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Word-Word Associations in Document Retrieval

Recap
• LSI: Documents as vectors, dimension reduction
• Topic Modeling

– Topic = Word distribution
– From LDA-Model: P(Z | w)
– Assumption: Bag of words model 

(independence, naïve Bayes, unigram distribution)
Words are not independent of each other
• Word similarity measures
• Extend query with similar words automatically
• Extend query with most frequent followers/predecessors
• Insert words in anticipated gaps in a string query
Need to represent more aspects of word semantics
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Approaches for Representing Word Semantics

Distributional Semantics 
(Count)
• Used since the 90’s
• Sparse word-context 

PMI/PPMI matrix
• Decomposed with SVD

Word Embeddings (Predict)
• Inspired by deep learning
• word2vec

(Mikolov et al., 2013)
• GloVe

(Pennington et al., 2014)

3

Underlying Theory: The Distributional Hypothesis (Harris, ’54; Firth, ‘57)

“Similar words occur in similar contexts”

Beyond bags of words

https://nlp.stanford.edu/projects/glove/

https://www.tensorflow.org/tutorials/word2vec



Point(wise) Mutual Information: PMI

• Measure of association used in information theory and 
statistics

• Positive PMI:  PPMI(x, y) = max( pmi(x, y), 0 )
• Quantifies the discrepancy between the probability of their 

coincidence given their joint distribution and their 
individual distributions, assuming independence

• Finding collocations and associations between words 
• Countings of occurrences and co-occurrences of words in a 

text corpus can be used to approximate the probabilities 
p(x) or p(y) and p(x,y) respectively

4
Kenneth Ward Church and Patrick Hanks. "Word association norms, mutual 
information, and lexicography". Comput. Linguist. 16 (1): 22–29. 1990.



PMI – Example

5[Wikipedia]

• Counts of pairs of words 
getting the most and the 
least PMI scores in the 
first 50 millions of words in 
Wikipedia (dump of 
October 2015)

• Filtering by 1,000 or more 
co-occurrences. 

• The frequency of each 
count can be obtained by 
dividing its value by 
50,000,952. (Note: natural 
log is used to calculate the 
PMI values in this 
example, instead of log 
base 2)



What’s really improving performance?

The Contributions of Word Embeddings

Novel Algorithms
(objective + training method)

• Skip Grams + Negative Sampling
• CBOW + Hierarchical Softmax
• Noise Contrastive Estimation
• GloVe
• …

New Hyperparameters
(preprocessing, smoothing, etc.)

• Subsampling of Frequent Words
• Dynamic Context Windows
• Context Distribution Smoothing
• Adding Context Vectors
• …
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Improving Distributional Similarity with Lessons Learned from Word 
Embeddings, Omer Levy, Yoav Goldberg, Ido Dagan, Transactions of the 
Association for Computational Linguistics, Volume 3, 2015.



Embedding Approaches

• Represent each word with a low-dimensional vector
• Word similarity = vector similarity
• Key idea: Predict surrounding words of every word
• Faster and can easily incorporate a new 

sentence/document or add a word to the vocabulary
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Represent the meaning of word – word2vec

• 2 basic network models:
– Continuous Bag of Word (CBOW): use a window of 

word to predict the middle word
– Skip-gram (SG): use a word to predict the surrounding 

ones in window. 
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Word2vec – Continuous Bag of Words

• E.g. “The cat sat on floor”
– Window size = 2
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the

cat

on

floor

sat

Distributed Representations of Words and Phrases and their Compositionality
Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean, NIPS 2013
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Logistic function

15[Wikipedia]



softmax(z)
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The

[Wikipedia]
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CBOW Model

Objective: Given𝑤!"# … ,𝑤!"$, 𝑤!%$, … ,𝑤!%#, predict𝑤!

Training data: Given sequence of words <𝑤1, 𝑤2, …𝑤𝑛 >, 
extract context and target: (𝑤!"# … ,𝑤!"$, 𝑤!%$, … ,𝑤!%#; 𝑤!)

