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Recap: Embedding Approaches

• ConvE: Uses convolutional network

• Does it really make sense to use 2d-CNN  for graph data?
– Why is it effective to apply 2d filters to data that is 

embedded into 2d space in a rather arbitrary way?
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Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, Sebastian Riedel, 
Convolutional 2D Knowledge Graph Embeddings. In: Proc. AAAI-18. 2018.

Entity

Relationship



Recap: Convolution
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http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

Recap: Convolutional Neural Networks (CNNs)

Main CNN idea for text:
Compute vectors for n-grams and group them afterwards

Example: “this takes too long” compute vectors for: 
This takes, takes too, too long, this takes too, takes too long, this takes too long

Input matrix
Convolutional 

3x3 filter
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Recap: Convolutional Neural Networks (CNNs)

Main CNN idea for text:
Compute vectors for n-grams and group them afterwards

https://shafeentejani.github.io/assets/images/pooling.gif

max pool
2x2 filters 
and stride 2

Dimension reduction
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1d-CNNs for text

Text is a (variable-length) sequence of words (word vectors)

We can use a 1d-CNN to slide a window of n tokens across:
— filter size n = 3, stride = 1, no padding
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog

— filter size n = 2, stride = 2, no padding:
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog

CNNs (w/ ReLU and maxpool) can be used for classifying (parts of) the text

CS546 Machine Learning in NLP
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CNN with multiple filters

Kim, Y. “Convolutional Neural Networks for Sentence Classification”, EMNLP (2014)

sliding over 3, 4 or 5 words at a time 
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Severyn, Aliaksei, and Alessandro Moschitti. "UNITN: Training Deep Convolutional Neural Network for Twitter Sentiment 
Classification." SemEval@ NAACL-HLT. 2015.

CNN for text classification

Entities and relations
not considered…
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Fasttext (https://fasttext.cc )

• Library for word embeddings and text classification
o static word embeddings and ngram features
o that get averaged together in one hidden layer
o hierarchical softmax output over class labels

• Enriching word vectors with subword information
o Skipgram model where each word is a sum of character ngram 

embeddings and its own embedding
o Each word is deterministically mapped to ngrams

Armand Joulin, Edouard Grave, Piotr Bojanowski, Tomas Mikolov, Bag of 
Tricks for Efficient Text Classification. Proceedings of the 15th Conference 
of the European Chapter of the Association for Computational Linguistics: 
Volume 2, Short Papers. 427-431. 2017.

Piotr Bojanowski, Edouard Grave, Armand Joulin, Tomas Mikolov. Enriching 
Word Vectors with Subword Information. Transactions of the Association 
for Computational Linguistics, Volume 5. 135-146. 2017.

Alon Jacovi, Oren Sar Shalom, Yoav Goldberg. Understanding 
Convolutional Neural Networks for Text Classification.  In Proceedings 
of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and 
Interpreting Neural Networks for NLP. 2018.

CS546 Machine Learning in NLP
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Multilingual Knowledge Graph Embeddings

11

MTransE [Chen et al. 2017a; 2017b] 
- Joint learning of structure encoders and an alignment model 
- Alignment techniques: Linear transforms (best), vector translations, 
collocation (minimizing L2 distance) 

JAPE [Sun et al. 2017]
+ Logistic-based proximity normalizer for entity attributes 
ITransE [Zhu et al. 2017]
- self-training + cross-lingual collocation of entity embeddings 
KDCoE [Chen et al., 2018] leverages a weakly aligned multilingual KG for semi-supervised cross-lingual 
learning using entity descriptions
BootEA [Sun et al., 2018] tries iteratively enlarge the labeled entity pairs based on the bootstrapping 
strategy



Recursive Networks – Or: Copying the Pattern

output

hidden  

input

• Basic computational network copied per time slice
• Input: previous hidden state, output: next hidden state

• Compare with HMM:

Raint-1

Umbrellat-1

Raint

Umbrellat

Raint+1

Umbrellat+1

Rt-1 P(Rt|Rt-1)

T
F

0.7
0.3

Rt P(Ut|Rt)

T
F

0.9
0.2

Computational 
model

Declarative 
model 

(generative)
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• RNN

• HMM Filtering

13

t

Computing the hidden state at time t: h(t) = g(Uh(t−1) + Wx(t))
(t)
iThe i-the element of h : h = g(∑

j
j ∑

k

Ujih(t−1) + Wkix(t)
k )

Computing the Hidden State

What about 
smoothing?



