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Open-Domain Question Answering

• Answer Sentence Selection

Fulfill user’s information need with direct answers

Q: Who won the best actor Oscar in 1973?
S1: Jack Lemmon was awarded the Best Actor Oscar for Save the 

Tiger (1973).
S2: Academy award winner Kevin Spacey said that Jack Lemmon is 

remembered as always making time for others. 

Word-embedding based approaches 
Combined with models for enhanced lexical semantic
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Continuous Semantic Representations

• A lot of popular methods for creating representations
– Word/Document embedding: Vector Space Model (BoW)
– Dimension reduction: Latent Semantic Analysis
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Recap: Latent Semantic Analysis (LSA, ca. 1990)
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Michael Heck, The World of Word Vectors: Dialog Systems and Machine Learning, 2019
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Continuous Semantic Representations

• A lot of popular methods for creating representations
– Word/Document embedding: Vector Space Model (BoW)
– Dimension reduction: Latent Semantic Analysis
– Encoding of term co-occurrence information: PMI
– Shallow parsing: HMMs, MRFs, Deep Network Learning

• POS tagging, Phase chunking, NER, SRL

– Topic models: Latent Dirichlet Allocation 
– Word embedding w.r.t. contexts: Word2Vec, GloVe, 

Paragraph Vector (doc2vec)…
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Continuous Semantic Representations

sunny
rainy

windycloudy

car

wheel

cab sad

joy

emotion

feeling
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vY

vX vR

William W Cohen, Machine Learning Dept. CMU

Using Learned Relational Networks for IR

Instead of words, also named 
entities (represented by words) 
can be embedded

Two entities can be associated 
automatically

Shallow parsing and/or
semantic role labeling might help
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Goal: Predict relation membership
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Structure embedding due to similarities
“Knowledge graph” completion

Actually, we deal with database completion

Databases 
from text data 
are inherently 

incomplete



Relational Database Search vs. String Search
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Relational Data only for Important People
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Negative Sampling of Relational Structures?

• Naively selecting arbitrary tuples of instances as negative 
examples by sampling?

• Does not impose much control on the problem of 
learning embeddings

• Open-world vs. closed-world assumption
• Generative adversarial networks to generate negative 

examples of relational structures (not discussed in detail)
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Liwei Cai and William Yang Wang, "KBGAN: Adversarial Learning for 
Knowledge Graph Embeddings", in Proceedings NAACL 2018.



Semantics Needs More Than Similarity

Tomorrow will 
be rainy.

Tomorrow will 
be sunny.

𝑠𝑖𝑚𝑖𝑙𝑎𝑟(rainy, sunny)?

𝑎𝑛𝑡𝑜𝑛𝑦𝑚(rainy, sunny)?
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Leverage Linguistic Knowledge

• Can’t we just use the existing thesauri for information 
about synonyms and antonyms?
– Knowledge in these resources is never complete
– Often lack of “membership degree” for relations

• Various ways to measure “membership degree”

• Goal: Create a continuous semantic representation that
– Leverages existing rich linguistic resources
– Discovers new relations
– Enables us to measure the “degree” of multiple relations 

(not just similarity)
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Roadmap

• Two opposite relations: 
– Polarity Inducing Latent Semantic Analysis

• Multiple relations: 
– Multi-Relational Latent Semantic Analysis

• Relational domain knowledge

• Yih, Zweig & Platt. Polarity Inducing Latent Semantic Analysis. In EMNLP-CoNLL-12.
• Chang, Yih & Meek. Multi-Relational Latent Semantic Analysis. In EMNLP-13.
• Chang, Yih, Yang & Meek. Typed Tensor Decomposition of Knowledge Bases for Relation 

Extraction. In EMNLP-14.

EMNLP: Empirical Methods in Natural Language Processing 
CoNLL: Computational Natural Language Learning
ACL; Annual Meeting of the Association for Computational Linguistics 15



Problem: Handling Two Opposite Relations

• Can cope to some extent with homonyms and synonyms 
due to word context

• Embedding techniques cannot clearly distinguish antonyms 
– “Distinguishing synonyms and antonyms is still perceived as a difficult open 

problem.” [Poon & Domingos 09]

• Idea #1: Change the data representation

Hoifung Poon and Pedro Domingos. Unsupervised semantic parsing. In 
Proceedings EMNLP ‘09. 2009.