Knowns: 
– Training data {(𝑤%+, … ,𝑤%+-, 𝑤%.-, … ,𝑤%.,; 𝑤%)}
– Vocabulary {𝑤1, 𝑤2, …𝑤𝑉} of the training corpus 

Unknowns: 
– Word embedding matrices 𝑊𝑉 x 𝑁 and 𝑊′𝑁 x 𝑉 with 𝑁 being a 

hyperparameter
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Loss Function for Learning

• How to determine word embedding matrices?
• Cross entropy for comparing probability distributions

– 𝐻 )𝑦, 𝑦 = −∑&'$( 𝑦𝑗 𝑙𝑜𝑔( )𝑦𝑗)

• 𝑦 is a one-hot vector with a “one” at position 𝑖
– 𝐻 )𝑦, 𝑦 = −𝑦𝑖 𝑙𝑜𝑔 )𝑦𝑖 = −𝑙𝑜𝑔()𝑦𝑖)
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CBOW: Derivation of Learning Procedure

Minimize − log 𝑃 𝑤! 𝑤!"# , … , 𝑤!"$, 𝑤!%$, … ,𝑤!%#)

=	− log 𝑃 𝑊′ 𝑐 8𝑣) (and due to the softmax)

= − log &%& ' *()

∑*+,
- &%& ' *

+()

= −𝑊′ 𝑐 𝑇 8𝑣 + log∑()$* 𝑒+, (
! -.

where

8𝑣 = (2𝑘)"$∑/)"## 𝑊𝑇𝑤!%/

20

Use gradient decent 
to update word 

vectors
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Intrinsic Evaluation
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Word analogies
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Extrinsic Evaluation

• Evaluate in applications
– Sentiment analysis
– …
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Skip-Gram Model

Objective: Given𝑤!, predict𝑤!"# … ,𝑤!"$, 𝑤!%$, … ,𝑤!%#

Training data: Given sequence of words <𝑤1, 𝑤2, …𝑤) >, 
extract input and output: (𝑤! ; 𝑤!"# … ,𝑤!"$, 𝑤!%$, … ,𝑤!%#)

Knowns: 
– Training data {(𝑤% ; 𝑤%+, … ,𝑤%+-, 𝑤%.-, … ,𝑤%.,)}
– Vocabulary {𝑤1, 𝑤2, …𝑤!} of the training corpus 

Unknowns: 
– Word embedding matrices 𝑊𝑉 x 𝑁 and 𝑊′𝑁 x 𝑉 with 𝑁 being a 

hyperparameter

28



Skip-Gram: Derivation of Learning Procedure

Minimize			− log 𝑃 𝑤!"0, … , 𝑤!"$, 𝑤!%$, … ,𝑤!%0 𝑤!)

=	− log∏()1,(30
40 𝑃 𝑤!"0%( 𝑣!) (and due to softmax)

= − log∏()1,(30
40 &%'./0* )'

∑1+,
- &%, )'

= −∑()1,(3040 𝑊!"0%( 𝑣! + 2𝑚 log∑#)$* 𝑒+" .'

where 𝑣! = 𝑊′𝑤!
(no averaging for skip-gram)

29

Use stochastic gradient 
decent to minimize and 

then to update word 
vectors

word2vec Explained: Deriving Mikolov et al.’s Negative-Sampling Word-
Embedding Method, Yoav Goldberg and Omer Levy, arxiv, 2014.



What is word2vec?

• word2vec is not a single algorithm
• It is a software package for representing words as 

vectors, containing:
– Two distinct models

• CBoW
• Skip-Gram

– Various training methods
• Softmax is a bottleneck (discussed next)

– A rich preprocessing pipeline
• Dynamic Context Windows
• Subsampling of Frequent Words
• Deleting Rare Words (left out)

30



Softmax is a Bottleneck (CBOW and Skip-Gram)

31

• The denominator is a sum across entire vocabulary

• −∑()1,(3040 𝑊!"0%( 𝑣! + 2𝑚 log∑#)$* 𝑒+" .'

• To be computed for every window
• Too expensive
• Single update of parameters requires iteration of entire 

vocabulary (which usually is in millions)
• Various optimized training methods

– Hierarchical Softmax
– Noise Contrastive Estimation (left out)
– Negative Sampling

Rong, X. word2vec Parameter Learning Explained (cite 
arxiv:1411.2738). 2014.



Hierarchical softmax using Trees

32

• Replace computation with V
vectors of target words
by computation with log(V) 
vectors

• Need to learn 
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Huffman Trees instead of Balanced Trees

33



Skip-Grams with Negative Sampling (SGNS)

Marco saw a furry little wampimuk hiding in the tree.

