
Intelligent Agents
GNNs, ExpressGNN, pLogicNet, MLN Learning

Prof. Dr. Ralf Möller
Universität zu Lübeck

Institut für Informationssysteme

Acknowledgements

2

• Slides for this presentation are taken from
– Representation Learning on Networks

snap.stanford.edu/proj/embeddings-www, WWW 2018
– Efficient Probabilistic Logic Reasoning with Graph Neural Networks

Yuyu Zhang, Xinshi Chen, Yuan Yang, Arun Ramamurthy, Bo Li, Yuan Qi
& Le Song (slides taken from a presentation by Hengda Shi, Gaohong
Liu and Jian Weng)

– Probabilistic Logic Neural Network for Reasoning, Meng Qu, Jian Tang
(slides taken from a presentation by Zijie Huang, Roshni Iyer, Alex
Wang)

• Slides have been adapted (all faults are mine)

Embedding Nodes

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

3

• Encode nodes so that …
- similarity in the embedding space approximates …
- similarity in the original network

Embedding Nodes

4

similarity(u, v) ⇡ z>v zu

Need to define!

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

d-dimensional
embedding

Recap: Dot Product

Wikipedia

(𝜑)

𝜑

||ba||

Simple (“Shallow”) Embedding Approaches

6

Solve optimization problem
• Select embedding vectors for nodes

such that “similar” nodes have similar vectors

Various ways to specify similarity of nodes
• Adjacency-based embedding
• Multi-hop embedding
• Random walk approaches

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

More or less clever
approaches, but

appropriate similarity
features should
better be found

automatically

Hamilton et al. Representation Learning on Graphs: Methods
and Applications. IEEE Data Engineering Bulletin on Graph
Systems. 2017.

Vectors with d components
(with d being a

hyperparameter)

Probability that u and v co-occur in a
random walk over the network

z>u zv ⇡

From “Shallow” to “Deep”

7

• Shallow: Define features based on selected features

Z =
Dimension/size of
embeddings d

One column per node

Embedding
matrix

Embedding vector for a specific
node

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

𝑧!

From “Shallow” to “Deep”

8

• Limitations of shallow encoding:
– O(|Vd|) parameters needed

• No parameter sharing
• Every node has its own unique embedding vector

– Inherently “transductive” (not inductive)
• Impossible to generate embeddings for nodes

that were not seen during training
– Does not incorporate node features

• Many graphs have nodes with features
that we can and should leverage

• Need to find embeddings based on holistic view on graph

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Scarselli et al. The Graph Neural Network Model.
IEEE Transactions on Neural Networks. 2005,

Setup

9

• Assume we have a graph G:
– V is the vertex set.
– A is the adjacency matrix (assume binary).
– X	∈ R𝒎×|𝑽| is a matrix of nodes and their features.

• Categorical attributes, text, image data
– E.g., profile information in a social network.

• Node degrees, clustering coefficients, etc.
• Indicator vectors (i.e., one-hot encoding of each node)

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Neighborhood Aggregation

10

• Key idea
– Generate node embeddings based on local neighborhoods
– Nodes aggregate information from their neighbor
– Computation graph for every node

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Neighborhood Aggregation

11

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

xA

xB

xC

xE
xF

xA

xA

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

• Nodes have embeddings at each layer
• Model can be of arbitrary depth
• “layer-0” embedding of node u

is its input features, i.e., 𝒙𝑢

What’s in the
boxes?

Layer-2

Layer-1

Layer-0

average of neighbor’s
previous layer embeddings

Graph Networks (GNNs)

12

• Basic approach: Average neighbor messages and apply a linear
transformation with non-linear normalization

• Define a loss function on the embeddings, ℒ(𝑧')
Initial “layer 0” embeddings are equal to

node features

kth layer
embedding of 𝑣

non-linearity
(e.g., ReLU or tanh)

previous layer
embedding of v

h0
v = xv

hk
v = �

0

@Wk

X

u2N(v)

hk�1
u

|N(v)| +Bkh
k�1
v

1

A , 8k > 0

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Graph (Neural) Networks

Unsupervised Training

13

• After K-layers of neighborhood aggregation, we get output embeddings
for each node

