
Intelligent Agents

1d-CNNs LSTMs ELMo Transformers BERT GPT

Ralf Möller
Universität zu Lübeck

Institut für Informationssysteme

Acknowledgements

• CS546: Machine Learning in NLP (Spring 2020)
– http://courses.engr.illinois.edu/cs546/

– Julia Hockenmaier http://juliahmr.cs.illinois.edu

– RNNs, LSTMs, ELMo, Transformers

• Machine Learning (Spring 2020)
– http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

– 李宏毅 (Hung-yi Lee) http://speech.ee.ntu.edu.tw/~tlkagk/

– ELMo, BERT: http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2019/Lecture/BERT%20(v3).pdf

2

http://courses.engr.illinois.edu/cs546/
http://juliahmr.cs.illinois.edu/
http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html
http://speech.ee.ntu.edu.tw/~tlkagk/
http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2019/Lecture/BERT%20(v3).pdf

Recap: Embedding Approaches

• ConvE: Uses convolutional network

• Does it really make sense to use 2d-CNN for graph data?
– Why is it effective to apply 2d filters to data that is

embedded into 2d space in a rather arbitrary way?

3
Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, Sebastian Riedel,
Convolutional 2D Knowledge Graph Embeddings. In: Proc. AAAI-18. 2018.

Entity

Relationship

Recap: Convolution

4

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

Recap: Convolutional Neural Networks (CNNs)

Main CNN idea for text:
Compute vectors for n-grams and group them afterwards

Example: “this takes too long” compute vectors for:
This takes, takes too, too long, this takes too, takes too long, this takes too long

Input matrix
Convolutional

3x3 filter

5

Recap: Convolutional Neural Networks (CNNs)

Main CNN idea for text:
Compute vectors for n-grams and group them afterwards

https://shafeentejani.github.io/assets/images/pooling.gif

max pool
2x2 filters
and stride 2

Dimension reduction

6

1d-CNNs for text

Text is a (variable-length) sequence of words (word vectors)

We can use a 1d-CNN to slide a window of n tokens across:
— filter size n = 3, stride = 1, no padding
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog

— filter size n = 2, stride = 2, no padding:
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog

CNNs (w/ ReLU and maxpool) can be used for classifying (parts of) the text

CS546 Machine Learning in NLP
7

CNN with multiple filters

Kim, Y. “Convolutional Neural Networks for Sentence Classification”, EMNLP (2014)

sliding over 3, 4 or 5 words at a time

8

Severyn, Aliaksei, and Alessandro Moschitti. "UNITN: Training Deep Convolutional Neural Network for Twitter Sentiment
Classification." SemEval@ NAACL-HLT. 2015.

CNN for text classification

Entities and relations
not considered…

9

Fasttext (https://fasttext.cc)

• Library for word embeddings and text classification
o static word embeddings and ngram features
o that get averaged together in one hidden layer
o hierarchical softmax output over class labels

• Enriching word vectors with subword information
o Skipgram model where each word is a sum of character ngram

embeddings and its own embedding
o Each word is deterministically mapped to ngrams

Armand Joulin, Edouard Grave, Piotr Bojanowski, Tomas Mikolov, Bag of
Tricks for Efficient Text Classification. Proceedings of the 15th Conference
of the European Chapter of the Association for Computational Linguistics:
Volume 2, Short Papers. 427-431. 2017.

Piotr Bojanowski, Edouard Grave, Armand Joulin, Tomas Mikolov. Enriching
Word Vectors with Subword Information. Transactions of the Association
for Computational Linguistics, Volume 5. 135-146. 2017.

Alon Jacovi, Oren Sar Shalom, Yoav Goldberg. Understanding
Convolutional Neural Networks for Text Classification. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP. 2018.