Recap: Activation Functions

Sigmoid (logistic function):
σ(x) = 1/(1 + e−x)

in the 0,1 range

Hyperbolic tangent:
tanh(x) = (e2x −1)/(e2x+1)
Returns values bound above and below  
in the −1, +1 range

Rectified Linear Unit:
ReLU(x) = max(0, x)
Returns values bound below  
in the 0, +∞ range

-0.5

0

0.5

1

Returns values bound above and below 1.5

2

2.5

3

-1
-3 -2 -1 0 1 2 3

1/(1+exp(-x))
tanh(x)  

max(0,x)

CS546 Machine Learning in NLP
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RNN Variants: LSTMs, GRUs

• Long Short Term Memory networks (LSTMs) are RNNs with  a 
more complex architecture to combine the last hidden state  
with the current input.

• Gated Recurrent Units (GRUs) are a simplification of LSTMs
• Both contain “gates” to control how much of the input or past  

hidden state to forget or remember

CS546 Machine Learning in NLP
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Gates

• A gate performs element-wise multiplication of
– the output of a d-dimensional sigmoid layer

(all elements between 0 and 1), and
– a d-dimensional input vector

• Result: a d-dimensional output vector which is like the input,  
except some dimensions have been (partially) “forgotten”

16
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RNNs for Language Modeling

• If our vocabulary consists of 𝑉 words, the output 
layer  (at each time step) has 𝑉 units, one for each
word.

• The softmax gives a distribution over the 𝑉 words 
for  the next word.

• To compute the probability of a string w0w1…wn

wn+1 (where w0 = <s>, and wn+1 = <\s>), feed in wi

as input at time step 𝑖 and compute

∏ P(wi|w0 . . . wi−1)
i=1..n+1

CS546 Machine Learning in NLP
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RNNs for Sequence Labeling

• In sequence labeling, we want to assign a label or 
tag  ti to each word wi

• Now the output layer gives a distribution over the
T  possible tags.

• The hidden layer contains information about 
the  previous words and the previous tags.

• To compute the probability of a tag sequence t1…tn 

for  a given string w1…wn feed in wi (and possibly 
ti-1) as  input at time step i and compute 
P(ti | w1…wi-1, t1…ti-1)

CS546 Machine Learning in NLP
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Basic RNNs for Sequence Labeling

Each time step has a distribution over output classes

Extension: add a HMM/CRF layer to capture
dependencies  among labels of adjacent tokens.

Janet will back the bill

RNN

CS546 Machine Learning in NLP
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RNNs for Sequence Classification

If we just want to assign a label to the entire  
sequence, we don’t need to produce output at each  
time step, so we can use a simpler architecture.

We can use the hidden state of the last word in the  
sequence as input to a feedforward net:

CS546 Machine Learning in NLP
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Stacked RNNs

We can create an RNN that has “vertical” depth  
(at each time step) by stacking multiple RNNs:

CS546 Machine Learning in NLP
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Comparison with Dynamic Baysian Networks

22



Bidirectional RNNs

Unless we need to generate a sequence, we can run two RNNs  
over the input sequence — one in the forward direction,
and one in the backward direction.
Their hidden states will capture different context information

is typically
concatenation (or element-wise addition, multiplication)
Hidden state of biRNN: h(t) = h(t) ⊕ h(t) wherebi fw bw

Computational 
specification of 

smoothing?