Synonyms: Different words, same meaning
Homonyms: Same words, different meanings

Antonyms: Opposite words
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Polarity Inducing LSA

• Data representation
– Encode two opposite relations in a matrix using “polarity”

• Synonyms & antonyms (e.g., from a thesaurus)

• Factorization
– Apply SVD to the matrix to find latent components

• Measuring degree of relation
– Cosine of latent vectors

Wen-tau Yih, Geoffrey Zweig, John Platt. Polarity Inducing Latent Semantic 
Analysis. In Proceedings EMNLP ‘12. 2012.
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joy gladden sorrow sadden goodwill

Group 1: “joyfulness” 1 1 1 1 0

Group 2: “sad” 1 1 1 1 0

Group 3: “affection” 0 0 0 0 1

Encode Synonyms & Antonyms in Matrix

• Joyfulness: joy, gladden; sorrow, sadden
• Sad: sorrow, sadden; joy, gladden

Target word: row-vector
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joy gladden sorrow sadden goodwill

Group 1: “joyfulness” 1 1 -1 -1 0

Group 2: “sad” -1 -1 1 1 0

Group 3: “affection” 0 0 0 0 1

Encode Synonyms & Antonyms in Matrix

• Joyfulness: joy, gladden; sorrow, sadden
• Sad: sorrow, sadden; joy, gladden

Inducing polarity

Cosine Score: + 𝑆𝑦𝑛𝑜𝑛𝑦𝑚𝑠

Target word: row-vector
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joy gladden sorrow sadden goodwill

Group 1: “joyfulness” 1 1 -1 -1 0

Group 2: “sad” -1 -1 1 1 0

Group 3: “affection” 0 0 0 0 1

Encode Synonyms & Antonyms in Matrix

• Joyfulness: joy, gladden; sorrow, sadden
• Sad: sorrow, sadden; joy, gladden

Inducing polarity
Target word: row-vector

Cosine Score: − 𝐴𝑛𝑡𝑜𝑛𝑦𝑚𝑠
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• Limitation of the matrix representation
– Each entry captures a particular type of relation between 

two entities, or
– Two opposite relations with the polarity trick

• Encoding other binary relations

– Is-A  (hyponym) – ostrich is a bird
– Part-whole – engine is a part of car

• Idea #2
– Encode multiple relations in a 3-way tensor 

(3-dim array)!

Problem: How to Handle More Relations?

M. Nickel, V. Tresp, and H.-P. Kriegel. A three-way model for collective learning
on multi-relational data. In Proceedings of the 28th International Conference on
International Conference on Machine Learning, ICML’11, pages 809–816, 2011. 21



• Represent word relations using a tensor
• Each slice encodes a relation between terms and 

target words.

0 0 0 0

0 0 1 0

1 0 0 0

0 0 0 0
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Synonym layer Antonym layer

1 1 0 0

1 1 0 0

0 0 1 0

0 0 0 0

Construct a tensor with two slices

Encode Multiple Relations in Tensor
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• Can encode multiple relations in the tensor

0 0 0 1

0 0 0 0

0 0 0 1

0 0 0 1

gla
dd

en

joy sa
dd

en
fee

lin
g

joyfulness
gladden

sad
anger

Hyponym layer

1 1 0 0

1 1 0 0

0 0 1 0

0 0 0 0

1 1 0 0

1 1 0 0

0 0 1 0

0 0 0 0

Encode Multiple Relations in Tensor

Hyponym IS-A/TYPE-OF hypernym
Metonym: Substitute for another term

(substitute usually used for sth else) 
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• Derive a low-rank approximation to generalize the data and to 
discover unseen relations

• SVD

Tensor Decomposition – Analogy to SVD
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• Derive a low-rank approximation to generalize the data and to 
discover unseen relations

• Apply Tucker decomposition and reformulate the results
(tensor factorization)
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Tensor Decomposition – Analogy to SVD
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Ledyard R. Tucker. "Some mathematical notes on three-mode factor 
analysis". Psychometrika. 31 (3): 279–311, 1966. 25



Measure Degree of Relation

• Similarity
– Cosine of the latent vectors

• Other relations (both symmetric and asymmetric)
– Take the latent matrix of the pivot relation (synonym)
– Take the latent matrix of the relation
– Cosine of the latent vectors after projection