CS546 Machine Learning in NLP
10

https://fasttext.cc/

Multilingual Knowledge Graph Embeddings

11

MTransE [Chen et al. 2017a; 2017b]
- Joint learning of structure encoders and an alignment model
- Alignment techniques: Linear transforms (best), vector translations,
collocation (minimizing L2 distance)

JAPE [Sun et al. 2017]
+ Logistic-based proximity normalizer for entity attributes
ITransE [Zhu et al. 2017]
- self-training + cross-lingual collocation of entity embeddings
KDCoE [Chen et al., 2018] leverages a weakly aligned multilingual KG for semi-supervised cross-lingual
learning using entity descriptions
BootEA [Sun et al., 2018] tries iteratively enlarge the labeled entity pairs based on the bootstrapping
strategy

Recursive Networks – Or: Copying the Pattern

output

hidden

input

• Basic computational network copied per time slice
• Input: previous hidden state, output: next hidden state

• Compare with HMM:

Raint-1

Umbrellat-1

Raint

Umbrellat

Raint+1

Umbrellat+1

Rt-1 P(Rt|Rt-1)

T
F

0.7
0.3

Rt P(Ut|Rt)

T
F

0.9
0.2

Computational
model

Declarative
model

(generative)

12

• RNN

• HMM Filtering

13

t

Computing the hidden state at time t: h(t) = g(Uh(t−1) + Wx(t))
(t)
iThe i-the element of h : h = g(∑

j
j ∑

k

Ujih(t−1) + Wkix(t)
k)

Computing the Hidden State

What about
smoothing?

Recap: Activation Functions

Sigmoid (logistic function):
σ(x) = 1/(1 + e−x)

in the 0,1 range

Hyperbolic tangent:
tanh(x) = (e2x −1)/(e2x+1)
Returns values bound above and below
in the −1, +1 range

Rectified Linear Unit:
ReLU(x) = max(0, x)
Returns values bound below
in the 0, +∞ range

-0.5

0

0.5

1

Returns values bound above and below 1.5

2

2.5

3

-1
-3 -2 -1 0 1 2 3

1/(1+exp(-x))
tanh(x)

max(0,x)

CS546 Machine Learning in NLP
14

RNN Variants: LSTMs, GRUs

• Long Short Term Memory networks (LSTMs) are RNNs with a
more complex architecture to combine the last hidden state
with the current input.

• Gated Recurrent Units (GRUs) are a simplification of LSTMs
• Both contain “gates” to control how much of the input or past

hidden state to forget or remember

CS546 Machine Learning in NLP

ℎ!ℎ!"#
𝐶!"#

ℎ!"#

15

Gates

• A gate performs element-wise multiplication of
– the output of a d-dimensional sigmoid layer

(all elements between 0 and 1), and
– a d-dimensional input vector

• Result: a d-dimensional output vector which is like the input,
except some dimensions have been (partially) “forgotten”

16

CS546 Machine Learning in NLP

RNNs for Language Modeling

• If our vocabulary consists of 𝑉 words, the output
layer (at each time step) has 𝑉 units, one for each
word.

• The softmax gives a distribution over the 𝑉 words
for the next word.

• To compute the probability of a string w0w1…wn

wn+1 (where w0 = <s>, and wn+1 = <\s>), feed in wi

as input at time step 𝑖 and compute

∏ P(wi|w0 . . . wi−1)
i=1..n+1

CS546 Machine Learning in NLP
17

RNNs for Sequence Labeling

• In sequence labeling, we want to assign a label or
tag ti to each word wi

• Now the output layer gives a distribution over the
T possible tags.

• The hidden layer contains information about
the previous words and the previous tags.

• To compute the probability of a tag sequence t1…tn

for a given string w1…wn feed in wi (and possibly
ti-1) as input at time step i and compute
P(ti | w1…wi-1, t1…ti-1)

CS546 Machine Learning in NLP
18

Basic RNNs for Sequence Labeling

Each time step has a distribution over output classes

Extension: add a HMM/CRF layer to capture
dependencies among labels of adjacent tokens.

Janet will back the bill

RNN

CS546 Machine Learning in NLP
19

RNNs for Sequence Classification

If we just want to assign a label to the entire
sequence, we don’t need to produce output at each
time step, so we can use a simpler architecture.

