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Embedding Nodes

 Encode nodes sothat...
- similarity in the embedding space approximates ...
- similarity in the original network
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encode nodes

embedding space
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Embedding Nodes

Ce T
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embedding
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Recap: Dot Product

a-b = [la]| [lb]

a-b =[]/ [[b] cos ¢

Y. A;B;

— A-B . 1=1
|A[[[1B] " » -
Z A? Z Bf Orthogonale Projektion b des
=1 i=1

Vektors 3 auf die durch g bestimmte
Richtung

Wikipedia IM FOCUS DAS LEBEN
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Simple (“Shallow”) Embedding Approaches

Vectors with d components
o . (with d being a
Solve optimization problem hyperparameter)

. Select embedding vectors for nodes
such that “similar” nodes have similar vectors

More or less clever

Various ways to specify similarity of nodes approaches, but

- Adjacency-based embedding AleTpIre eI Sl i)
features should
 Multi-hop embedding better be found

automatically
- Random walk approaches

T ~~ Probability that u and v co-occurin a

Zu Z/U Y
random walk over the network

Hamilton et al. Representation Learning on Graphs: Methods

5%,{“ and Applications. IEEE Data Engineering Bulletin on Graph
1 *jﬁ TP FOR INFORMATIONSSYSTEME Systems. 2017.



From “Shallow” to “Deep”

« Shallow: Define features based on selected features

Embedding vector for a specific

Embedding . node
matrix . —

Dimension/size of
— embeddings d

-----
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From “Shallow” to “Deep”

- Limitations of shallow encoding:
— O(|vd|) parameters needed
- No parameter sharing
- Every node has its own unique embedding vector

— Inherently “transductive” (not inductive)

« Impossible to generate embeddings for nodes
that were not seen during training

— Does not incorporate node features

- Many graphs have nodes with features
that we can and should leverage

- Need to find embeddings based on holistic view on graph

Scarselli et al. The Graph Neural Network Model.
IEEE Transactions on Neural Networks. 2005,




Setup

- Assume we have a graph G:
- Vis the vertex set.
— Ais the adjacency matrix (assume binary).

- X € R™ IVl js a matrix of nodes and their features.
. Categorical attributes, text, image data

— E.g., profile information in a social network.

- Node degrees, clustering coefficients, etc.
- Indicator vectors (i.e., one-hot encoding of each node)
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Neighborhood Aggregation

- Keyidea
— Generate node embeddings based on local neighborhoods
— Nodes aggregate information from their neighbor
— Computation graph for every node

&
TARGET NODE '44 ..................... '

oy
INPUTGRAPH T e '
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Neighborhood Aggregation

+ Nodes have embeddings at each layer
- Model can be of arbitrary depth

- “layer-0" embedding of node u Layer-0
is its input features, i.e., x,, X
Layer-1 .- @A
ARGET NODE ‘A“ ...................... ’ XC
l Layer-2 o
A 7 & XA
s x"_‘jf_'_f: ........... B X
A <« D PR ‘4’.3 ................... B
”..,“.
What’s in the e
INPUTGRAPH 7" 2= T A
boxes? XA
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Graph Networks (GNNS) Graph (Neural) Networks

— —

- Basic approach: Average neighbor messages and apply a linear
transformation with non-linear normalization

« Define a loss function on the embeddings, £(z,)

Initial “layer 0” embeddings are equal to previous layer
node features

h() — ¥ L embedding of v

k h; ™ 1;/1

h =g [ W v__|4 Bht 1), vk >0
T\ Wi 2 | P i

kth layer

embedding of v : :
non-linearity

(e.g., ReLU or tanh) average of neighbor’s

previous layer embeddings

12



Unsupervised Training

trainable matrices
hO (i.e., what we learn)

hk—l
hy =c | Wy » —“— +Byhl™'|, Vke{l,. K}

- After K-layers of neighborhood aggregation, we get output embeddings
for each node

- Feed these embeddings into any loss function ...