CS546 Machine Learning in NLP
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Bidirectional RNNs for sequence classification

x1 x2 x3 xn

RNN 1 (Left to Right)

RNN 2 (Right to Left)

+

whn_for

h1_back

Combine the hidden state of the last word of the  
forward RNN and the hidden state of the first word of  
the backward RNN into a single vector

Softmax

CS546 Machine Learning in NLP
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• Task: Read an input sequence and return an output sequence
• Machine translation: translate source into target language
• Dialog system/chatbot: generate a response

• Reading the input sequence: RNN Encoder  

• Generating the output sequence: RNN Decoder

Encoder Decoder

Encoder-Decoder (seq2seq) model

hidden

input

output

CS546 Machine Learning in NLP

<s>
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Encoder-Decoder (seq2seq) Model

Encoder RNN:
reads in the input sequence
passes its last hidden state to the initial hidden state  
of the decoder

Decoder RNN:
generates the output sequence
typically uses different parameters from the encoder  
may also use different input embeddings

CS546 Machine Learning in NLP
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In general, any function over the encoder’s output  
can be used as a representation of the context we  
want to condition the decoder on.

We can feed the context in at any time step during  
decoding (not just at the beginning).

A More General View of seq2seq

CS546 Machine Learning in NLP
27



Attention Mechanisms

s=1..S

Define a distribution α = (α1t, . . . , αSt) over the S  
elements of the input sequence that depends on the current  
output element t (with ∑ αst = 1; ∀s∈1...S 0 ≤ αst ≤ 1 )

Use this distribution to compute a weighted average of the  
input: ∑ αstos and feed that into the decoder.

s=1..S

hhttps://www.tensorflow.org/tutorials/text/nmt_with_attention

CS546 Machine Learning in NLP
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Attention Mechanisms

hhttps://www.tensorflow.org/tutorials/text/nmt_with_attention

ht: current hidden state of decoder (target)
h’s: output of the encoder for word s (source)
Attention weights αts: distribution over h’s

αts depends on score(ht, h’s)  
Context vector ct: weighted average of h’s  
Attention vector αt: computed by feedforward  
layer over ct and ht

CS546 Machine Learning in NLP
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From RNNs to LSTMs

• In simple RNNs, hidden state depends 
on previous hidden state and on the input:
• ht = g(Wh[ht−1, xt] + bh) with e.g. g=tanh

• Vanishing gradient problem
• RNNs can’t be trained effectively on long sequences

• LSTMs (Long Short-Term Memory networks) to the rescue
• Additional cell state passed through the network and

updated at each time step
• LSTMs define four different layers (gates) that read in 

the previous hidden state and current input.

CS546 Machine Learning in NLP
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Long Short Term Memory Networks (LSTMs)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
CS546 Machine Learning in NLP
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Long Short Term Memory Networks (LSTMs)

At time , the LSTM cell reads in
— a c-dimensional previous cell state vector c

— a d-dimensional current input vector  
At time , the LSTM cell returns
— a c-dimensional previous cell state vector ct

t−1
— an h-dimensional previous hidden state vector ht−1

t

t

— an h-dimensional previous hidden state vector ht 
(which may also be passed to an output layer)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
CS546 Machine Learning in NLP
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Bi-LSTM Encoder w/ HMM/CRF Layer

33

Contextualized
Representations



Embeddings from LanguageModels

Replace static embeddings (lexicon lookup) with  
context-dependent embeddings (produced by a deep 
language model)

=> Each token’s representation is a function of
the entire input sentence, computed by a deep
(multi-layer) bidirectional language model

=> Return for each token a (task-dependent) linear  
combination of its representation across layers.

=> Different layers capture different information

CS546 Machine Learning in NLP
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Embeddings from Language Model (ELMO)

• RNN-based language models (trained from lots of 
sentences)

https://arxiv.org/abs/1802.05365

e.g., given “潮水退了就知道誰沒穿褲子”

RNN

RNN

<BOS> 潮水 退了

RNN

RNN

RNN

RNN

潮水 退了 就

…

…

RNN

RNN

退了 就 知道

RNN

RNN

RNN

RNN

潮水 退了 就

…

…

…

…

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

潮水 退了 就 知道 誰 沒穿 褲子 = When the tide goes out, you know who's not wearing pants.
35
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ELMO

RNN

RNN

<BOS> 潮水 退了

RNN

RNN

RNN

RNN

…

…

RNN

RNN

退了 就 知道

RNN

RNN

RNN

RNN

…

…

…

…

RNN RNN RNN … RNN RNN RNN ……

Each layer in deep LSTM can generate a 
latent representation.