• Feed these embeddings into any loss function …
• and run stochastic gradient descent

to train the aggregation parameters

trainable matrices
(i.e., what we learn) h0

v = xv

hk
v = �

0

@Wk

X

u2N(v)

hk�1
u

|N(v)| +Bkh
k�1
v

1

A , 8k 2 {1, ...,K}

zv = hK
v

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Supervised Training

14

• E.g., based on node classification 𝑦! ∈ {0, 1}:

L =
X

v2V

yv log(�(z
>
v ✓)) + (1� yv) log(1� �(z>v ✓))

output node embedding

classification
weights

node class label

Human or
bot?

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Overview of Model Design

15

1) Define a neighborhood
aggregation function.

zA

2) Define a loss function on the
embeddings, ℒ(𝑧")

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Overview of Model Design

16

3) Train on a set of nodes, i.e., a batch
of compute graphs

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Overview of Model

17

4) Generate embeddings for nodes as
needed

Even for nodes we never
trained on!!!!

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Inductive Capability

18

INPUT GRAPH

B

D
E

F

CA

Compute graph for node A Compute graph for node B

shared parameters

shared parameters

Wk Bk

• Same aggregation parameters are shared for all nodes.
• Number of model parameters is sublinear in |V| …
• … and we can generalize to unseen nodes!

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Inductive Capability

19

Inductive node embedding generalize to entirely unseen graphs

e.g., train on protein interaction graph from model organism A and
generate embeddings on newly collected data about organism B

train on one graph generalize to new graph

zu

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Inductive Capability

20

train with snapshot new node arrives
generate embedding
for new node

Many application settings constantly encounter previously unseen nodes.
e.g., Reddit, YouTube, GoogleScholar, ….

Need to generate new embeddings “on the fly”

zu

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Neighborhood Aggregation

21

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

???

?

?

?

What else can we put
in the box?

• Key distinctions are in how different approaches
aggregate messages

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Graph Convolutional Networks (GCNs)

22

• Slight variation on the neighborhood aggregation idea:

• Empirically, this configuration to give the best results
– More parameter sharing
– Down-weights high degree neighbors

hk
v = �

0

@Wk

X

u2N(v)[v

hk�1
up

|N(u)||N(v)|

1

A

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Semi-supervised classification with graph convolutional networks
TN Kipf, M Welling. In Proc. 5th International Conference on Learning
Representations (ICLR-17), 2017.

same matrix for self and neighbor
embeddings

per-neighbor normalization

GraphSAGE (SAmple and aggreGatE)

23

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

???

?

?

?

• So far we have aggregated the neighbor messages by
taking their (weighted) average. Can we do better?

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

hk
v = �

�⇥
Ak · agg({hk�1

u , 8u 2 N(v)}),Bkh
k�1
v

⇤�

Any differentiable function that maps
set of vectors to a single vector.

concatenate self embedding and neighbor embedding

GraphSAGE Variants

24

• Mean:

• Pool:
– Transform neighbor vectors and apply symmetric vector function

• LSTM-based RNNs:
– Apply LSTM to random permutation of neighbors (LSTMs work on seqences)

• Transformers?

agg =
X

u2N(v)

hk�1
u

|N(v)|

agg = �
�
{Qhk�1

u , 8u 2 N(v)}
�

agg = LSTM
�
[hk�1

u , 8u 2 ⇡(N(v))]
�

element-wise mean/max

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive
representation learning on large graphs. In Proc. NIPS’17. 2017.

Neighborhood Aggregation

25

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

• GCNs and GraphSAGE generally only 2-3 layers deep
• What if we want to go deeper?

– Overfitting from too many parameters.
– Vanishing/exploding gradients during backpropagation

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

A

A

C

F

B

E

A

A

D

B

C ….

