Relational Structures

Processing natural language data:

- ✓ Tokenization/Sentence Splitting
- ✓ Part-of-speech (POS) tagging
- Phrase chunking
- Named entity recognition
- Coreference resolution
- Semantic role labeling

Ronan Collobert and Jason Weston. A unified architecture for natural language processing: deep neural networks with multitask learning. In Proceedings ICML '08. pp. 160–167. **2008**.
Phrase Chunking

VERSITÄT ZU LÜBECK Stitut für informationssysteme

• Identifies phrase-level constituents in sentences

[NP Boris] [ADVP regretfully] [VP told] [NP his wife][SBAR that] [NP their child] [VP could not attend] [NP night school] [PP without] [NP permission].

- Useful for filtering: identify e.g. only noun phrases, or only verb phrases
- Used as source of features, e.g. distance, (abstracts away determiners, adjectives, for example), sequence,...
 - More efficient to compute than full syntactic parse
 - Applications in e.g. Information Extraction getting (simple) information about concepts of interest from text documents
- Hand-crafted chunkers (regular expressions/finite automata)
- HMM/CRF-based chunk parsers derived from training data

Named Entity Recognition

- Identifies and classifies strings of characters representing proper nouns
- [PER Neil A. Armstrong], the 38-year-old civilian commander, radioed to earth and the mission control room here: "[LOC Houston], [ORG Tranquility] Base here; the Eagle has landed."
- Useful for filtering documents
 - "I need to find news articles about organizations in which Bill Gates might be involved..."
- **Disambiguate tokens:** "Chicago" (team) vs. "Chicago" (city)
- Source of abstract features
 - E.g. "Verbs that appear with entities that are Organizations"
 - E.g. "Documents that have a high proportion of Organizations"

Named Entity Recogniton: Definition

- NE involves identification of proper names in texts, and classification into a set of predefined categories of interest
 - Three universally accepted categories: person, location and organisation
 - Other common tasks: recognition of date/time expressions, measures (percent, money, weight etc), email addresses etc.
 - Other domain-specific entities: names of drugs, medical conditions, names of ships, bibliographic references etc
- NER ist not easy

Named Entity Classification

- Category definitions are intuitively quite clear, but there are many grey areas.
- Many of these grey area are caused by metonymy.
 - Person vs. Artefact: "The ham sandwich wants his bill." vs "Bring me a ham sandwich."
 - Organisation vs. Location : "England won the World Cup" vs. "The World Cup took place in England".
 - Company vs. Artefact: "shares in MTV" vs. "watching MTV"
 - Location vs. Organisation: "she met him at Heathrow" vs.
 "the Heathrow authorities"

Basic Problems in NE

- Variation of NEs e.g. John Smith, Mr Smith, John.
- Ambiguity of NE types
 - John Smith (company vs. person)
 - May (person vs. month)
 - Washington (person vs. location)
 - 1945 (date vs. time)
- Ambiguity with common words, e.g. "may"

More complex problems in NER

- Issues of style, structure, domain, genre etc.
 - Punctuation, spelling, spacing, formatting,all have an impact

Dept. of Computing and Maths Manchester Metropolitan University Manchester United Kingdom

> Tell me more about Leonardo> Da Vinci

List Lookup Approach

- System that recognises only entities stored in its lists (gazetteers).
- Advantages Simple, fast, language independent, easy to retarget
- Disadvantages collection and maintenance of lists, cannot deal with name variants, cannot resolve ambiguity

Shallow Parsing Approach

 Internal evidence – names often have internal structure. These components can be either stored or guessed.

location:

CapWord + {City, Forest, Center}

e.g. Sherwood Forest

Cap Word + {Street, Boulevard, Avenue, Crescent, Road} e.g. *Portobello Street*

Shallow Parsing Approach

 External evidence - names are often used in very predictive local contexts

Location:

"to the" COMPASS "of" CapWord e.g. *to the south of* **Loitokitok** "based in" CapWord e.g. *based in* **Loitokitok** CapWord "is a" (ADJ)? GeoWord e.g. **Loitokitok** is a friendly city

Difficulties in Shallow Parsing Approach

- Ambiguously capitalised words (first word in sentence)
 [All American Bank] vs. All [State Police]
- Semantic ambiguity

"John F. Kennedy" = airport (location) "Philip Morris" = organisation

Structural ambiguity

[Cable and Wireless] vs. [Microsoft] and [Dell]

[Center for Computational Linguistics] vs. message from [City Hospital] for [John Smith].