38

Distributed Representations of Words and Phrases and their Compositionality
Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean, NIPS 2013



Skip-Grams with Negative Sampling (SGNS)

Marco saw a furry little wampimuk hiding in the tree.

words contexts
wampimuk furry
wampimuk little
wampimuk hiding
wampimuk in
… …

𝐷 (data)

39
“word2vec Explained…”
Goldberg & Levy, arXiv 2014



Skip-Grams with Negative Sampling (SGNS)

• SGNS finds a vector 𝑤 for each word 𝑤 in our vocabulary 𝑉*
• Each such vector has 𝑑 latent dimensions (e.g. 𝑑 = 100)
• Effectively, it learns a matrix 𝑊 whose rows represent 𝑉*
• Key point: it also learns a similar auxiliary matrix 𝐶 of 

context vectors
• In fact, each word has two embeddings

𝑊

𝑑

𝑉 %

𝑤:wampimuk =
(−3.1, 4.15, 9.2, −6.5, … ) 𝐶𝑉 &

𝑑

𝑐:wampimuk =
(−5.6, 2.95, 1.4, −1.3, … )

≠

40
“word2vec Explained…”
Goldberg & Levy, arXiv 2014

𝑑 was called 𝑁 before



Coming back to Negative Sampling

• Given (𝑤, 𝑐): word and context
• Let 𝑃 𝐷 = 1 𝑤, 𝑐) be the probability that (𝑤, 𝑐) came 

from the corpus data
• 𝑃 𝐷 = 0 𝑤, 𝑐) = probability that (𝑤, 𝑐) are not from 

the corpus data
• Let us model 𝑃 𝐷 = 1 𝑤, 𝑐)with 𝑠𝑖𝑔𝑚𝑜𝑖𝑑

• 𝑃 𝐷 = 1 𝑤, 𝑐) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑢56 𝑣! = $

$%&.234 )'

• Objective:
– Maximize 𝑃 𝐷 = 1 𝑤, 𝑐) if (𝑤, 𝑐) is in the corpus data
– Minimize𝑃 𝐷 = 1 𝑤, 𝑐) if (𝑤, 𝑐) not in the corpus data

41

𝑢' = 𝑊𝑤 𝑣( = 𝐶𝑐

Distributed Representations of Words and Phrases and their Compositionality
Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean, NIPS 2013



Skip-Grams with Negative Sampling (SGNS)

• Maximize: 𝜎 𝑤 ⋅ 𝑐
– 𝑐 was observed with 
𝑤

words contexts
wampimuk furry
wampimuk little
wampimuk hiding
wampimuk in

42
“word2vec Explained…”
Goldberg & Levy, arXiv 2014



Skip-Grams with Negative Sampling (SGNS)

• Maximize: 𝜎 𝑤 ⋅ 𝑐
– 𝑐 was observed with 
𝑤

words contexts
wampimuk furry
wampimuk little
wampimuk hiding
wampimuk in

• Minimize: 𝜎 𝑤 ⋅ 𝑐 ′
– 𝑐′was hallucinated

with 𝑤

words contexts
wampimuk Australia
wampimuk cyber
wampimuk the
wampimuk 1985

43
“word2vec Explained…”
Goldberg & Levy, arXiv 2014



Math behind Negative Sampling

44

Maximum Likelihood approach for learning 𝜃

𝜃= W, C , 𝑢' = 𝑊𝑤 𝑣( = 𝐶𝑐

Distributed Representations of Words and Phrases and their Compositionality
Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean, NIPS 2013



Math behind Negative Sampling

• Maximize log likelihood = minimize –log likelihood

• L𝐷 is the negative corpus with wrong contexts
• Generate L𝐷 on the fly by randomly sampling from the 

vocabulary
• New objective function for observing context word 
𝑤!"0%( (𝑗 = 0. . 2𝑚) given the center word 𝑤! would be

45



Skip-Grams with Negative Sampling (SGNS)

• “Negative Sampling”
• SGNS samples 𝑘 contexts 𝑐, at random 

as negative examples
• “Random” = unigram distribution

𝑃 𝑐 =
#𝑐

∑!&∈*5 #𝑐
,

• Changing this distribution has a significant effect

46
Distributed Representations of Words and Phrases and their Compositionality
Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean, NIPS 2013



Context Distribution Smoothing

• In practice, it’s a smoothed
unigram distribution

𝑃1.9: 𝑐 =
#𝑐 1.9:

∑!&∈*5 #𝑐
, 1.9:

• This little change makes a big difference

47
Distributed Representations of Words and Phrases and their Compositionality
Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean, NIPS 2013



Context Distribution Smoothing

• We can adapt context distribution smoothing to PMI!