- and run stochastic gradient descent
to train the aggregation parameters

13
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Supervised Training

- E.g., based on node classification y,, € {0, 1}:

classification
weights

Human or — _\:
bot? [ = S: Yo log(a(ZUTI)) + (1 —|y,) log(1 — o Zvll))

?\UEV //

X output node embedding
: node class label
o x... g®
XL
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Overview of Model Design

1) Define a neighborhood
aggregation function.

INPUT GRAPH

2) Define a loss function on the
embeddings, L(z,)

S %

b3S |
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Overview of Model Design

3) Train on a set of nodes, i.e., a batch
of compute graphs
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Overview of Model

4) Generate embeddings for nodes as
needed

Even for nodes we never
trained on!!!!

INPUT GRAPH
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Inductive Capability

« Same aggregation parameters are shared for all nodes.
* Number of model parameters is sublinear in |V]| ...
* ... and we can generalize to unseen nodes!

A

/

INPUT GRAPH

Compute graph for node A Compute graph for node B

18



Inductive Capability

Qv /"
o

train on one graph generalize to new graph

Inductive node embedding = generalize to entirely unseen graphs

e.g., train on protein interaction graph from model organism A and
generate embeddings on newly collected data about organism B

rSI
GERSIZ,
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Inductive Capability

Zy
./ \J N/
<\l <\l <\l

= | |~

generate embedding
train with snapshot new node arrives for new node

Many application settings constantly encounter previously unseen nodes.
e.g., Reddit, YouTube, GoogleScholar, ....

Need to generate new embeddings “on the fly”
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Neighborhood Aggregation

- Key distinctions are in how different approaches
aggregate messages

TARGET NODE What EIse can we put .Aﬂ< ...................... ‘
l inthebox? .
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Graph Convolutional Networks (GCNs)

. Slight variation on the neighborhood aggregation idea:
hk—l
/ uGN(’U)UU \/|N QN( )‘

same matrix for self and neighbor
embeddings

hkz

(Y

per-neighbor normalization

- Empirically, this configuration to give the best results
— More parameter sharing
— Down-weights high degree neighbors

Semi-supervised classification with graph convolutional networks
TN Kipf, M Welling. In Proc. 5th International Conference on Learning
Representations (ICLR-17), 2017. 22




GraphSAGE (SAmple and aggreGatE)

- So far we have aggregated the neighbor messages by
taking their (weighted) average. Can we do better?

ARGET NODE ® Aﬂ: ...................... c

A
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’0
*
.0

Any differentiable function that maps 'ﬂ‘
INPUT GRAPH set of vectors to a single vector.

h! =0 ([A) - ace({hy™',Vu € N(v)}), Byhi'])

(Y

concatenate self embedding and neighbor embedding
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isme INSTITUT FUR INFORMATIONSSYSTEME representation learning on large graphs. In Proc. NIPS17.2017.

GraphSAGE Variants

Mean: hk—1
u

ACC= D NG

ueN (v)

Pool:
— Transform neighbor vectors and apply symmetric vector function

element-wise mean/max
AGG =[|({Qhi! Vu € N(v)})

LSTM-based RNNs:
— Apply LSTM to random permutation of neighbors (LSTMs work on segences)

AGG = LSTM ([hi™!, Vu € m(N(v))])

Transformers?

ERSI
GERSIZ,

William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive 4



Neighborhood Aggregation

« GCNs and GraphSAGE generally only 2-3 layers deep
- What if we want to go deeper?
— Overfitting from too many parameters.
— Vanishing/exploding gradients during backpropagation

4
TARGET NODE ‘A“ ......................

l “““ . A
A
P
A * 4 ------------------ v‘ .............
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Gated Graph Networks

- Use techniques from recurrent networks
- Parameter sharing across layers, recurrent state update

same mappings aCross Iayers e

TARGET NODE

l

A
/ -

INPUT GRAPH

Handle >20 layers:
* Allows for complex information about global Y.
LT p——— graph structure to be propagated to all nodes 26
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Neighborhood aggregation with RNN state update

1. Get“message” from neighbors at step k:

k k—1 Aggregation function does not
m, = W E h, "

depend on k
u€eN (v)