Which one should we use???

ℎ!

ℎ"

… … … … … …

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html
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ELMo architecture

• Train a multi-layer bidirectional language model  
with character convolutions on raw text

• Each layer of this language model network  
computes a vector representation for each
token.

• Freeze the parameters of the language model.
• For each task: train task-dependent softmax  

weights to combine the layer-wise 
representations  into a single vector for each 
token jointly with a task-specific model that uses 
those vectors

CS546 Machine Learning in NLP
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ELMO

潮水 退了 就 知道 ……

ELMO
Learned with the 
down stream tasks

= 𝛼! + 𝛼"

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html
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ELMo’s bidirectional language models

• The forward LM is a deep LSTM that goes over the sequence  
from start to end to predict token tk based on the prefix t1…tk-1:

p(tk|t1, …, tk−1; Θx, ΘLSTM, Θs)

• Parameters: token embeddings Θx LSTM ΘLSTM softmax Θs

• The backward LM is a deep LSTM that goes over the sequence  
from end to start to predict token tk based on the suffix tk+1…tN:  

p(tk|tk+1, …, tN;Θx, ΘLSTM, Θs)

• Train these LMs jointly, with the same parameters for the token  
representations and the softmax layer (but not for the LSTMs)

N

∑
k=1

( k 1 k−1 x LSTM s k k+1 N x LSTM slog p(t | t , …, t ; Θ , Θ , Θ ) + log p(t | t , …, t ; Θ , Θ , Θ ))

CS546 Machine Learning in NLP
39



ELMo’s token representations

The input token representations are purely character-
based: a character CNN, followed by linear projection
to reduce dimensionality

“2048 character n-gram convolutional filters  
with two highway layers, followed by a linear  
projection to 512 dimensions”

Advantage over using fixed embeddings:
no UNK tokens, any word can be represented

CS546 Machine Learning in NLP
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ELMo’s token representations

Given a token representation xk, each layer j of the LSTM language  
models computes a vector representation hk,j for every token k.

With L layers, ELMo represents each token as

ELMo learns softmax weights stask to collapse these vectors into aj
single vector and a task-specific scalar γtask

CS546 Machine Learning in NLP
41

Learning objective:



Weighted Softmax

42[Wikipedia]



How do you use ELMo?

ELMo embeddings can be used as (additional) input  
to any further language model

—ELMo can be tuned with dropout and L2-regularization  
(so that all layer weights stay close to each other)

—It often helps to fine-tune the biLMs (train them further)  
on task-specific raw text

with otherIn general: concatenate ELMotask
k

embeddings xk for token input

CS546 Machine Learning in NLP
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Results

ELMo gave improvements on a variety of tasks:
— question answering (SQuAD)
— entailment/natural language inference (SNLI)
— semantic role labeling (SRL)
— coreference resolution (Coref)
— named entity recognition (NER)
— sentiment analysis (SST-5)

TASK PREVIOUS SOTA OUR ELMO +
BASELINE BASELINE

INCREASE  
(ABSOLUTE/  
RELATIVE)

85.8
88.7 ± 0.17
84.6
70.4

91.93 ± 0.19 92.22 ± 0.10

SQuAD  
SNLI  
SRL
Coref
NER
SST-5

Liu et al. (2017)  
Chen et al. (2017)  
He et al. (2017)  
Lee et al. (2017)  
Peters et al. (2017)
McCann et al. (2017)

84.4 81.1
88.6 88.0
81.7 81.4
67.2 67.2

90.15
53.7 51.4 54.7 ± 0.5

4.7 / 24.9%
0.7 / 5.8%
3.2 / 17.2%
3.2 / 9.8%
2.06 / 21%
3.3 / 6.8%

CS546 Machine Learning in NLP
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Using ELMo at input vs output