26



𝑎𝑛𝑡 joy, sadden = cos 𝓦:,joy,#$% ,𝓦:,sadden,&%'
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Measure Degree of Relation: Raw Representation
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𝑎𝑛𝑡 joy, sadden = cos 𝓦:,joy,#$% ,𝓦:,sadden,&%'
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Measure Degree of Relation: Raw Representation
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Cos ( ,                )
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Representation of Facts (1/2)

• Collection of subj-pred-obj triples – (𝑒!, 𝑟, 𝑒")

𝑛: # entities, 𝑚: # relations

Subject Predicate Object

Obama Born-in Hawaii
Bill Gates Nationality USA

Bill 
Clinton

Spouse-of Hillary 
Clinton

Satya 
Nadella

Work-at Microsoft

… … …

M. Nickel, V. Tresp, and H.-P. Kriegel. A three-way model for collective learning
on multi-relational data. In Proceedings of the 28th International Conference on
International Conference on Machine Learning, ICML’11, pages 809–816, 2011. 30



Database Representation (2/2)

e1 … en

e 1
 …

 e
n χ

χ k

𝒳.

𝑅' : born-in

Hawaii

Obama 1

𝑘-th slice

A 0 entry means:
• Incorrect (false)
• Unknown

M. Nickel, V. Tresp, and H.-P. Kriegel. A three-way model for collective learning
on multi-relational data. In Proceedings of the 28th International Conference on
International Conference on Machine Learning, ICML’11, pages 809–816, 2011. 31



Factorization

32

M. Nickel, V. Tresp, and H.-P. Kriegel. A three-way model for collective learning
on multi-relational data. In Proceedings of the 28th International Conference on
International Conference on Machine Learning, ICML’11, pages 809–816, 2011.



Tensor Factorization

33

Nickel, M, Tresp, V, Kriegel, HP: Factorizing YAGO. Scalable Machine 
Learning for Linked Data. In Proceedings of the 21st International World 
Wide Web Conference, 2012.

• Values 𝑎# and 𝑎# are representations of the 𝑖-th and 𝑗-th 
entity by latent components 
(rows of 𝐴, columns of 𝐴$)

• Claim: Entities’ similarity in this space reflects 
entities’ similarity in relational domain

• 𝑅% models the interactions of the latent components in 
the 𝑘-th relation

• Could even invent new layers 𝑅%
• Expressing data in terms of newly invented latent 

components (new layers 𝑅%) is often referred to as 
predicate invention in statistical relational learning



𝑎𝑟𝑔𝑚𝑖𝑛!"

Tensor Decomposition Objective

~~ × ×

𝒳. 𝐀
𝐀*ℛ!

1
2 /

'
𝒳' −𝐀ℛ'𝐀( )

* +
1
2𝜆 𝐴 )

* +/
'
ℛ' )

*

Reconstruction Error (Loss) Regularization

k-th relation
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Frobenius Norm:

Rank 
reduction?

Dimension is a 
hyperparameter

Brett W. Bader, Richard A. Harshman, and Tamara G. Kolda. 2007. Temporal 
Analysis of Semantic Graphs Using ASALSAN. In Proc. ICDM ‘07. 2007



𝑓born/in(Obama, Hawaii)

=
𝐀Obama,∶ ℛborn−in 𝐀Hawaii,∶

1

Measure the Degree of a Relationship

× ×

𝐀
𝐀*ℛborn−in

Hawaii

Obama
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Prediction of Unknown Facts

36

Prediction of unknown fact party(Bill, Party X)



Link prediction

• -𝑋#&% = 𝑎#𝑅%𝑎&$ is the score that the model assigns to the 
truth of 𝑅% 𝑒# , 𝑒& or the existence of 𝑒# , 𝑒& ∈ 𝑅% .