• Replace 𝑃(𝑐)with 𝑃1.9: 𝑐

𝑃𝑀𝐼1.9: 𝑤, 𝑐 = log
𝑃(𝑤, 𝑐)

𝑃 𝑤 ⋅ 𝑷𝟎.𝟕𝟓 𝒄

• Consistently improves 
PMI on every task

• Always use Context 
Distribution Smoothing!

48



Math behind CBOW with Negative Sampling

• Likewise for CBOW

• Objective:

where {>𝑢# | 𝑘 = 1. . K} is sampled from vocabulary 
(also use context distribution smoothing)

• Rather than:

49



What is SGNS learning?

• Take SGNS’s embedding matrices (𝑊 and 𝐶)

“Neural Word Embeddings as Implicit Matrix Factorization”
Levy & Goldberg, NIPS 2014

𝑊

𝑑

𝑉 % 𝑉 &

𝑑

𝐶

50



What is SGNS learning?

• Take SGNS’s embedding matrices (𝑊 and 𝐶)
• Multiply them
• What do you get?

𝑊

𝑑

𝑉 % 𝐶
𝑉&

𝑑

51
“Neural Word Embeddings as Implicit Matrix Factorization”

Levy & Goldberg, NIPS 2014



What is SGNS learning?

• A 𝑉+×𝑉> matrix
• Each cell describes the relation between a specific 

word-context pair

𝑤 ⋅ 𝑐 = ?

𝑊

𝑑

𝑉 % 𝐶
𝑉&

𝑑 ?= 𝑉 %

𝑉&

52
“Neural Word Embeddings as Implicit Matrix Factorization”

Levy & Goldberg, NIPS 2014



What is SGNS learning?

• Levy&Goldberg [2014] proved that for large enough 𝑑
and enough iterations …

𝑊

𝑑

𝑉 % 𝐶
𝑉&

𝑑 ?= 𝑉 %

𝑉&

53
“Neural Word Embeddings as Implicit Matrix Factorization”

Levy & Goldberg, NIPS 2014



What is SGNS learning?

• Levy&Goldberg [2014] proved that for large enough 𝑑
and enough iterations …

• … one obtains the word-context PMI matrix

𝑊

𝑑

𝑉 % 𝐶
𝑉&

𝑑 𝑀/01= 𝑉 %

𝑉&
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What is SGNS learning?

• Levy&Goldberg [2014] proved that for large enough 𝑑
and enough iterations …

• … one obtains the word-context PMI matrix …
• shifted by a global constant

𝑂𝑝𝑡 𝑤 ⋅ 𝑐 = 𝑃𝑀𝐼 𝑤, 𝑐 − log 𝑘

𝑊

𝑑

𝑉 % 𝐶
𝑉&

𝑑 𝑀/01= 𝑉 %

𝑉&

− log 𝑘
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where 𝑘 is the number of negative examples



What is SGNS learning?

• SGNS is doing something very similar to the older 
approaches

• SGNS factorizes the traditional word-context PMI matrix

• So does SVD!

• GloVe factorizes a similar word-context matrix
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But embeddings are still better, right?

• Plenty of evidence that embeddings outperform 
traditional methods
– “Don’t Count, Predict!” (Baroni et al., ACL 2014)
– GloVe (Pennington et al., EMNLP 2014)

• How does this fit with our story?
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Jeffrey Pennington, Richard Socher, Christopher Manning. 
GloVe: Global Vectors for Word Representation.
In: Proc. EMNLP-.14, 1532–1543, 2014.

Marco Baroni, Georgiana Dinu, Germán Kruszewski. Don’t count, 
predict! A systematic comparison of context-counting vs. context-
predicting semantic vectors. In: Proc. ACL-14, 238–247, 2014.