The supervised models for question-answering, entailment  
and SRL all use sequence architectures.
— We can concatenate ELMo to the input and/or the output  
of that network (with different layer weights)
—> Input always helps, Input+output often helps
—> Layer weights differ for each task

Task
Input  
Only

Input &  
Output

Output  
Only

SQuAD 85.1 85.6 84.8
SNLI 88.9 89.5 88.7
SRL 84.7 84.3 80.9

Table 3: Development set performance for SQuAD,
SNLI and SRL when including ELMo at different lo-
cations in the supervised model.

Figure 2: Visualization of softmax normalized biLM
layer weights across tasks and ELMo locations. Nor-
malized weights less then 1/3 are hatched with hori-
zontal lines and those greater then 2/3 are speckled.

CS546 Machine Learning in NLP
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Transformers

Sequence transduction model based on attention  
(no convolutions or recurrence)
— easier to parallelize than recurrent nets
— faster to train than recurrent nets
— captures more long-range dependencies

than  CNNs with fewer parameters

Transformers use stacked self-attention and  
pointwise, fully-connected layers for the encoder and  
decoder

CS546 Machine Learning in NLP
46



Transformer  
Architecture

CS546 Machine Learning in NLP
47Encoder Decoder



Encoder

A stack of N=6 identical layers
All layers and sublayers are 512-dimensional

Each layer consists of two sublayers
— one multi-headed self attention layer
— one position-wise fully connected layer

Each sublayer has a residual connection  
and is normalized:
LayerNorm(x + Sublayer(x))

CS546 Machine Learning in NLP
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Decoder

A stack of N=6 identical layers
All layers and sublayers are 512-d

Each layer consists of three sublayers
— one multi-headed self attention layer

over decoder output (ignoring future tokens)
— one multi-headed attention layer  

over encoder output
— one position-wise fully connected layer

Each sublayer has a residual connection  
and is normalized:
LayerNorm(x + Sublayer(x))

CS546 Machine Learning in NLP
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Attention mechanisms

Compute a probability distribution α = (α1t, . . . , αSt) over the
encoder’s hidden states h(s) that depends on the decoder’s current h(t)

tsα =
exp(s(h(t), h(s)))

∑s′ exp(s(h(t),h(s′)))

Compute a weighted avg. of the encoder’s h(s): c(t) = ∑ αtsh(s)

(ts=1..S
(t) (t) (t)that gets then used with h , e.g. in o = tanh(W1h ) + W2c )

— Hard attention (degenerate case, non-differentiable):  
is a one-hot vector

— Soft attention (general case): is not a one-hot
— s(h(t), h(s)) = h(t) ⋅ h(s) is the dot product (no learnedparameters)
— s(h(t), h(s)) = (h(t))TWh(s) (learn a bilinear matrix W)
— s(h(t), h(s)) = vT  tanh(W1h(t)+ W2h(s)) concat. hidden states

CS546 Machine Learning in NLP
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Self-Attention

Attention so far (in seq2seq architectures):
In the decoder (which has access to the complete input  
sequence), compute attention weights over encoder positions  
that depend on each decoder position

Self-attention:
If the encoder has access to the complete input sequence,
we can also compute attention weights over encoder positions  
that depend on each encoder position

self-attention:
encoder

For each decoder position t,
compute an attention weight for each encoder position s  
renormalize these weights (that depend on t) w/ softmax  
to obtain a new weighted avg. of the input sequence vectors

CS546 Machine Learning in NLP
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Self-attention

naively:

Given T k-dimensional input vectors x(1)…x(i)…x(T),  
compute T k-dimensional output vectors y(1)…y(i)…y(T)

where each y(i) is a weighted average of the input vectors, and
where the weights wij depend on y(i) and x(j)

y(i) = ∑ wijx( j)

j=1..T

Computing weights wij
use dot product: wi′j = ∑

k

x(i)x( j)
k k

ijfollowed by softmax: w =
exp(wi′j)

j ij∑ exp(w′)