• If -𝑋#&% > 𝜃, where 𝜃 is a threshold, then 𝑒# , 𝑒& ∈ 𝑅%
• Due to regularization, sparseness of 𝑅% is enforced

– Difficult to determine useful threshold
– Better use ranking and top-k queries

• To determine which entities most likely have a specific 
link to entity 𝑒# , it is sufficient to compute the matrix 
product 𝐴 𝑅%𝑎# , where 𝑎# is the latent vector for 𝑒#

• Exact inference is indeed tractable with this approach

37



Link Prediction

• Latent component representation of 𝐴𝑙 and 𝐿𝑦𝑛𝑑𝑜𝑛 will be similar to 
each other

– Both representations reflect that the corresponding entities are related to 
the Object 𝑃𝑎𝑟𝑡𝑦_𝑋

38



Link Prediction

• Therefore, 𝐵𝑖𝑙𝑙 and 𝐽𝑜ℎ𝑛 will also have a similar latent-component 
representation

• Consequently 𝑎!"##𝑅$%&'( 𝑎)*%&'(_, will yield a similar value 
to 𝑎-./0𝑅$%&'( 𝑎)*%&'(_,

• Missing relation can be predicted correctly
39



Collective Learning on Multi-Relational Data

40

This would break if 𝐵𝑖𝑙𝑙 and 𝐽𝑜ℎ𝑛 had different representations as subjects and objects



Benefits of the Latent Representation

• Retrieve similar documents
• Retrieve similar entities via latent representations
• Matrix 𝐴 can be interpreted as an embedding into a 

latent component space that reflects their similarity 
over all relations in the domain of discourse

• For similarity retrieval use ranking (and top-k), which is 
effectively computable

41



• Relational data – the entity type
– Relation can only hold between the right types of entities

• Words having is-a relation have the same part-of-speech
• For relation born-in, the entity types are: (person, location)

• Leverage type information to improve multi-relational LSA

• Idea #3: Change the objective function

Problem: Relational Domain Knowledge

42



Typed Multi-Relational LSA  (TRESCAL)

• Only legitimate entities are included in the objective 
function of tensor decomposition

• Benefits of leveraging the type information
– Faster model training time
– Higher prediction accuracy

• Experiments conducted using database
– Application to Relation Extraction

Chang, Kai-Wei & Yih, Wen-tau & Yang, Bishan & Meek, Chris. Typed 
Tensor Decomposition of Knowledge Bases for Relation Extraction. In: 
Proc. EMNLP-14. 2014. 43



Typed Tensor Decomposition Objective

~~ × ×

𝒳. 𝐀
𝐀*ℛ!

locations

persons Relation: born-in

• Impose constraints on embeddings
• How to reprensent instance-of relation?

• 𝑋𝑖 = ISA? Types/classes are sets not entities

Kai-Wei Chang, Scott Wen-tau Yih, Bishan Yang & Chris Meek
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• Reconstruction error:

• Improvements in learning time
• Performance improvements

Typed Tensor Decomposition Objective

1
2/

'
𝒳'2 −𝐀'!ℛ'𝐀'"

(
)
*

~~ × ×

𝒳.? 𝐀.- 𝐀..
*ℛ!

Kai-Wei Chang, Scott Wen-tau Yih, Bishan Yang & Chris Meek
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Chang, Kai-Wei & Yih, Wen-tau & Yang, Bishan & Meek, Chris. Typed 
Tensor Decomposition of Knowledge Bases for Relation Extraction. In: 
Proc. EMNLP-14. 2014.



Tasks

• Entity Retrieval: (𝑒# , 𝑟% , ? )
– One positive entity with 100 negative entities

• Relation Retrieval: (𝑒# , ? , 𝑒&)
– Positive entity pairs with equal number of negative pairs

46



RESCAL: Graphical Model in Plate Notation

47

Nickel, M, Tresp, V, Kriegel, HP: Factorizing YAGO. Scalable Machine 
Learning for Linked Data. In Proceedings of the 21st International World 
Wide Web Conference, 2012.

• Tensor factorization can 
be seen as a 
probabilistic model
– Specified here in plate 

notation

• With appropriate CPTs, 
queries for the 
distribution P(𝑅 𝑒# , 𝑒& )
can be answered

• Can be used for 
prediction of unknown 
facts



Types of Relations

48

if R(a, b) with a ≠ b, then R(b, a) must not hold,

Asymmetric =
antisymmetric and 

irreflexive



TransE: Translating Embeddings: 
Find an embedding for entities and 
relations so that R(X,Y) iff vY-vX ~= vRvY

vX vR

Using Learned Relational Networks for IR

Instead of words, also named 
entities (represented by words) 
can be embedded

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán, Jason 
Weston, and Oksana Yakhnenko. Translating embeddings for 
modeling multi-relational data. In Proceedings NIPS 2013. 49