The Big Impact of “Small” Hyperparameters

• word2vec & GloVe are more than just algorithms…

• Introduce new hyperparameters

• May seem minor, but make a big difference in practice
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New Hyperparameters

• Preprocessing (word2vec)
– Dynamic Context Windows
– Subsampling of Frequent Words
– Deleting Rare Words

• Postprocessing (GloVe)
– Adding Context Vectors

• Association Metric (SGNS)
– Shifted PMI
– Context Distribution Smoothing

59



Dynamic Context Windows

Marco saw a furry little wampimuk hiding in the tree.
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Dynamic Context Windows

Marco saw a furry little wampimuk hiding in the tree.
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Dynamic Context Windows

Marco saw a furry little wampimuk hiding in the tree.
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The Word-Space Model (Sahlgren, 2006)
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Subsampling of Frequent Words

63

Distributed Representations of Words and Phrases and their Compositionality
Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean, NIPS 2013

• Counter imbalance of rare and frequent words
• Each word in the training set is discarded with a 

probability computed by

• where 𝑓(𝑤/) is the frequency of word 𝑤/ and 𝑡 is a 
chosen threshold



Adding Context Vectors

• SGNS creates word vectors 𝑤
• SGNS creates auxiliary context vectors 𝑐

– So do GloVe and SVD

• Instead of just 𝑤
• Represent a word as: 𝑤 + 𝑐

• Introduced by Pennington et al. (2014)
• Only applied to GloVe
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Don’t Count, Predict! ? 

• “word2vec is better than count-based methods”
[Baroni et al., 2014]

• Hyperparameter settings account for most of the 
reported gaps in count-based approaches

• Embeddings do not really outperform count-based 
methods

• No unique conclusion available
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Represent the meaning of sentence/paragraph/doc

• Paragraph Vector (Le and Mikolov, 2014)
– Extend word2vec to text level
– Also two models: add paragraph vector as the input
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Quoc Le and Tomas Mikolov. Distributed representations of 
sentences and documents. In Proceedings ICML'14. 2014.



Problem

• Learn low-dimensional, dense representations (or 
embeddings) for documents.

• Document embeddings can be used off-the-shelf to 
solve many IR applications such as,
§ Document Classification
§ Document Retrieval
§ Document Ranking

Doc2Sent2Vec: A Novel Two-Phase Approach for Learning Document Representation, Ganesh J, Manish Gupta, Vasudeva Varma



Power of 2Vec Representations

• Bag-of-words (BOW) or Bag-of-n-grams
§ Data sparsity
§ High dimensionality
§ Not/hardly capturing word order

• Latent Dirichlet Allocation (LDA)
§ Computationally inefficient for larger dataset.

• Paragraph Vector
§ Dense representation
§ Compact representation
§ Captures word order
§ Efficient to estimate

Doc2Sent2Vec: A Novel Two-Phase Approach for Learning Document Representation, Ganesh J, Manish Gupta, Vasudeva Varma



Paragraph Vector

• Learn document embedding by predicting the next 
word in the document using the context of the word
and the (‘unknown’) document vector as features.

• Resulting vector captures the topic of the document.
• Update the document vectors, but not the word vectors 

[Le et al.]
• Update the document vectors, along with the word 

vectors [Dai et al.]
§ Improvement in the accuracy for document similarity 

tasks.

Doc2Sent2Vec: A Novel Two-Phase Approach for Learning Document Representation, Ganesh J, Manish Gupta, Vasudeva Varma

Dai, A.M., Olah, C., Le, Q.V., Corrado, G.S.: Document embedding with 
paragraph vectors. In: NIPS Deep Learning Workshop. 2014

Quoc Le and Tomas Mikolov. Distributed representations of 
sentences and documents. In Proceedings ICML'14. 2014.



Doc2Sent2Vec Idea - Being granular helps

• Should we learn the document embedding from the 
word context directly?

• Can we learn the document embedding from the 
sentence context?
§ Explicitly exploit the sentence-level and word-level 

coherence to learn document and sentence embedding 
respectively.