We can use the hidden state of the last word in the
sequence as input to a feedforward net:

CS546 Machine Learning in NLP
20

Stacked RNNs

We can create an RNN that has “vertical” depth
(at each time step) by stacking multiple RNNs:

CS546 Machine Learning in NLP
21

Comparison with Dynamic Baysian Networks

22

Bidirectional RNNs

Unless we need to generate a sequence, we can run two RNNs
over the input sequence — one in the forward direction,
and one in the backward direction.
Their hidden states will capture different context information

is typically
concatenation (or element-wise addition, multiplication)
Hidden state of biRNN: h(t) = h(t) ⊕ h(t) wherebi fw bw

Computational
specification of

smoothing?

CS546 Machine Learning in NLP

⊕

23

Bidirectional RNNs for sequence classification

x1 x2 x3 xn

RNN 1 (Left to Right)

RNN 2 (Right to Left)

+

whn_for

h1_back

Combine the hidden state of the last word of the
forward RNN and the hidden state of the first word of
the backward RNN into a single vector

Softmax

CS546 Machine Learning in NLP
24

• Task: Read an input sequence and return an output sequence
• Machine translation: translate source into target language
• Dialog system/chatbot: generate a response

• Reading the input sequence: RNN Encoder

• Generating the output sequence: RNN Decoder

Encoder Decoder

Encoder-Decoder (seq2seq) model

hidden

input

output

CS546 Machine Learning in NLP

<s>

25

Encoder-Decoder (seq2seq) Model

Encoder RNN:
reads in the input sequence
passes its last hidden state to the initial hidden state
of the decoder

Decoder RNN:
generates the output sequence
typically uses different parameters from the encoder
may also use different input embeddings

CS546 Machine Learning in NLP
26

In general, any function over the encoder’s output
can be used as a representation of the context we
want to condition the decoder on.

We can feed the context in at any time step during
decoding (not just at the beginning).

A More General View of seq2seq

CS546 Machine Learning in NLP
27

Attention Mechanisms

s=1..S

Define a distribution α = (α1t, . . . , αSt) over the S
elements of the input sequence that depends on the current
output element t (with ∑ αst = 1; ∀s∈1...S 0 ≤ αst ≤ 1)

Use this distribution to compute a weighted average of the
input: ∑ αstos and feed that into the decoder.

s=1..S

hhttps://www.tensorflow.org/tutorials/text/nmt_with_attention

CS546 Machine Learning in NLP
28

http://www.tensorflow.org/tutorials/text/nmt_with_attention

Attention Mechanisms

hhttps://www.tensorflow.org/tutorials/text/nmt_with_attention

ht: current hidden state of decoder (target)
h’s: output of the encoder for word s (source)
Attention weights αts: distribution over h’s

αts depends on score(ht, h’s)
Context vector ct: weighted average of h’s
Attention vector αt: computed by feedforward
layer over ct and ht

CS546 Machine Learning in NLP
29

http://www.tensorflow.org/tutorials/text/nmt_with_attention

From RNNs to LSTMs

• In simple RNNs, hidden state depends
on previous hidden state and on the input:
• ht = g(Wh[ht−1, xt] + bh) with e.g. g=tanh

• Vanishing gradient problem
• RNNs can’t be trained effectively on long sequences

• LSTMs (Long Short-Term Memory networks) to the rescue
• Additional cell state passed through the network and

updated at each time step
• LSTMs define four different layers (gates) that read in

the previous hidden state and current input.

CS546 Machine Learning in NLP
30

Long Short Term Memory Networks (LSTMs)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
CS546 Machine Learning in NLP

31

Long Short Term Memory Networks (LSTMs)

At time , the LSTM cell reads in
— a c-dimensional previous cell state vector c

— a d-dimensional current input vector
At time , the LSTM cell returns
— a c-dimensional previous cell state vector ct

t−1
— an h-dimensional previous hidden state vector ht−1

t

t

— an h-dimensional previous hidden state vector ht
(which may also be passed to an output layer)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
CS546 Machine Learning in NLP

32

Bi-LSTM Encoder w/ HMM/CRF Layer

33

Contextualized
Representations

Embeddings from LanguageModels

Replace static embeddings (lexicon lookup) with
context-dependent embeddings (produced by a deep
language model)

=> Each token’s representation is a function of
the entire input sentence, computed by a deep
(multi-layer) bidirectional language model

=> Return for each token a (task-dependent) linear
combination of its representation across layers.