CS546 Machine Learning in NLP
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Queries, keys, values

• Let’s add learnable parameters (kxk weight matrices),  
and turn each vector x(i) into three versions:

— Query vector q(i) = Wqx(i)

— Key vector: k(i) = Wkx(i)

— Value vector: v(i) = Wvx(i)

• The attention weight of the j-th position to compute the new output  
or the i-th position depends on the query of i and the key of j:

(i)
j

w =
exp(q(i)k( j))

j
∑ exp(q(i)k( j))

= l lexp(∑l q(i)k( j))

j l l l∑ exp( ∑ q(i)k( j))

∑
j=1..T

j

The new output vector for the i-th position depends on
the attention weights and value vectors of all input positions j:

y(i) = w(i)v( j)

CS546 Machine Learning in NLP
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Scaling attention weights

Value of dot product grows with vector dimension k
To scale back the dot product, divide by k:

j
w(i) =

exp(q(i)k( j))/ (k)

j
∑ (exp(q(i)k( j))/ k)

CS546 Machine Learning in NLP
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Scaled Dot-Product Attention

CS546 Machine Learning in NLP
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Multi-Head attention

— Learn h different
linear projections of Q,K,V

— Compute attention  
separately on each of  
these h versions

— Concatenate and project
the resultant vectors to a
lower dimensionality.

— Each attention head
can use low dimensionality

CS546 Machine Learning in NLP
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Position-wise feedforward nets

We train a feedforward net for each layer that only  
reads in input for its token
(two linear transformations with ReLU in between)

Input and output: 512 dimensions  
Internal layer: 2048 dimensions

Parameters differ from layer to layer  
(but are shared across positions)  
(cf. 1x1 convolutions)

CS546 Machine Learning in NLP
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Positional Encoding

How does this model capture sequence order?

Positional embeddings have the same dimensionality  
as word embeddings (512) and are added in.

Fixed representations: each dimension is a sinuoid (a  
sine or cosine function with a different frequency)

CS546 Machine Learning in NLP
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A word can have multiple senses. 

Have you paid that money to the bank yet ?
It is safest to deposit your money in the bank .

The victim was found lying dead on the river bank .
They stood on the river bank to fish.

The hospital has its own blood bank.

The third sense or not?

https://arxiv.org/abs/1902.06006
http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html
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Bidirectional Encoder Representations from Transformers (BERT)

• BERT =  Encoder of Transformer 

Encoder

BERT

潮水 退了 就 知道 ……

Learned from a large amount of text 
without annotation

……

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html
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Training of BERT

• Approach 1: 
Masked LM 

BERT

潮水 退了 就 知道……

……

[MASK]

Linear Multi-class
Classifier

Predicting the 
masked word

vocabulary 
size

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html
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BERT

[CLS] 醒醒 吧 [SEP]

Training of BERT
Approach 2: Next Sentence Prediction 

你 沒有 妹妹

Linear Binary
Classifier

yes [CLS]: the position that outputs 
classification results 
[SEP]: the boundary of two sentences
Approaches 1 and 2 are used at the same time.

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html
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BERT

[CLS] 醒醒 吧 [SEP]

Training of BERT
Approach 2: Next Sentence Prediction 

眼睛 業障 重

Linear Binary
Classifier

No [CLS]: the position that outputs 
classification results 
[SEP]: the boundary of two sentences
Approaches 1 and 2 are used at the same time.

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html
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How to use BERT – Case 1

BERT

[CLS] w1 w2 w3

Linear 
Classifier

class

Input: single sentence, 
output: class

sentence

Example:
Sentiment analysis (our 
HW),
Document 
Classification

Trained from 
Scratch 

Fine-tune

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html
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How to use BERT – Case 2

BERT

[CLS] w1 w2 w3

Linear 
Cls

class

Input: single sentence, 
output: class of each word

sentence

Example: Slot filling 

Linear 
Cls

class

Linear 
Cls

class

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html
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Linear 
Classifier

w1 w2

How to use BERT – Case 3

BERT

[CLS] [SEP]

Class

Sentence 1 Sentence 2

w3 w4 w5

Input: two sentences, output: class
Example: Natural Language Inference 

Given a “premise”, determining 
whether a “hypothesis” is T/F/ unknown.