Doc2Sent2Vec: A Novel Two-Phase Approach for Learning Document Representation, Ganesh J, Manish Gupta, Vasudeva Varma



Notation

• Document Set: D = {d1, d2, …, dM}; ‘M’ documents;
• Document: dm = {s(m,1), s(m,2), …, s(m,Tm)}; ‘Tm’ sentences;
• Sentence: s(m,n) = {w(n,1), w(n,2), …, w(n,Tn)}; ‘Tn’ words;
• Word: w(n,t);

Doc2Sent2Vec’s goal is to learn low-dimensional representations of 
words, sentences and documents as a continuous feature vector of 
dimensionality Dw , Ds and Dd respectively. 

Doc2Sent2Vec: A Novel Two-Phase Approach for Learning Document Representation, Ganesh J, Manish Gupta, Vasudeva Varma



Architecture Diagram

Doc2Sent2Vec: A Novel Two-Phase Approach for Learning Document Representation, Ganesh J, Manish Gupta, Vasudeva Varma



Phase 1: Learn Sentence Embedding

Idea: Learn sentence representation from the word sequence 
within the sentence.
Input Features:

§ Context words for target word w(n,t): w(n,t-cw), …, w(n,t-1), 
w(n,t+1), …, w(n,t+cw) (where ‘cw’ is the word context size)

§ Target Sentence: s(m,n) (where ‘m’ is the document id)
Output: w(n,t)
Task: Predict the target word using the concatenation of word 
vectors of context words along with the sentence vector as 
features.

§ Maximize the word likelihood: 
Lword= P(w(n,t)| w(n,t-cw), …, w(n,t-1), w(n,t+1), …, 

w(n,t+cw), s(m,n))

Doc2Sent2Vec: A Novel Two-Phase Approach for Learning Document Representation, Ganesh J, Manish Gupta, Vasudeva Varma



Phase 2: Learn Document Embedding

Idea: Learn document representation from the sentence 
sequence within the document.
Input Features: 

§ Context sentences for target sentence s(m,t): s(m,t-cs), …, 
s(m,t-1), s(m,t+1), …, s(m,t+cS) (where ‘cS’ is the sentence 
context size)

§ Target Document: d(m)
Output: s(m,t)
Novel Task: Predict the target sentence using the 
concatenation of sentence vectors of context sentences 
along with the document vector as features.

§ Maximize the sentence likelihood:
Lsent = P(s(m,t)| s(m,t-cs), …, s(m,t-1), s(m,t+1), …, s(m,t+cS), d(m))

Doc2Sent2Vec: A Novel Two-Phase Approach for Learning Document Representation, Ganesh J, Manish Gupta, Vasudeva Varma



Training

• Overall objective function: L = Lword + Lsent

• Use Stochastic Gradient Descent (SGD) to learn 
parameters

• Use Hierarchical Softmax (Mikolov et al.) to facilitate 
faster training

Doc2Sent2Vec: A Novel Two-Phase Approach for Learning Document Representation, Ganesh J, Manish Gupta, Vasudeva Varma



Latent Relational Structures

Processing natural language data:
ü Tokenization/Sentence Splitting
ü Part-of-speech (POS) tagging
• Phrase chunking
• Named entity recognition
• Coreference resolution
• Semantic role labeling
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An Introduction to Machine Learning and Natural Language Processing Tools,  , V. Srikumar, M. Sammons, N. Rizzolo

Ronan Collobert and Jason Weston. A unified architecture for natural language 
processing: deep neural networks with multitask learning. In Proceedings ICML 
'08. pp. 160–167. 2008.



Phrase Chunking

• Identifies phrase-level constituents in sentences

[NP Boris] [ADVP regretfully] [VP told] [NP his wife]
[SBAR that] [NP their child] [VP could not attend] [NP 
night school] [PP without] [NP permission] . 

• Useful for filtering: identify e.g. only noun phrases, or only 
verb phrases

• Used as source of features, e.g. distance, (abstracts away 
determiners, adjectives, for example), sequence,… 

– More efficient to compute than full syntactic parse
– Applications in e.g. Information Extraction – getting (simple) 

information about concepts of interest from text documents

• Hand-crafted chunkers (regular expressions/finite automata)
• HMM/CRF-based chunk parsers derived from training data

An Introduction to Machine Learning and Natural Language Processing Tools,  , V. Srikumar, M. Sammons, N. Rizzolo



Named Entity Recognition

• Identifies and classifies strings of characters representing 
proper nouns

• [PER Neil A. Armstrong] , the 38-year-old civilian commander, 
radioed to earth and the mission control room here: “[LOC 
Houston] , [ORG Tranquility] Base here; the Eagle has landed."