Gated Graph Networks

26

• Use techniques from recurrent networks
• Parameter sharing across layers, recurrent state update

same mappings across layers

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Handle >20 layers:
• Allows for complex information about global

graph structure to be propagated to all nodes

1. Get “message” from neighbors at step k:

2. Update node “state” using Gated Recurrent Unit (GRU)
New node state depends on the old state and
the message from neighbors:

Aggregation function does not
depend on kmk

v = W
X

u2N(v)

hk�1
u

Neighborhood aggregation with RNN state update

27

hk
v = GRU(hk�1

v ,mk
v)

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Yujia Li Richard Zemel Marc Brockschmidt Daniel Tarlow,
Gated Graph Sequence Neural Networks
Proceedings of ICLR’16. 2016.

https://arxiv.org/abs/1406.1078

(Sub)graph Embeddings

28

• So far we have focused on node-level embeddings…

• But what about subgraph embeddings?

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

(Sub)graph Embeddings

29

• Use representative as a virtual node

• Sum or average node embeddings:

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

zS =
X

v2S

zv

How to embed
(sub)graphs
with millions or
billions of
nodes?

How to do the
analog of CNN
“pooling” on
networks?

Duvenaud et al. Convolutional Networks on Graphs for Learning Molecular
Fingerprints. In Proc. ICML 2016.

Li et al. Gated Graph Sequence Neural Networks. In Proc. ICLR. 2016.

Summary so far

30

• Key idea: Generate node embeddings based on local
neighborhoods.
– GraphSAGE

• Generalized neighborhood aggregation

– Gated Graph Networks
• Neighborhood aggregation + recursion

(same mappings for a layer) + GRUs

– Graph Convolutional Networks
• Average neighborhood information

and stack computational networks

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Recent Advances in Graph Networks

31

• Attention-based neighborhood aggregation
(Weightings for neighbors)
– Graph Attention Networks (Velickovic et al., 2018)
– GeniePath (apaptive receptive paths) (Liu et al., 2018)

• Generalizations based on spectral convolutions
(eigen-decomposition of graph Laplacian 𝐿)
– Geometric Deep Learning (Bronstein et al., 2017)
– Mixture Model CNNs (Monti et al., 2017)

• Speed improvements via subsampling
– FastGCNs (Chen et al., 2018)
– Stochastic GCNs (Chen et al., 2017)

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018
𝐿 = 𝐷 − 𝐴 (degree matrix – adjacency matrix)

https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1802.00910
https://arxiv.org/abs/1611.08097
https://arxiv.org/pdf/1611.08402.pdf
https://arxiv.org/abs/1801.10247
https://arxiv.org/abs/1710.10568

Graph Networks, Embeddings, and KGs

• Graph networks allow for the computation of
embeddings for nodes in a KG

• With embeddings, existence of links between nodes can
be estimated (KG completion)
– See also, e.g., node2vec

• If nodes originate from words …
• … we have another way to embed nodes

– See also, e.g., word2vec
– KG completion based on word embeddings

32

node2vec: Scalable Feature Learning for Networks. A. Grover, J. Leskovec.
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), 2016

Approaches for Completing KGs

● Graph Network approach
● Embedding approach
● What about probabilistic graphical models?

➢ Markov logic networks for link estimation?

33

Advantages of MLNs

• Incorporate domain knowledge with first-order logic
– Composition

• ∀𝑋, 𝑌, 𝑍: 𝑅! 𝑋, 𝑌 ∧ 𝑅" 𝑌, 𝑍 → 𝑅#(𝑋, 𝑍)
– Inverse relations

• ∀𝑋, 𝑌: 𝑅! 𝑋, 𝑌 → 𝑅"(𝑌, 𝑋)
– Symmetry

• ∀𝑋, 𝑌: 𝑅! 𝑋, 𝑌 → 𝑅!(𝑌, 𝑋)
– Subrelation

• ∀𝑋, 𝑌: 𝑅! 𝑋, 𝑌 → 𝑅"(𝑋, 𝑌)

34

MLNs and Knowledge Graphs

Ground KG of MLN

Knowledge graph
(e.g., from text)
as evidence

Markov Logic Networks

Pros:
• Logic formulas incorporate prior knowledge
• Allows MLN to generalize in tasks

with small amount of labeled data

Cons:
• Inference in MLN is computationally intensive
• Logic formulas can only cover a small part of the possible

combinations of knowledge graph relations in real-world
texts

36

Graph Networks / Word-based Embeddings

Pros:
• Efficiency – Directly work on KG
• Compactness – GNNs with shared parameters can be

memory efficient
• Expressiveness – GNN can capture structure knowledge

encoded in the KG, and so-called tunable embeddings
can encode entity-specific information (see below)