2. Update node “state” using Gated Recurrent Unit (GRU)
New node state depends on the old state and
the message from neighbors:

h” = GRU(h* ! m?F)

(Y

Yujia Li Richard Zemel Marc Brockschmidt Daniel Tarlow,

Gated Graph Sequence Neural Networks
Proceedings of ICLR'16. 2016. 27



https://arxiv.org/abs/1406.1078

(Sub)graph Embeddings

. So far we have focused on node-level embeddings...

original network embedding space

- But what about subgraph embeddings?

original network embedding space

INSTITUT FUR INFORMATIONSSYSTEME IM FOCUS DAS LEBEN 28
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(Sub)graph Embeddings ublgraphs.

with millions or

billions of
. , :
. Use representative as a virtual node nodes:
/ \ ..""’«.ZS
| >
i
original network embedding space

Li et al. Gated Graph Sequence Neural Networks. In Proc. ICLR. 2016.

- Sum or average node embeddings: zg = Z Z,

.................................... VES
N~ .75
\\ o How to do the
\ / analog of CNN
“pooling” on
original network embedding space networks?

Duvenaud et al. Convolutional Networks on Graphs for Learning Molecular
Fingerprints. In Proc. ICML 2016. A eeoeN 29




Summary so far

- Key idea: Generate node embeddings based on local
neighborhoods.

— GraphSAGE
- Generalized neighborhood aggregation

— Gated Graph Networks

- Neighborhood aggregation + recursion
(same mappings for a layer) + GRUs

— Graph Convolutional Networks

 Average neighborhood information
and stack computational networks

30



Recent Advances in Graph Networks

- Attention-based neighborhood aggregation
(Weightings for neighbors)
— Graph Attention Networks (Velickovic et al., 2018)
— GeniePath (apaptive receptive paths) (Liu et al., 2018)

- Generalizations based on spectral convolutions
(eigen-decomposition of graph Laplacian L)
— Geometric Deep Learning (Bronstein et al., 2017)
— Mixture Model CNNs (Monti et al., 2017)
- Speed improvements via subsampling

— FastGCNs (Chen et al., 2018)
— Stochastic GCNs (Chen et al., 2017)

Y — L =D — A (degree matrix — adjacency matrix)

31


https://arxiv.org/abs/1710.10903
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https://arxiv.org/abs/1611.08097
https://arxiv.org/pdf/1611.08402.pdf
https://arxiv.org/abs/1801.10247
https://arxiv.org/abs/1710.10568

Graph Networks, Embeddings, and KGs

. Graph networks allow for the computation of
embeddings for nodes in a KG

- With embeddings, existence of links between nodes can
be estimated (KG completion)

— See also, e.g., node2vec
- If nodes originate from words ...

... we have another way to embed nodes
— See also, e.g., word2vec
— KG completion based on word embeddings

node2vec: Scalable Feature Learning for Networks. A. Grover, J. Leskovec.

ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), 2016 32
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Approaches for Completing KGs

« Graph Network approach

« Embedding approach

« What about probabilistic graphical models?
~ Markov logic networks for link estimation?

S %
; ‘VZI‘K\}( UNIVERSITAT ZU LUBECK
R
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Advantages of MLNs

- Incorporate domain knowledge with first-order logic
— Composition
e VX,Y,Z:R;(X,Y) AR, (Y,Z) - R3(X,Z)
— Inverse relations
e VX,Y:R,(X,Y) - R,(Y,X)
- Symmetry
e VX,Y:R(X,Y) - R, (Y, X)
— Subrelation
e VX,Y:R,(X,Y) - R,(X,Y)

:::::
3520 % INSTITUT FUR INFORMATIONSSYSTEME

34



MLNs and Knowledge Graphs

Ground KG of MLN

Knowledge graph

(e.g., from text)
‘ as evidence
G

IM FOCUS DAS LEBEN




Markov Logic Networks

Pros:
e Logic formulas incorporate prior knowledge
e Allows MLN to generalize in tasks
with small amount of labeled data
Cons:
e |nference in MLN is computationally intensive

e Logic formulas can only cover a small part of the possible
combinations of knowledge graph relations in real-world
texts