Coreference

- Identify all phrases that refer to each entity of interest i.e., group mentions of concepts
- [Neil A. Armstrong], [the 38-year-old civilian commander], radioed to [earth]. [He] said the famous words, "[the Eagle] has landed"."
- The Named Entity Recognizer only gets us part-way...
- ...if we ask, "what actions did Neil Armstrong perform?", we will miss many instances (e.g., "He said...")
- Coreference resolver abstracts over different ways of referring to the same person
 - Useful in feature extraction, information extraction

Semantic Role Labeling (SRL)

Input Text:

A car bomb that exploded outside the U.S. military base in Beniji killed 11 Iraqi citizens.

Result: Complete!

General Explanation of Argument Labels

- SRL reveals relations and arguments in the sentence (where relations are expressed as verbs)
- Cannot abstract over variability of expressing the relations – e.g. kill vs. murder vs. slay…

Why is SRL Important – Applications

- Question Answering
 - Q: When was Napoleon defeated?
 - Look for: [PATIENT Napoleon] [PRED defeat-synset] [ARGM-TMP *ANS*]
- Machine Translation

English (SVO) [AGENT The little boy] [PRED kicked] [THEME the red ball] [ARGM-MNR hard] Farsi (SOV)

[AGENT pesar koocholo] boy-little[THEME toop germezi] ball-red[ARGM-MNR moqtam] hard-adverb[PRED zaad-e] hit-past

- Document Summarization
 - Predicates and Heads of Roles summarize content

Information Extraction

SRL can be used to construct useful rules for IE

Some History

- Minsky 74, Fillmore 1976: Frames describe events or situations
 - Multiple participants, "props", and "conceptual roles"
 - E.g., agent, instrument, target, time, ...
- Levin 1993: verb class defined by sets of frames (meaningpreserving alternations) a verb appears in
 - {break,shatter,..}: Glass X's easily; John Xed the glass, ...
 - *Cut* is different: *The window broke; *The window cut.*
- FrameNet, late '90s: based on Levin's work: large corpus of sentences annotated with *frames*
- PropBank

Marvin Minky. A Framework for Representing Knowledge Marvin Minsky, MIT-AI Laboratory Memo 306, June, **1974**.

Charles J. Fillmore, Frame semantics and the nature of language Annals of the New York Academy of Sciences 280(1):20 – 32, **1976**.

Levin, B. English Verb Classes and Alternations: A Preliminary Investigation, University of Chicago Press, Chicago, IL. **1993**.

IM FOCUS DAS LEBEN

Automatic Semantic Role Labeling, S. Wen-tau Yih, K. Toutanova

FrameNet

[Agent Kristina] hit [Target Scott] [Instrument with a baseball] [Time yesterday].

Gildea, Daniel; Jurafsky, Daniel. "Automatic Labeling of Semantic Roles". Computational Linguistics. 28 (3): 245–288. **2002**.

Proposition Bank (PropBank)

- Transfer sentences to propositions

 Kristina hit Scott → hit(Kristina,Scott)
- Penn TreeBank \rightarrow PropBank
 - Add a semantic layer on Penn TreeBank
 - Define a set of semantic roles for each verb
 - Each verb's roles are numbered
 - ...[A0 the company] to ... offer [A1 a 15% to 20% stake] [A2 to the public]
 - ... [A0 Sotheby's] ... offered [A2 the Dorrance heirs] [A1 a money-back guarantee]
 - ...[A1 an amendment] *offered* [A0 by Rep. Peter DeFazio] ...
 - ...[A2 Subcontractors] will be offered [A1 a settlement] ...

Semantic Role Labeling (SRL)

Input Text:

A car bomb that exploded outside the U.S. military base in Beniji killed 11 Iraqi citizens.

Result: Complete!

General Explanation of Argument Labels

- SRL reveals relations and arguments in the sentence (where relations are expressed as verbs)
- Cannot abstract over variability of expressing the relations – e.g. kill vs. murder vs. slay…