• Useful for filtering documents
- “I need to find news articles about organizations in which Bill Gates 

might be involved…”

• Disambiguate tokens: “Chicago” (team) vs. “Chicago” (city)

• Source of abstract features
- E.g. “Verbs that appear with entities that are Organizations”
- E.g. “Documents that have a high proportion of Organizations”

An Introduction to Machine Learning and Natural Language Processing Tools,  , V. Srikumar, M. Sammons, N. Rizzolo



Named Entity Recogniton: Definition

• NE involves identification of proper names in texts, 
and classification into a set of predefined categories 
of interest
– Three universally accepted categories: person, location

and organisation
– Other common tasks: recognition of date/time 

expressions, measures (percent, money, weight etc), 
email addresses etc.

– Other domain-specific entities: names of drugs, medical 
conditions, names of ships, bibliographic references etc

• NER ist not easy

“Introduction to Named Entity Recognition”, University of Sheffield 



Named Entity Classification

• Category definitions are intuitively quite clear, but there 
are many grey areas.

• Many of these grey area are caused by metonymy.
– Person vs. Artefact: “The ham sandwich wants his bill.” vs 

“Bring me a ham sandwich.”
– Organisation vs. Location : “England won the World Cup” 

vs. “The World Cup took place in England”.
– Company vs. Artefact: “shares in MTV” vs. “watching MTV”
– Location vs. Organisation: “she met him at Heathrow” vs. 

“the Heathrow authorities”

“Introduction to Named Entity Recognition”, University of Sheffield 



Basic Problems in NE

• Variation of NEs – e.g. John Smith, Mr Smith, John.
• Ambiguity of NE types

– John Smith (company vs. person)
– May (person vs. month)
– Washington (person vs. location)
– 1945 (date vs. time)

• Ambiguity with common words, e.g. “may”

“Introduction to Named Entity Recognition”, University of Sheffield 



More complex problems in NER

• Issues of style, structure, domain, genre etc.
– Punctuation, spelling, spacing, formatting, ….all have an 

impact

Dept. of Computing and Maths
Manchester Metropolitan University
Manchester
United Kingdom

> Tell me more about Leonardo
> Da Vinci

“Introduction to Named Entity Recognition”, University of Sheffield 



List Lookup Approach

• System that recognises only entities stored in its lists 
(gazetteers).

• Advantages - Simple, fast, language independent, easy 
to retarget

• Disadvantages – collection and maintenance of lists, 
cannot deal with name variants, cannot resolve 
ambiguity

“Introduction to Named Entity Recognition”, University of Sheffield 



Shallow Parsing Approach

• Internal evidence – names often have internal 
structure. These components can be either stored 
or guessed.

location: 
CapWord + {City, Forest, Center}

e.g. Sherwood Forest
Cap Word + {Street, Boulevard, Avenue, Crescent, Road}

e.g. Portobello Street

“Introduction to Named Entity Recognition”, University of Sheffield 



Shallow Parsing Approach

• External evidence - names are often used in very 
predictive local contexts

Location:
“to the” COMPASS “of” CapWord  

e.g. to the south of Loitokitok
“based in” CapWord

e.g. based in Loitokitok
CapWord “is a” (ADJ)? GeoWord

e.g. Loitokitok is a  friendly city

“Introduction to Named Entity Recognition”, University of Sheffield 



Difficulties in Shallow Parsing Approach

• Ambiguously capitalised words (first word in sentence)
[All American Bank] vs. All [State Police]

• Semantic ambiguity
“John F. Kennedy”  = airport (location)
“Philip Morris” = organisation

• Structural ambiguity 
[Cable and Wireless] vs. [Microsoft] and [Dell]
[Center for Computational Linguistics] vs. message from 

[City Hospital] for  [John Smith].

“Introduction to Named Entity Recognition”, University of Sheffield 



Coreference

• Identify all phrases that refer to each entity of interest – i.e., 
group mentions of concepts

• [Neil A. Armstrong] , [the 38-year-old civilian 
commander], radioed to [earth]. [He] said the 
famous words, “[the Eagle] has landed”."