Cons:
• GNNs do not explicitly incorporate prior knowledge

into models and may require many labeled examples
for a target task

37

Combining MLNs and KG Embeddings

• KG Completion
– With MLN model 𝑀.
– With embedding approaches

• GNN-based (ExpressGNN)

• Embedding based (pLogicNet)

• Learn new MLN model 𝑀!"# based on completed KG

38

Efficient Probabilistic Logic Reasoning with Graph Neural Networks
Yuyu Zhang, Xinshi Chen, Yuan Yang, Arun Ramamurthy, Bo Li, Yuan Qi & Le Song.
In: Proc. ICLR-20. https://iclr.cc/virtual/poster_rJg76kStwH.html 2020.

Probabilistic Logic Neural Network for Reasoning, Meng Qu, Jian Tang.
In: Proc. NeurIPS-20. https://github.com/DeepGraphLearning/pLogicNet 2019.

https://iclr.cc/virtual/poster_rJg76kStwH.html
https://github.com/DeepGraphLearning/pLogicNet

Variational EM for MLN Learning

• MLN used to model the joint probabilistic distribution of all observed
and latent variables, 𝑂 and 𝐻, respectively

𝑃! 𝑂,𝐻 ≔
1

𝑍 𝑤
exp(/

"∈$
𝑤" /

%!∈&!

𝜙(𝑎"))

• Training an MLN (𝑤, 𝐹) means to determine the weights 𝑤" of the
formulas 𝑓 ∈ 𝐹

• An MLN can be trained by maximizing the log-likelihood of all observed
facts 𝑙𝑜𝑔𝑃! 𝑂 , i.e., 9𝑤'(= 𝑎𝑟𝑔𝑚𝑎𝑥

!
log 𝑃!(𝑂) and 𝑤 = 9𝑤'(

• Due to intractability caused by hidden variables, instead of optimizing
the log-likelihood, we optimize the evidence lower bound (ELBO) s.t.

log 𝑃! 𝑂 ≥ 𝐿)(*+(𝑄,, 𝑃!)
• The goal is to find a distribution 𝑄, that approximates 𝑃! “from below”

E step: Inference

• Infer the posterior distribution of the latent variables, where 𝑃! is fixed
and 𝑄, is optimized to minimize the KL divergence between 𝑄,(𝐻|𝑂)
and 𝑃!(𝐻|𝑂)

• Estimate the true posterior with a mean-field approximation
• In mean-field variational approximation, each unobserved ground

formula 𝑟 𝑎- ∈ 𝐻 is independently inferred as:
𝑄, 𝐻 𝑂 ≔ ∏- %" ∈.𝑄,(𝑟 𝑎-)

• Each 𝑄,(𝑟 𝑎-) follows a Bernoulli distribution
• Parameterize 𝑄, with GNN

𝑎" is a sequence of parameters that fits the arity of 𝑟
𝑟 𝑎" ∈ 𝐻 is a slight abuse of notation

E step: Inference

• With mean-field approximation, 𝐿)(*+(𝑄,, 𝑃!) can be reorganized as:

𝐿#$%& 𝑄', 𝑃(= 𝔼)!(+|&) log 𝑃(𝑂,𝐻 − log𝑄' 𝐻|𝑂

= 𝔼)!(+|&) log
1

𝑍 𝑤
exp 7

.∈0
𝑤.7

1"∈2"
∅. 𝑎. − 𝔼)!(+|&) log:3 1# ∈+

𝑄' 𝑟 𝑎3

= 𝔼)!(+|&) 7.∈0
𝑤.7

1"∈2"
∅. 𝑎. − log 𝑍(𝑤) − 𝔼)!(+|&) 73 1# ∈+

log𝑄' 𝑟 𝑎3

=7
.∈0

𝑤.7
1"∈2"

𝔼)!(+|&) ∅. 𝑎. − log 𝑍 𝑤 −7
3 1# ∈+

𝔼)!(+|&)[log𝑄' 𝑟 𝑎3]

E step: Inference

• The term ∑"∈$𝑤" ∑%!∈&! 𝔼/4(.|+) ∅" 𝑎" sums over all possible
logic formulae and all possible assignments to each formula

• The term ∑- %" ∈.𝔼/4 𝐻 𝑂 [log𝑄, 𝑟 𝑎-] sums over all possible
latent variables

• Therefore, both terms used in the objective function make the
computational problem intractable

E step: Inference with Sampling

• How can we deal with this problem?