Two entities can be 
associated automatically



TransE: Additive Scoring Function

• Inspired by word2vec

50



Loss Function

• Closed-world assumption: square loss

• Open-world assumption: triplet loss

– Need negative sampling

51
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Triple, triplet



TransE

52



TransH: Relation-specific Embeddings

53
Wang, et al. Knowledge graph embedding by translating 
on hyperplanes. In: Proc. AAAI-14. 2014.



TransR/CTransR: Relation-specific Embeddings

54
Lin, et al. Learning entity and relation embeddings for knowledge 
graph completion. In: Proc. AAAI 2015.



PTransE

55
Lin, et al. Modeling Relation Paths for Representation 
Learning of Knowledge Bases. In: Proc. EMNLP 2015.



PTransE
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Knowledge Graph?

🤔 Where is the knowledge in a knowledge graph (KG) ?
– Queries as with SQL database
– Embedding approaches rank existence of tuples
– Thresholds difficult to specify
– Use top-k queries with ranking w.r.t. score to establish existence of 

relations (or links)
– Want as many “true” tuples as possible in the answer set 

• Standard evaluation measures: Precision and Recall

– But application treat all query answers as true answers
– No uncertainty about answers to queries

😉Probabilistic database with open-world assumption ?
Ø Course “Non-standard Databases and Data Mining”
Ø But: Want sparsity (or “tuples computed on demand”)

57



Benchmark Datasets

58



Using Learned Relational Networks for IR

• Query answering: indirect queries requiring chains of reasoning
• DB Completion: exploits redundancy in the KB + chains to infer missing facts

Freebase 15k benchmark

tensor factorization

Translation-
based
embedding

baseline method

59

• Fraction of positives that 
rank in the top N among their 
negatives in validation set

• Rank of a positive example is 
determined by the rank of its score 
against the scores of a certain 
number of negative examples

• A rank of 1 is the “best” outcome as it 
means that the positive example had 
a higher score than all the negatives.



Using Learned Relational Networks for IR

60

Chang, Kai-Wei & Yih, Wen-tau & Yang, Bishan & 
Meek, Chris. Typed Tensor Decomposition of 
Knowledge Bases for Relation Extraction. In: Proc. 
EMNLP-14. 2014.

Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A 
Review of Relational Machine Learning for Knowledge Graphs. Proc. IEEE 
104, 1 (2016), 11–33. 2016.

P(k) = Precision @ Rank k (ranked precision)



TransD

• Projection matrices not only related to relation but also 
head/tail entities 

61
Ji, et al. Knowledge Graph Embedding via Dynamic 
Mapping Matrix. In: Proc. ACL-IJCNLP-15. 2015.



TransD

• Uses two vectors to represent a named symbol object 
(entity and relation)
– The first one represents 

the meaning of a(n) entity (relation), 
– the other one is used to 

construct mapping matrix dynamically

• Compared with TransR/CTransR, TransD not only 
considers the diversity of relations, but also entities

• TransD has less parameters and has no matrix-vector 
multiplication operations, which makes it applicable to 
large scale graphs

62



KG2E

• Represent relations / entities with Gaussian distribution 
• Consider (un)certainties of entities and relations

63
He, et al. Learning to Represent Knowledge Graphs with 
Gaussian Embedding. In: Proc. CIKM 2015.



Further Developments

• Stochastic Neighbor Embeddings (SNE)
– Non-linear dimensionality reduction

• Holographic Embeddings (HolE) 

• Poincaré Embeddings

64

Geoffrey Hinton and Sam Roweis. Stochastic neighbor embedding. In Proceedings of 
the 15th International Conference on Neural Information Processing Systems 
(NIPS'02). 2002.

Maximilian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical 
representations. In Proceedings of the 31st International Conference on Neural 
Information Processing Systems (NIPS'17). 2017.

Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio. Holographic embeddings of 
knowledge graphs. In Proceedings of the Thirtieth AAAI Conference on Artificial 
Intelligence (AAAI'16). AAAI Press, 1955–1961. 2016.