• The Named Entity Recognizer only gets us part-way…
• …if we ask, “what actions did Neil Armstrong perform?”, we 

will miss many instances (e.g., “He said…”)
• Coreference resolver abstracts over different ways of 

referring to the same person
• Useful in feature extraction, information extraction

An Introduction to Machine Learning and Natural Language Processing Tools,  , V. Srikumar, M. Sammons, N. Rizzolo



Semantic Role Labeling (SRL)

An Introduction to Machine Learning and Natural Language Processing Tools,  , V. Srikumar, M. Sammons, N. Rizzolo

• SRL reveals relations 
and arguments in the 
sentence (where 
relations are expressed 
as verbs)

• Cannot abstract over 
variability of expressing 
the relations – e.g. kill 
vs. murder vs. slay…



Why is SRL Important – Applications

• Question Answering
– Q: When was Napoleon defeated?
– Look for: [PATIENT Napoleon] [PRED defeat-synset] [ARGM-TMP *ANS*]

• Machine Translation
English  (SVO) Farsi  (SOV)
[AGENT The little boy] [AGENT pesar koocholo] boy-little
[PRED kicked]                      [THEME toop germezi]      ball-red
[THEME the red ball]              [ARGM-MNR moqtam] hard-adverb 
[ARGM-MNR hard] [PRED zaad-e]                 hit-past

• Document Summarization
– Predicates and Heads of Roles summarize content

• Information Extraction
– SRL can be used to construct useful rules for IE

Automatic Semantic Role Labeling, S. Wen-tau Yih, K. Toutanova



Some History

• Minsky 74, Fillmore 1976: Frames describe events or 
situations

– Multiple participants, “props”, and “conceptual roles”
– E.g., agent, instrument, target, time, …

• Levin 1993: verb class defined by sets of frames (meaning-
preserving alternations) a verb appears in

– {break,shatter,..}: Glass X’s easily; John Xed the glass, …
– Cut is different: The window broke; *The window cut.

• FrameNet, late ’90s: based on Levin’s work: large corpus of 
sentences annotated with frames

• PropBank

Automatic Semantic Role Labeling, S. Wen-tau Yih, K. Toutanova

Marvin Minky. A Framework for Representing Knowledge Marvin Minsky, 
MIT-AI Laboratory Memo 306, June, 1974.

Charles J. Fillmore, Frame semantics and the nature of language
Annals of the New York Academy of Sciences 280(1):20 – 32, 1976.

Levin, B. English Verb Classes and Alternations: A Preliminary Investigation, 
University of Chicago Press, Chicago, IL. 1993.



FrameNet

Frame: Hit_target
(hit, pick off, shoot)
Agent
Target

Instrument
Manner

Means
Place
Purpose
Subregion
Time

Lexical units (LUs):
Words that evoke the frame
(usually verbs)

Frame elements (FEs):
The involved semantic roles

Non-CoreCore

[Agent Kristina] hit [Target Scott] [Instrument with a baseball] [Time yesterday ].

Gildea, Daniel; Jurafsky, Daniel. "Automatic Labeling of Semantic 
Roles”. Computational Linguistics. 28 (3): 245–288. 2002.



Proposition Bank (PropBank)

• Transfer sentences to propositions
– Kristina hit Scott ® hit(Kristina,Scott)

• Penn TreeBank ® PropBank
– Add a semantic layer on Penn TreeBank
– Define a set of semantic roles for each verb
– Each verb’s roles are numbered

…[A0 the company] to … offer [A1 a 15% to 20% stake] [A2 to the public]
…[A0 Sotheby’s] … offered [A2 the Dorrance heirs] [A1 a money-back guarantee]
…[A1 an amendment] offered [A0 by Rep. Peter DeFazio] …
…[A2 Subcontractors] will be offered [A1 a settlement] …

Palmer M, Kingsbury P, Gildea D. "The Proposition Bank: An Annotated 
Corpus of Semantic Roles". Computational Linguistics. 31 (1): 71–106. 2005.



Semantic Role Labeling (SRL)

An Introduction to Machine Learning and Natural Language Processing Tools,  , V. Srikumar, M. Sammons, N. Rizzolo

• SRL reveals relations 
and arguments in the 
sentence (where 
relations are expressed 
as verbs)

• Cannot abstract over 
variability of expressing 
the relations – e.g. kill 
vs. murder vs. slay…