• Do not iterate over all possible values but use sampling

• In each optimization iteration,
a batch of ground formulae will be sampled

• For each formula in sampled batch, do the computations
w.r.t. observations of involved latent variables

• 𝑍(𝑤) needs to be adapted in order to compensate for sampling

E step: Add-on

• If the task has sufficient labeled data, a supervised learning objective
will be added to enhance parameter estimation

𝐿3%453 𝑄, =/
- %" ∈+

𝑙𝑜𝑔𝑄,(𝑟 𝑎-)

• The label loss function is complementary to ELBO on predicates that
are not well covered by logic rules but have enough observed facts

• Therefore, the E step objective function that combines knowledge in
the MLN and supervision from labeled data would be
(𝜆 is a hyperparameter):

𝐿, = 𝐿)(*+ 𝑄,, 𝑃! + 𝜆𝐿3%453(𝑄,)

M step: Learning

• In the M step, the weights of logic formulae in MLN will be learned
with the variational posterior 𝑄,(𝐻|𝑂) being fixed

• The partition function 𝑍(𝑤) is not a constant anymore

• Due to exponential number of terms in 𝑍(𝑤), pseudo log-likelihood
needs to be adopted as an alternative objective for optimization

• Recall the pseudo log-likelihood

log 𝑃!(𝑂) ≈/
6
log 𝑃! 𝑜6|𝑜7(6)

• For the neighborhood 𝑁(𝑖) we use the Markov blanket 𝑀𝐵

Pseudo-Likelihood

𝑃!∗ 𝑂,𝐻 ≔ 𝔼/4 𝐻 𝑂 /
- %" ∈.

log 𝑃! 𝑟(𝑎-)|𝑀𝐵-(%"))

∇!5𝔼/4(.|+) /- %" ∈.
𝑙𝑜𝑔𝑃!(𝑟(𝑎-)|𝑀𝐵-(%"))

≃ 𝑦- %" − 𝑃!(𝑟(𝑎-)|𝑀𝐵-(%"))

• where 𝑦-(%") = 0 𝑜𝑟 1 if 𝑟 𝑎- is an observed fact or 𝑦-(%") =
𝑄,(𝑟 𝑎-) otherwise

• 𝑀𝐵-(%") is the Markov blanket of the ground predicate 𝑟(𝑎-), i.e.,
the set of ground predicates that appear in some grounding of a
formula with 𝑟(𝑎-)

Sampling Scheme for M step

• Computationally intractable to use all possible ground predicates to
compute the gradients

• The solution is to only consider all ground formulae with at most one
latent predicate and pick up the ground predicate if its truth value
determines the formula’s truth value

• Using this sampling scheme, only a small subset of ground predicates is
kept and each of which can directly determine the truth value of a
ground formula in MLN

• Intuitively, this small subset contains all representative ground
predicates, and makes good estimation of the gradients with much
cheaper computational cost

Representing graph structures

• Foundation of MLN learning is a knowledge graph
𝒢W for (deterministic) observations

• For MLN learning with hidden variables, additional
graph structures need to be generated (albeit with
sampling)

• Can graph structures be represented in a clever way
such that we gain efficiency?

• Can we use, e.g., GNN operations to derive the
variational distribution 𝑄?

48

• ExpressGNN has three parts:

• Vanilla Graph Network

• Tunable Embeddings

• Define posterior using embeddings

ExpressGNN

Yuyu Zhang, Xinshi Chen, Yuan Yang, Arun Ramamurthy, Bo Li, Yuan Qi &
Le Song. Efficient Probabilistic Logic Reasoning with Graph Neural
Networks. In: Proc. ICLR 2020.