KB Completion with Tensor Networks

• Model a KG with a Neural Tensor Network (NTN) and 
represent entities via word vectors 

65
Socher, et al. Reasoning with neural tensor networks for 
knowledge base completion. In: Proc. NIPS 2013.



KB Completion with Tensor Networks

• It represents each entity as the average of its word vectors

• The goal of NTN is to be able to state whether two entities 
(e1, e2) are in a certain relationship R

– For instance, whether the relationship 
(e1, R, e2) = (Bengal tiger, has part, tail) 
is true and with what certainty. 

66

VectorBank VectorChina

VectorBank_of_China

VectorBank_of_China= 0.5*(VectorBank+ VectorChina)



KB Completion with Tensor Networks

• Each relation is described by a so-called tensor network 
and pairs of entities are given as input to the model

• Each entity has a vector representation, 
which can be constructed by its word vectors

• The model returns a high score 
if they are in that relationship and a low one otherwise

• This allows any fact, whether implicitly or explicitly mentioned in the database, 
to be answered with a certainty score

67

Large text data

Word2vec



KB Completion with Tensor Networks

• The Neural Tensor Network (NTN) replaces a standard 
linear neural network layer with a bilinear tensor layer 

– that directly relates the two entity vectors across multiple 
dimensions

– The model computes a score of how likely it is that two entities 
are in a certain relationship by the following NTN-based 
function 𝑔(𝑒1, 𝑅, 𝑒2): 

68

f = tanh is a standard nonlinearity 
applied element-wise

WR
[1:k] ∈ ℛ d×d×k is a tensor and the 

bilinear tensor product
Standard layer weight VR ∈ ℛ k×2d



Tensor Networks

• Originally developed in the context of condensed-
matter physics and based on renormalization group 
ideas
– Formal apparatus that allows systematic investigation of 

the changes of a physical system as viewed at different 
scales

71

I recommend studying 
tensor networks 
in more detail!



Back to Triple Scoring – Multiply instead of Add

• Multiplication: h ⚬ r =?= t
– RESCAL: score(h,r,t) = h⏉Wrt
Problem: Too many parameters!!

72

Pseudo 
neuro



Triple Scoring - Multiply

• Multiplication: h ⚬ r =?= t
– RESCAL: score(h,r,t) = h⏉Wrt
– DistMult: score(h,r,t) = h⏉diag(r)t

Simplify RESCAL by using a diagonal matrix

73

B. Yang, W. Yih, X. He, J. Gao, and L. Deng. Embedding entities and relations 
for learning and inference in knowledge bases. In Proceedings of the 
International Conference on Learning Representations (ICLR), 2015.



Triple Scoring - Multiply

• Multiplication: h ⚬ r =?= t
– RESCAL: score(h,r,t) = h⏉Wrt
– DistMult: score(h,r,t) = h⏉diag(r)t

Simplify RESCAL by using a diagonal matrix
Problem: Cannot deal with asymmetric relations!!
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Triple Scoring - Multiply

• Multiplication: h ⚬ r =?= t
– RESCAL: score(h,r,t) = h⏉Wrt
– DistMult: score(h,r,t) = h⏉diag(r)t

Simplify RESCAL by using a diagonal matrix
– ComplEx: score(h,r,t) = Re(h⏉diag(r)t)

Extend DistMult by introducing complex value 
embedding, so can handle asymmetric relations

75

_

Théo Trouillon, Christopher R. Dance, Éric Gaussier, Johannes Welbl, 
Sebastian Riedel, and Guillaume Bouchard. 2017. Knowledge graph 
completion via complex tensor factorization. J. Mach. Learn. Res. 18, 
1, 4735–4772. 2017.



Triple Scoring - Multiply

• Multiplication: h ⚬ r =?= t
– RESCAL: score(h,r,t) = h⏉Wrt
– DistMult: score(h,r,t) = h⏉diag(r)t
– ComplEx: score(h,r,t) = Re(h⏉diag(r)t)
– ConvE: Use convolutional network to reduce parameters
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RotatE

77

Zhiqing Sun, Zhi-Hong Deng, 
Jian-Yun Nie, Jian Tang:
RotatE: Knowledge Graph 
Embedding by Relational 
Rotation in Complex Space. In 
Proc. ICLR  2019



Overview
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Théo Trouillon, Christopher R. Dance, Éric Gaussier, Johannes Welbl, 
Sebastian Riedel, and Guillaume Bouchard. 2017. Knowledge graph 
completion via complex tensor factorization. J. Mach. Learn. Res. 18, 
1, 4735–4772. 2017.