=> Different layers capture different information

CS546 Machine Learning in NLP
34

Embeddings from Language Model (ELMO)

• RNN-based language models (trained from lots of
sentences)

https://arxiv.org/abs/1802.05365

e.g., given “潮水退了就知道誰沒穿褲子”

RNN

RNN

<BOS> 潮水 退了

RNN

RNN

RNN

RNN

潮水 退了 就

…

…

RNN

RNN

退了 就 知道

RNN

RNN

RNN

RNN

潮水 退了 就

…

…

…

…

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

潮水 退了 就 知道 誰 沒穿 褲子 = When the tide goes out, you know who's not wearing pants.
35

https://arxiv.org/abs/1802.05365
http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

ELMO

RNN

RNN

<BOS> 潮水 退了

RNN

RNN

RNN

RNN

…

…

RNN

RNN

退了 就 知道

RNN

RNN

RNN

RNN

…

…

…

…

RNN RNN RNN … RNN RNN RNN ……

Each layer in deep LSTM can generate a
latent representation.

Which one should we use???

ℎ!

ℎ"

… … … … … …

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

36

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

ELMo architecture

• Train a multi-layer bidirectional language model
with character convolutions on raw text

• Each layer of this language model network
computes a vector representation for each
token.

• Freeze the parameters of the language model.
• For each task: train task-dependent softmax

weights to combine the layer-wise
representations into a single vector for each
token jointly with a task-specific model that uses
those vectors

CS546 Machine Learning in NLP
37

ELMO

潮水 退了 就 知道 ……

ELMO
Learned with the
down stream tasks

= 𝛼! + 𝛼"

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

38

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

ELMo’s bidirectional language models

• The forward LM is a deep LSTM that goes over the sequence
from start to end to predict token tk based on the prefix t1…tk-1:

p(tk|t1, …, tk−1; Θx, ΘLSTM, Θs)

• Parameters: token embeddings Θx LSTM ΘLSTM softmax Θs

• The backward LM is a deep LSTM that goes over the sequence
from end to start to predict token tk based on the suffix tk+1…tN:

p(tk|tk+1, …, tN;Θx, ΘLSTM, Θs)

• Train these LMs jointly, with the same parameters for the token
representations and the softmax layer (but not for the LSTMs)

N

∑
k=1

(k 1 k−1 x LSTM s k k+1 N x LSTM slog p(t | t , …, t ; Θ , Θ , Θ) + log p(t | t , …, t ; Θ , Θ , Θ))

CS546 Machine Learning in NLP
39

ELMo’s token representations

The input token representations are purely character-
based: a character CNN, followed by linear projection
to reduce dimensionality

“2048 character n-gram convolutional filters
with two highway layers, followed by a linear
projection to 512 dimensions”

Advantage over using fixed embeddings:
no UNK tokens, any word can be represented

CS546 Machine Learning in NLP
40

ELMo’s token representations

Given a token representation xk, each layer j of the LSTM language
models computes a vector representation hk,j for every token k.

With L layers, ELMo represents each token as

ELMo learns softmax weights stask to collapse these vectors into aj
single vector and a task-specific scalar γtask

CS546 Machine Learning in NLP
41

Learning objective:

Weighted Softmax

42[Wikipedia]

How do you use ELMo?

ELMo embeddings can be used as (additional) input
to any further language model

—ELMo can be tuned with dropout and L2-regularization
(so that all layer weights stay close to each other)

—It often helps to fine-tune the biLMs (train them further)
on task-specific raw text

with otherIn general: concatenate ELMotask
k

embeddings xk for token input

CS546 Machine Learning in NLP
43

Results

ELMo gave improvements on a variety of tasks:
— question answering (SQuAD)
— entailment/natural language inference (SNLI)
— semantic role labeling (SRL)
— coreference resolution (Coref)
— named entity recognition (NER)
— sentiment analysis (SST-5)

TASK PREVIOUS SOTA OUR ELMO +
BASELINE BASELINE

INCREASE
(ABSOLUTE/
RELATIVE)

85.8
88.7 ± 0.17
84.6
70.4

91.93 ± 0.19 92.22 ± 0.10

SQuAD
SNLI
SRL
Coref
NER
SST-5

Liu et al. (2017)
Chen et al. (2017)
He et al. (2017)
Lee et al. (2017)
Peters et al. (2017)
McCann et al. (2017)