KNOWLEDGE GRAPH

• Vanilla GNN is built on
knowledge graph 𝒢9, which is
much smaller than the ground
graph of MLN
(for simplicity it is assumed
that each predicate has
arity 2)

• GNN parameters 𝜽: and 𝜽;
are independent of number of
entities

• There are 𝑂(𝑑;) parameters
given 𝑑-dimensional
embeddings, 𝜇< ∈ ℝ=

Vanilla GNN

• For each entity in the KG, we then augment its GNN
embedding with a tunable embedding 𝒘3 ∈ ℝ4
as 𝜇̂ = [𝜇3, 𝒘3]

• The tunable embeddings increase the expressiveness of
the model

• Otherwise, the same embeddings could be produced
for nodes that should be distinguished [Zhang et al. 20]

• As there are 𝑀 entities, the number of parameters in
tunable embeddings is 𝑂(𝑘𝑀)

Tunable Embeddings

Yuyu Zhang, Xinshi Chen, Yuan Yang, Arun Ramamurthy, Bo Li, Yuan Qi &
Le Song. Efficient Probabilistic Logic Reasoning with Graph Neural
Networks. In: Proc. ICLR 2020.

• Finally, define the variational posterior with augmented
embeddings of 𝑐: and 𝑐;

• Define the posterior 𝑄, 𝑟 𝑐:, 𝑐; = 𝜎 𝑀𝐿𝑃> [𝜇<6 , [𝜇<7 , 𝑟; 𝜽>
where 𝜎 ⋅ is the sigmoid function

• The number of parameters in 𝜽> is 𝑂(𝑑 + 𝑘)

Define Variational Posterior

• In summary, ExpressGNN can be viewed as two-level
encoding of entities:
• First two MLPs assign similar embeddings to similar

entities in the KG
• Expressive tunable embeddings provide additional

model capacity to encode entity information
beyond graph structures

• By tuning 𝑑 and 𝑘, ExpressGNN can trade-off between
model compactness and expressiveness

• When the number of entities 𝑀 is large, ExpressGNN
can reduce 𝑘 to save parameters

Summary so far: ExpressGNN

pLogicNet: Embeddings again

● Each entity e ∈ E and relation r ∈ R in a KG is associated with an embedding xe
and xr

● The joint distribution of all triplets can be defined as:

• Where f(. , . , .) is the scoring function on the entity and relation embeddings
that computes the probability of the triplet (h, r, t) being true

● Example: the f used in TransE (a KG embedding model) is formulated as:

54

Combining MLNs with Embedding Approaches

55
Meng Qu and Jian Tang. Probabilistic logic neural
networks for reasoning. In: Proc. NeurIPS 2019.

MLNs w/ Node Attributes

• Model the joint distribution of the object labels given
object features, i.e., 𝑝(𝐲$|𝐱$)

GMNN: Graph Markov Neural Networks

relational data is an important direction in machine learn-
ing with various applications, such as object classification
and link prediction. In this paper, we focus on a fundamen-
tal problem, semi-supervised object classification, as many
other applications can be reformulated as this problem.

Formally, the problem of semi-supervised object classifi-
cation considers a graph G = (V,E,xV), in which V is a
set of objects, E is a set of edges between objects, and xV

stands for the attributes of all the objects. The edges in E

may have multiple types, which represent different relations
among objects. In this paper, for simplicity, we assume all
edges belong to the same type. Given the labels yL of a few
labeled objects L ⇢ V , the goal is to predict the labels yU

for the remaining unlabeled objects U = V \ L.

This problem has been extensively studied in the literature
of both statistical relation learning (SRL) and graph neural
networks (GNN). Essentially, both types of methods aim to
model the distribution of object labels conditioned on the
object attributes and the graph structure, i.e., p(yV |xV , E).
Next, we introduce the general idea of both methods. For
notation simplicity, we omit E in the following formulas.

3.2. Statistical Relational Learning

Most SRL methods model p(yV |xV) with conditional ran-
dom fields, which employ the following formulation:

p(yV |xV) =
1

Z(xV)

Y

(i,j)2E

 i,j(yi,yj ,xV). (1)

Here, (i, j) is an edge in the graph G, and i,j(yi,yj ,xV)
is the potential score defined on the edge. Typically, the
potential score is computed as a linear combination of some
hand-crafted feature functions, such as logical formulae.