,,,,,
\\\\\
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Graph Networks / Word-based Embeddings

Pros:

e Efficiency — Directly work on KG

e Compactness — GNNs with shared parameters can be
memory efficient

e Expressiveness — GNN can capture structure knowledge
encoded in the KG, and so-called tunable embeddings
can encode entity-specific information (see below)

Cons:

e GNNs do not explicitly incorporate prior knowledge
into models and may require many labeled examples
for a target task

37
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Combining MLNs and KG Embeddings

- KG Completion
— With MLN model M;
— With embedding approaches
« GNN-based (ExpressGNN)

Efficient Probabilistic Logic Reasoning with Graph Neural Networks
Yuyu Zhang, Xinshi Chen, Yuan Yang, Arun Ramamurthy, Bo Li, Yuan Qi & Le Song.
In: Proc. ICLR-20. https://iclr.cc/virtual/poster rJg76kStwH.htm| 2020.

- Embedding based (pLogicNet)

Probabilistic Logic Neural Network for Reasoning, Meng Qu, Jian Tang.
In: Proc. NeurlPS-20. https://github.com/DeepGraphlLearning/pLogicNet 2019.

- Learn new MLN model M;, ; based on completed KG

SRs22 5  INSTITUT FUR INFORMATIONSSYSTEME
e =
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https://github.com/DeepGraphLearning/pLogicNet

Variational EM for MLN Learning

MLN used to model the joint probabilistic distribution of all observed
and latent variables, O and H, respectively

1
PO H) = Zesexp () wy ) 6(ap)

afEAf
* Training an MLN (w, F) means to determine the weights wy of the
formulas f € F
 An MLN can be trained by maximizing the log-likelihood of all observed

facts logP,,(0), i.e., Wy = argmaxlogP,,(0) andw = Wy,
w
* Due to intractability caused by hidden variables, instead of optimizing

the log-likelihood, we optimize the evidence lower bound (ELBO) s.t.

log Py(0) = Lg1go(Qp, By)
* The goal is to find a distribution Qg that approximates P, “from below”

,,,,,
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E step: Inference

* Infer the posterior distribution of the latent variables, where P, is fixed
and Qg is optimized to minimize the KL divergence between Qg (H|O)
and B,,(H|0)

e Estimate the true posterior with a mean-field approximation

* In mean-field variational approximation, each unobserved ground
formula r(a,) € H is independently inferred as:

Qo (H|0) = Il;(a,)en Qo (r(as))

* Each Qg(r(a,.)) follows a Bernoulli distribution

* Parameterize Qg with GNN

a,- is a sequence of parameters that fits the arity of r
r(a,) € H is a slight abuse of notation




E step: Inference

* With mean-field approximation, Lg;50(Qg, P,,) can be reorganized as:

LELBO(QG;P\fv) = Eg,H|0)[log Py (0, H) —log Qg (H|0)]

1
= Eopilo) |log ( Z0w) &P (Z e ZafeAfo(af)>>] — Eqq(10) [108 l_L ren Qe(r(ar))]
= Eqqy(njo) Z rer sz B(ar) —log(Z(w))

_ w z
ZfEF 4 ar€A




E step: Inference

* Theterm Y rcp Wy ZafEAf IEQQ(HW)[(Df(af)] sums over all possible
logic formulae and all possible assignments to each formula

* Theterm X, (q yen Eo,(H|0)[l0g Qo (r(a,))] sums over all possible
latent variables

 Therefore, both terms used in the objective function make the
computational problem intractable

5 QAP = UNIVERSITAT ZU LUBECK
WSSy INSTITUT FUR INFORMATIONSSYSTEME



E step: Inference with Sampling

* How can we deal with this problem?