84.4 81.1
88.6 88.0
81.7 81.4
67.2 67.2

90.15
53.7 51.4 54.7 ± 0.5

4.7 / 24.9%
0.7 / 5.8%
3.2 / 17.2%
3.2 / 9.8%
2.06 / 21%
3.3 / 6.8%

CS546 Machine Learning in NLP
44

Using ELMo at input vs output

The supervised models for question-answering, entailment
and SRL all use sequence architectures.
— We can concatenate ELMo to the input and/or the output
of that network (with different layer weights)
—> Input always helps, Input+output often helps
—> Layer weights differ for each task

Task
Input
Only

Input &
Output

Output
Only

SQuAD 85.1 85.6 84.8
SNLI 88.9 89.5 88.7
SRL 84.7 84.3 80.9

Table 3: Development set performance for SQuAD,
SNLI and SRL when including ELMo at different lo-
cations in the supervised model.

Figure 2: Visualization of softmax normalized biLM
layer weights across tasks and ELMo locations. Nor-
malized weights less then 1/3 are hatched with hori-
zontal lines and those greater then 2/3 are speckled.

CS546 Machine Learning in NLP
45

Transformers

Sequence transduction model based on attention
(no convolutions or recurrence)
— easier to parallelize than recurrent nets
— faster to train than recurrent nets
— captures more long-range dependencies

than CNNs with fewer parameters

Transformers use stacked self-attention and
pointwise, fully-connected layers for the encoder and
decoder

CS546 Machine Learning in NLP
46

Transformer
Architecture

CS546 Machine Learning in NLP
47Encoder Decoder

Encoder

A stack of N=6 identical layers
All layers and sublayers are 512-dimensional

Each layer consists of two sublayers
— one multi-headed self attention layer
— one position-wise fully connected layer

Each sublayer has a residual connection
and is normalized:
LayerNorm(x + Sublayer(x))

CS546 Machine Learning in NLP
48

Decoder

A stack of N=6 identical layers
All layers and sublayers are 512-d

Each layer consists of three sublayers
— one multi-headed self attention layer

over decoder output (ignoring future tokens)
— one multi-headed attention layer

over encoder output
— one position-wise fully connected layer

Each sublayer has a residual connection
and is normalized:
LayerNorm(x + Sublayer(x))

CS546 Machine Learning in NLP

Nx

49

Attention mechanisms

Compute a probability distribution α = (α1t, . . . , αSt) over the
encoder’s hidden states h(s) that depends on the decoder’s current h(t)

tsα =
exp(s(h(t), h(s)))

∑s′ exp(s(h(t),h(s′)))

Compute a weighted avg. of the encoder’s h(s): c(t) = ∑ αtsh(s)

(ts=1..S
(t) (t) (t)that gets then used with h , e.g. in o = tanh(W1h) + W2c)

— Hard attention (degenerate case, non-differentiable):
is a one-hot vector

— Soft attention (general case): is not a one-hot
— s(h(t), h(s)) = h(t) ⋅ h(s) is the dot product (no learnedparameters)
— s(h(t), h(s)) = (h(t))TWh(s) (learn a bilinear matrix W)
— s(h(t), h(s)) = vT tanh(W1h(t)+ W2h(s)) concat. hidden states

CS546 Machine Learning in NLP
50

Self-Attention

Attention so far (in seq2seq architectures):
In the decoder (which has access to the complete input
sequence), compute attention weights over encoder positions
that depend on each decoder position

Self-attention:
If the encoder has access to the complete input sequence,
we can also compute attention weights over encoder positions
that depend on each encoder position

self-attention:
encoder

For each decoder position t,
compute an attention weight for each encoder position s
renormalize these weights (that depend on t) w/ softmax
to obtain a new weighted avg. of the input sequence vectors

CS546 Machine Learning in NLP
51

Self-attention

naively:

Given T k-dimensional input vectors x(1)…x(i)…x(T),
compute T k-dimensional output vectors y(1)…y(i)…y(T)

where each y(i) is a weighted average of the input vectors, and
where the weights wij depend on y(i) and x(j)

y(i) = ∑ wijx(j)

j=1..T

Computing weights wij
use dot product: wi′j = ∑

k

x(i)x(j)
k k

ijfollowed by softmax: w =
exp(wi′j)

j ij∑ exp(w′)

CS546 Machine Learning in NLP
52

Queries, keys, values

• Let’s add learnable parameters (kxk weight matrices),
and turn each vector x(i) into three versions:

— Query vector q(i) = Wqx(i)

— Key vector: k(i) = Wkx(i)

— Value vector: v(i) = Wvx(i)

• The attention weight of the j-th position to compute the new output
or the i-th position depends on the query of i and the key of j:

(i)
j

w =
exp(q(i)k(j))

j
∑ exp(q(i)k(j))

= l lexp(∑l q(i)k(j))

j l l l∑ exp(∑ q(i)k(j))

∑
j=1..T

j

The new output vector for the i-th position depends on
the attention weights and value vectors of all input positions j:

y(i) = w(i)v(j)

CS546 Machine Learning in NLP
53

Scaling attention weights

Value of dot product grows with vector dimension k
To scale back the dot product, divide by k:

j
w(i) =

exp(q(i)k(j))/ (k)

j
∑ (exp(q(i)k(j))/ k)

CS546 Machine Learning in NLP
54

Scaled Dot-Product Attention

CS546 Machine Learning in NLP
55

Multi-Head attention

— Learn h different
linear projections of Q,K,V

— Compute attention
separately on each of
these h versions

— Concatenate and project
the resultant vectors to a
lower dimensionality.

— Each attention head
can use low dimensionality

CS546 Machine Learning in NLP
56

Position-wise feedforward nets

We train a feedforward net for each layer that only
reads in input for its token
(two linear transformations with ReLU in between)

Input and output: 512 dimensions
Internal layer: 2048 dimensions

Parameters differ from layer to layer
(but are shared across positions)
(cf. 1x1 convolutions)

CS546 Machine Learning in NLP
57

Positional Encoding

How does this model capture sequence order?

Positional embeddings have the same dimensionality
as word embeddings (512) and are added in.

Fixed representations: each dimension is a sinuoid (a
sine or cosine function with a different frequency)

CS546 Machine Learning in NLP
58

A word can have multiple senses.

Have you paid that money to the bank yet ?
It is safest to deposit your money in the bank .

The victim was found lying dead on the river bank .
They stood on the river bank to fish.

The hospital has its own blood bank.

The third sense or not?

https://arxiv.org/abs/1902.06006
http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

59

https://arxiv.org/abs/1902.06006
http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

Bidirectional Encoder Representations from Transformers (BERT)

• BERT = Encoder of Transformer

Encoder

BERT

潮水 退了 就 知道 ……

Learned from a large amount of text
without annotation

……

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

60

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

Training of BERT

• Approach 1:
Masked LM

BERT

潮水 退了 就 知道……

……

[MASK]

Linear Multi-class
Classifier

Predicting the
masked word

vocabulary
size

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

61

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

BERT

[CLS] 醒醒 吧 [SEP]

Training of BERT
Approach 2: Next Sentence Prediction

你 沒有 妹妹

Linear Binary
Classifier

yes [CLS]: the position that outputs
classification results
[SEP]: the boundary of two sentences
Approaches 1 and 2 are used at the same time.

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

62

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

BERT

[CLS] 醒醒 吧 [SEP]

Training of BERT
Approach 2: Next Sentence Prediction

眼睛 業障 重

Linear Binary
Classifier

No [CLS]: the position that outputs
classification results
[SEP]: the boundary of two sentences
Approaches 1 and 2 are used at the same time.

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

63

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

How to use BERT – Case 1

BERT

[CLS] w1 w2 w3

Linear
Classifier

class

Input: single sentence,
output: class

sentence

Example:
Sentiment analysis (our
HW),
Document
Classification

Trained from
Scratch

Fine-tune

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

64

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

How to use BERT – Case 2

BERT

[CLS] w1 w2 w3

Linear
Cls

class

Input: single sentence,
output: class of each word

sentence

Example: Slot filling

Linear
Cls

class

Linear
Cls

class

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

65

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

Linear
Classifier

w1 w2

How to use BERT – Case 3

BERT

[CLS] [SEP]

Class

Sentence 1 Sentence 2

w3 w4 w5

Input: two sentences, output: class
Example: Natural Language Inference

Given a “premise”, determining
whether a “hypothesis” is T/F/ unknown.