With this formulation, predicting the labels for unlabeled
objects becomes an inference problem, i.e., inferring
the posterior label distribution of the unlabeled objects
p(yU |yL,xV). Exact inference is usually infeasible due to
the complicated structures between object labels. Therefore,
some approximation inference methods are often utilized,
such as loopy belief propagation (Murphy et al., 1999).

3.3. Graph Neural Network

Different from SRL methods, GNN methods simply ignore
the dependency of object labels and they focus on learning
effective object representations for label prediction. Specif-
ically, the joint distribution of labels is fully factorized as:

p(yV |xV) =
Y

n2V

p(yn|xV). (2)

Based on the formulation, GNNs will infer the label distri-
bution p(yn|xV) for each object n independently. For each

Object
!"

Object
#$

E-Step: Inference

M-Step: Learning

PredictUpdate

UpdatePredict

Figure 1. Framework overview. Yellow and grey squares are la-
beled and unlabeled objects. Grey/white grids are attributes. His-
tograms are label distributions of objects. Orange triple circles are
object representations. GMNN is trained by alternating between
an E-step and an M-step. See Sec. 4.4 for the detailed explanation.

object n, GNNs predict the label in the following way:

h = g(xV , E) p(yn|xV) = Cat(yn|softmax(Whn)),

where h 2 R|V |⇥d is the representations of all the objects,
and hn 2 Rd is the representation of object n. W 2 RK⇥d

is a linear transformation matrix, with d as the representa-
tion dimension and K as the number of label classes. Cat
stands for categorical distributions. Basically, GNNs focus
on learning a useful representation hn for each object n.
Specifically, each hn is initialized as the attribute repre-
sentation of object n. Then each hn is iteratively updated
according to its current value and the representations of n’s
neighbors, i.e., hNB(n). For the updating function, the graph
convolutional layer (GC) (Kipf & Welling, 2017) and the
graph attention layer (GAT) (Veličković et al., 2018) can be
used, or in general the neural message passing layer (Gilmer
et al., 2017) can be utilized. After multiple layers of update,
the final object representations are fed into a linear softmax
classifier for label prediction. The whole framework can be
trained in an end-to-end fashion with a few labeled objects.

4. GMNN: Graph Markov Neural Network

In this section, we introduce our approach called the Graph
Markov Neural Network (GMNN) for semi-supervised ob-
ject classification. The goal of GMNN is to combine the
advantages of both the statistical relational learning methods
and graph neural networks, so that we can learn effective ob-
jective representations for predicting object labels, as well as
model the dependency between object labels. Specifically,
GMNN models the joint distribution of object labels condi-
tioned on object attributes p(yV |xV) by using a conditional
random field, which is optimized with a pseudolikelihood
variational EM framework. In the E-step, a graph neural
network is used to learn object representations for predicting
the object labels. In the M-step, another graph neural net-
work is employed to model the local dependency of object
labels. Next, we introduce the details of the approach.

?
?

?
?

?
?

Object labels

Object features

𝜓#,! 𝑦# , 𝑦! , 𝐱% = exp(=
&'(

)

𝜆&𝑓& 𝑦# , 𝑦! , 𝐱# , 𝐱! + 𝜇&𝑔&(𝑦# , 𝐱#))

Edge potential functions node potential functions

MLN Learning with pLogicNet

● pLogicNet formulates the joint distribution of all graph triplets with a Markov logic
network, which is trained with the variational EM algorithm.
In E-step, a KGE model infers missing (hidden) triplets. Knowledge preserved by logic
rules can be effectively distilled into the learned embeddings.
In M-step, the weights of the logic rules are updated based on both the observed triplets
and those inferred by KGE model. Therefore, KGE model provides extra supervision for
weight learning

57

Summary

• MLNs help to augment KGs
– Constraints on graphs describe completion rules

• KGs can be used to support MLN learning
– Embedding-based graph completion to infer missing

(hidden) information, which can be used for learning
– GNN embeddings of KG nodes for variational EM

• We can in principle combine the advantages of both
worlds, logic and embedding approaches!