* Do not iterate over all possible values but use sampling

* In each optimization iteration,
a batch of ground formulae will be sampled

* For each formula in sampled batch, do the computations
w.r.t. observations of involved latent variables

 Z(w) needs to be adapted in order to compensate for sampling

5 QAP = UNIVERSITAT ZU LUBECK
wRSSe ~  INSTITUT FUR INFORMATIONSSYSTEME
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E step: Add-on

* |f the task has sufficient labeled data, a supervised learning objective
will be added to enhance parameter estimation

Laper (@) = ) 10gQ(r(ay))

 The label loss function is complementary to ELBO on predicates that
are not well covered by logic rules but have enough observed facts

* Therefore, the E step objective function that combines knowledge in
the MLN and supervision from labeled data would be
(A is a hyperparameter):

Lo = Lgrpo(Qg, Py) + ALigper(Qp)




M step: Learning

* Inthe M step, the weights of logic formulae in MLN will be learned
with the variational posterior Qg (H|0) being fixed

e The partition function Z(w) is not a constant anymore

* Due to exponential number of terms in Z(w), pseudo log-likelihood
needs to be adopted as an alternative objective for optimization

* Recall the pseudo log-likelihood
log P, (0) ~ E log Ry (oilon)
l

* For the neighborhood N (i) we use the Markov blanket MB




Pseudo-Likelihood

P, (0,H) := IEQQ(H|0) [zr(ar)EH log PW(r(ar)|MBr(ar)))]

VWi]EQg(I'”O) [Zr(a YeH logpw (r(ar) |MBr(ar))]

= Vr(ay) — Pw(r(ar)lMBr(ar))

* where y,q,) = 0orlif r(a,-) is an observed fact or Vr(a,) =
Qg (r(a,)) otherwise

*  MB,; (g, is the Markov blanket of the ground predicate r(a;), i.e.,
the set of ground predicates that appear in some grounding of a
formula with r(a,)

,,,,,
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Sampling Scheme for M step

Computationally intractable to use all possible ground predicates to
compute the gradients

* The solution is to only consider all ground formulae with at most one
latent predicate and pick up the ground predicate if its truth value
determines the formula’s truth value

e Using this sampling scheme, only a small subset of ground predicates is
kept and each of which can directly determine the truth value of a
ground formula in MLN

* Intuitively, this small subset contains all representative ground
predicates, and makes good estimation of the gradients with much
cheaper computational cost

5 R
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Representing graph structures

- Foundation of MLN learning is a knowledge graph
Gk for (deterministic) observations

« For MLN learning with hidden variables, additional
graph structures need to be generated (albeit with
sampling)

. Can graph structures be represented in a clever way
such that we gain efficiency?

- Can we use, e.g., GNN operations to derive the
variational distribution Q?

GERST
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ExpressGNN

ExpressGNN has three parts:

Vanilla Graph Network

Tunable Embeddings

Define posterior using embeddings

ARGET NODE ® A‘:.

l ‘."’
-
R
yy A
< < “'.‘ """""
R T PO S— o
0. ..‘A‘~,
"
‘0
)

KNOWLEDGE GRAPH ‘

Yuyu Zhang, Xinshi Chen, Yuan Yang, Arun Ramamurthy, Bo Li, Yuan Qi &
Le Song. Efficient Probabilistic Logic Reasoning with Graph Neural
Networks. In: Proc. ICLR 2020. M FOCUS DAS LEEEN




Vanilla GNN

Vanilla GNN is built on Algorithm 1: GNN()
(0)

knowledge graph G, which is Initialize entity node: pe ' = po, Ve € C
much smaller than the ground fort =07 T —1do

graph of MLN > Compute message Vr(c,c’) € O
. e ey (t) _ t) .
(for simplicity it is assumed Moy = MLP1(pe, 75 601)

> Aggregate message Vc € C
that each predicate has
P m£t+1) — AGG({mS)_)C}c’:T(C,C')EO)

arity 2) > Update embedding Ve € C
'u((:t—+-1) _ MLPQ(,u((;t), m((;t+1); 92)

GNN parameters 8, and 0, return embeddings { 1"}

are independent of number of
entities

There are 0(d?) parameters
given d-dimensional
embeddings, u, € R?