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

66

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

How to use BERT – Case 4

• Extraction-based Question
Answering (QA) (E.g. SQuAD)

𝐷 = 𝑑!, 𝑑", ⋯ , 𝑑#
𝑄 = 𝑞!, 𝑞", ⋯ , 𝑞#

QA
Model

output: two integers (𝑠, 𝑒)

𝐴 = 𝑞$, ⋯ , 𝑞%

Document:

Query:

Answer:

𝐷
𝑄

𝑠
𝑒

17

77 79

𝑠 = 17, 𝑒 = 17

𝑠 = 77, 𝑒 = 79
http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

67

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

q1 q2

How to use BERT – Case 4

BERT

[CLS] [SEP]
question document

d1 d2 d3

dot product

Softmax

0.50.3 0.2

The answer is “d2d3”.
s = 2, e = 3

Learned
from
scratch

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

68

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

q1 q2

How to use BERT – Case 4

BERT

[CLS] [SEP]
question document

d1 d2 d3

dot product

Softmax

0.20.1 0.7

The answer is “d2d3”.
s = 2, e = 3

Learned
from
scratch

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

69

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

BERT 屠榜……

SQuAD 2.0
http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

70

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

Enhanced Representation through Knowledge Integration (ERNIE)

• Designed for Chinese

https://arxiv.org/abs/1904.09223

BERT

ERNIE

Source of image:
https://zhuanlan.zhihu.com/p/59436589

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

71

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

What does BERT learn?

https://arxiv.org/abs/1905.05950
https://openreview.net/pdf?id=SJzSgnRcKX

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

72

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

Generative Pre-Training (GPT)

https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
Source of image: https://huaban.com/pins/1714071707/

ELMO
(94M)

BERT
(340M)

GPT-2
(1542M)

Transformer
Decoder

73

https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

Generative Pre-Training (GPT)

𝑣!𝑘!𝑞! 𝑣"𝑘"𝑞" 𝑣&𝑘&𝑞& 𝑣'𝑘'𝑞'

𝑎'𝑎&𝑎"𝑎!

<BOS> 潮水

2𝛼",! 2𝛼","

𝑏"

Many Layers …

退了

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

74

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

Generative Pre-Training (GPT)

𝑣!𝑘!𝑞! 𝑣"𝑘"𝑞" 𝑣&𝑘&𝑞& 𝑣'𝑘'𝑞'

𝑎'𝑎&𝑎"𝑎!

<BOS> 潮水

2𝛼&," 2𝛼&,&

𝑏&

Many Layers …

就

退了

2𝛼&,!

就http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

75

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

CoQA

𝑑!, 𝑑", ⋯ , 𝑑#,
”Q:”, 𝑞!, 𝑞", ⋯ , 𝑞#,
“A:”

Zero-shot Learning?
• Reading Comprehension

• Summarization 𝑑!, 𝑑", ⋯ , 𝑑#,”TL;DR:”

• Translation English sentence
1

= French sentence
1

English sentence
2

= French sentence
2

English sentence
3

=
http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

76

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

Visualization https://arxiv.org/abs/1904.02679
(The results below are from GPT-2)

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

77

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

BERT as a Markov Random Field Language Model

• Show that BERT (Devlin et al., 2018)
is a Markov random field language model

• Gives way to a natural procedure
to sample sentences from BERT
– Can produce high quality, fluent generations
– Generates sentences that are more diverse

but of slightly worse quality

78

Alex Wang, Kyunghyun Cho. BERT has a Mouth, and It Must Speak: BERT as
a Markov Random Field Language Model. Volume:
In Proc. of the Workshop on Methods for Optimizing and Evaluating Neural
Language Generation, June 2019.
https://arxiv.org/abs/1902.04094

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

https://arxiv.org/abs/1902.04094
http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