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html
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How to use BERT – Case 4 

• Extraction-based Question 
Answering (QA) (E.g. SQuAD)

𝐷 = 𝑑!, 𝑑", ⋯ , 𝑑#
𝑄 = 𝑞!, 𝑞", ⋯ , 𝑞#

QA
Model

output: two integers (𝑠, 𝑒) 

𝐴 = 𝑞$, ⋯ , 𝑞%

Document:

Query:

Answer:

𝐷
𝑄

𝑠
𝑒

17

77 79

𝑠 = 17, 𝑒 = 17

𝑠 = 77, 𝑒 = 79
http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html
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q1 q2

How to use BERT – Case 4 

BERT

[CLS] [SEP]
question document

d1 d2 d3

dot product

Softmax

0.50.3 0.2

The answer is “d2d3”.
s = 2, e = 3

Learned 
from 
scratch

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html
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q1 q2

How to use BERT – Case 4 

BERT

[CLS] [SEP]
question document

d1 d2 d3

dot product

Softmax

0.20.1 0.7

The answer is “d2d3”.
s = 2, e = 3

Learned 
from 
scratch

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html
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BERT 屠榜……

SQuAD 2.0
http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html
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Enhanced Representation through Knowledge Integration (ERNIE)

• Designed for Chinese

https://arxiv.org/abs/1904.09223

BERT

ERNIE

Source of image:
https://zhuanlan.zhihu.com/p/59436589

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html
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What does BERT learn?

https://arxiv.org/abs/1905.05950
https://openreview.net/pdf?id=SJzSgnRcKX

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html
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Generative Pre-Training (GPT) 

https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
Source of image: https://huaban.com/pins/1714071707/

ELMO 
(94M)

BERT 
(340M)

GPT-2 
(1542M)

Transformer 
Decoder
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Generative Pre-Training (GPT) 

𝑣!𝑘!𝑞! 𝑣"𝑘"𝑞" 𝑣&𝑘&𝑞& 𝑣'𝑘'𝑞'

𝑎'𝑎&𝑎"𝑎!

<BOS> 潮水

2𝛼",! 2𝛼","

𝑏"

Many Layers …

退了

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html
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Generative Pre-Training (GPT) 

𝑣!𝑘!𝑞! 𝑣"𝑘"𝑞" 𝑣&𝑘&𝑞& 𝑣'𝑘'𝑞'

𝑎'𝑎&𝑎"𝑎!

<BOS> 潮水

2𝛼&," 2𝛼&,&

𝑏&

Many Layers …

就

退了

2𝛼&,!

就http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html
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CoQA

𝑑!, 𝑑", ⋯ , 𝑑#,
”Q:”, 𝑞!, 𝑞", ⋯ , 𝑞#, 
“A:”

Zero-shot Learning?
• Reading Comprehension 

• Summarization 𝑑!, 𝑑", ⋯ , 𝑑#,”TL;DR:”

• Translation English sentence 
1

= French sentence 
1

English sentence 
2

= French sentence 
2

English sentence 
3

=
http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html
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Visualization https://arxiv.org/abs/1904.02679
(The results below are from GPT-2)

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html
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BERT as a Markov Random Field Language Model

• Show that BERT (Devlin et al., 2018) 
is a Markov random field language model

• Gives way to a natural procedure 
to sample sentences from BERT
– Can produce high quality, fluent generations
– Generates sentences that are more diverse 

but of slightly worse quality
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Alex Wang, Kyunghyun Cho. BERT has a Mouth, and It Must Speak: BERT as 
a Markov Random Field Language Model. Volume:
In Proc. of the Workshop on Methods for Optimizing and Evaluating Neural 
Language Generation, June 2019.
https://arxiv.org/abs/1902.04094
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