5 R
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Tunable Embeddings

For each entity in the KG, we then augment its GNN
embedding with a tunable embedding w, € R¥

as L = [pe, W]

The tunable embeddings increase the expressiveness of
the model

Otherwise, the same embeddings could be produced
for nodes that should be distinguished [Zhang et al. 20]
As there are M entities, the number of parameters in
tunable embeddings is O (kM)

Yuyu Zhang, Xinshi Chen, Yuan Yang, Arun Ramamurthy, Bo Li, Yuan Qi &
a@» Le Song. Efficient Probabilistic Logic Reasoning with Graph Neural
1*}** TP FOR INFORMATIONSSYSTEME Networks. In: Proc. ICLR 2020.



Define Variational Posterior

Finally, define the variational posterior with augmented
embeddings of ¢; and ¢,

Define the posterior Qg (r(cy,¢;)) = o (MLP3 (e, fc, 15 93))
where g (+) is the sigmoid function

The number of parameters in @5 is 0(d + k)

,,,,,
\\\\\
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Summary so far: ExpressGNN

In summary, ExpressGNN can be viewed as two-level
encoding of entities:
First two MLPs assign similar embeddings to similar
entities in the KG
Expressive tunable embeddings provide additional
model capacity to encode entity information
beyond graph structures
By tuning d and k, ExpressGNN can trade-off between
model compactness and expressiveness
When the number of entities M is large, ExpressGNN
can reduce k to save parameters




pLogicNet: Embeddings again

e Eachentitye €Eandrelationr €Rin a KG is associated with an embedding xe
and x

e Thejointdistribution of all triplets can be defined as:

p(V()? VH) — H Ber (V(h,r,t) |f(Xh7 Xr, Xt))
(h,r,t)EOUH
« Wheref(-,-,-)isthescoring function on the entity and relation embeddings

that computes the probability of the triplet (h, r, t) being true
e Example: the fused in TransE (a KG embedding model) is formulated as:

(7 = [1xn +xr —x4])

IM FOCUS DAS LEBEN 54




Combining MLNs with Embedding Approaches

pw(v(h,r,t)lv()) X {%(V(h,r,t)) +>\Pw("(h,r,t)|‘A’MB(h,'r,t)) }
N e’ N ~ )
KGE model Markov Logic Network

Meng Qu and Jian Tang. Probabilistic logic neural
networks for reasoning. In: Proc. NeurlIPS 2019. IM FOCUS DAS LEBEN 55




MLNs w/ Node Attributes

- Model the joint distribution of the object labels given
object features, i.e., p(yy|Xy)

Object labels

! O
p(yvixv) = I ¢iiviyixv)
26v) e -
Object features

l/}l](yu y]'xV) — eXp(Z /1 k ;Xi;Xj) + .ukgk(yirxi))

S

Edge potential functions node potential functions

,,,,,
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MLN Learning with pLogicNet

(Alan Turing, Born in, London) (Alan Turing, Live in, UK)

\/ \ Nationality < Live in 02 /
a

Born in \ City of = Nationality 1.5 ?

Nation,;:
alipy « Poll'tl'cia
\/ (Alan Turing, Nationality, UK) "of2.¢6 X

(London, City of, UK) (Alan Turing, Politician of, UK)

e plogicNet formulates the joint distribution of all graph triplets with a Markov logic
network, which is trained with the variational EM algorithm.

In E-step, a KGE model infers missing (hidden) triplets. Knowledge preserved by logic
rules can be effectively distilled into the learned embeddings.

In M-step, the weights of the logic rules are updated based on both the observed triplets
and those inferred by KGE model. Therefore, KGE model provides extra supervision for

weight learning .
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Summary

« MLNs help to augment KGs
— Constraints on graphs describe completion rules
- KGs can be used to support MLN learning

— Embedding-based graph completion to infer missing
(hidden) information, which can be used for learning

— GNN embeddings of KG nodes for variational EM

- We can in principle combine the advantages of both
worlds, logic and embedding approaches!
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