F. L. Hitchcock. The expression of a tensor or a polyadic as a sum of products. 
J. Math. Phys, 6(1):164–189, 1927. 



Evaluation Metrics
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Evaluation

80

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, Jian Tang:
RotatE: Knowledge Graph Embedding by Relational Rotation 
in Complex Space. In Proc. ICLR 2019.



Fusion of Text and KG 

• Relation prediction for KG – r ~ t-h 
• Relation extraction from text 

81



RL4KG with Entity Descriptions 

• KG contains rich information besides network structure 
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TransE+Word2Vec 

• KG=>TransE, Text=>Word2Vec
• Make embeddings of the same entities 

in KGs and text related to each other 

83

Wang, et al. Knowledge graph and text jointly embedding. 
In: Proc. EMNLP 2014.



Relation Classification via CNN 

84
Zeng, et al. Relation Classification via Convolutional Deep 
Neural Network. In: Proc. COLING 2014.



Description-Embodied RL4KG 

• Enhance entity representation with descriptions 
• Model descriptions with convolutional network 

85

Xie, et al. Representation Learning of Knowledge Graphs 
with Entity Descriptions. In: Proc. AAAI 2016.



TransSparse

• Deals with heterogeneity …
– Some relations link many entity pairs and others do not

• … and imbalance
– The number of head entities and that of tail entities in a 

relation could be different

• Transfer matrices replaced by adaptive sparse matrices
– Sparseness degrees determined by the number of 

entities (or entity pairs) linked by relations

86

Guoliang Ji, Kang Liu, Shizhu He, and Jun Zhao. Knowledge graph 
completion with adaptive sparse transfer matrix. In Proceedings of the 
Thirtieth AAAI Conference on Artificial Intelligence (AAAI'16). 2016.



TransF

• Model the correlation between relations 
• Translation–based method mitigating the burden of 

relation projection by explicitly modeling the basis 
subspaces of projection matrices

87

Zichao Huang, Bo Li, and Jian Yin. Knowledge graph embedding via 
multiplicative interaction. In Proceedings of the 2nd International 
Conference on Innovation in Artificial Intelligence (ICIAI '18). 2018.



Software

• OpenKE
– https://github.com/thunlp/OpenKE

• KnowldgeGraphEmbedding
– https://github.com/DeepGraphLearning/KnowledgeGraphEm

bedding

• GraphVite
– https://graphvite.io/ 

• DGL-KGE 
– https://github.com/awslabs/dgl-ke

88

Zhaocheng Zhu, Shizhen Xu, Meng Qu, Jian Tang. “GraphVite: A 
High-Performance CPU-GPU Hybrid System for Node Embedding”. 
WWW’19. 2019.



Embedding Approaches: Summary

• Continuous semantic representations that
– Leverage existing rich linguistic resources
– Discover new relations
– Enable us to measure the degree of (different) relations

• Good ol’ fashioned AI
– Define embedding space
– Implement learning approach
– Evaluate against benchmark dataset

• Challenges
– Modeling complex relations (explained in detail)
– Fusion of text and KG (indicated above)
– Combination with symbolic logic for inference on KG (next)
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Back to Information Retrieval Agents

• Agents are told to fulfil IR goal
– How exactly is the IR goal specified?

• Search string
• (Abstract of) example document
• Formal query
• Relational structure as an example
• …

90



Human specifies goal: Solve a certain problem

91

Challenges of Human-Aware AI Systems: Subbarao Kambhampati

~

• MH human model of the problem to be solved
• MRh is the human’s understanding of the robot’s MR

• MR robot model of the problem to be solved
• MH

r is the robot’s understanding of MH (anticipate human behavior)
• MRh is the robot’s understanding of MRh (anticipate human’s expectations)

MR

~



Back to Information Retrieval Agents

• Agents are told to fulfil IR goal
– How exactly is the IR goal specified?

• Search string
• (Abstract of) example document
• Formal query
• Relational structure as an example
• …

• Agent develops plan to fulfil goal as fast as possible
– How is the IR goal specified internally?

• Match word vectors of IR goal with word vectors of documents
• Match relational structure of IR goal with

relational structures of documents
• …
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