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Recap

• Use embedding approaches to complete KGs
• Use MLNs to complete KGs
• Learn MLNs from KGs to capture “symmetries” 

– Benefit also from labeled training data
– Can be seen as “symbolic dimension reduction”
– Use pseudolikelihood
– Variational EM as a learning algorithm
– Exploit ELBO

• Use GNNs to compute lower bound distribution
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GMNN: Graph Markov Neural Networks

• Model the joint distribution of object labels 𝐲!
conditioned on object attributes 𝐱! , i.e., p"(𝐲!|𝐱!)

• Learning the model parameters 𝜙 by maximizing the
lower-bound of log-likelihood of the observed (labelled) 
data, log p"(𝐲#|𝐱!)

GMNN: Graph Markov Neural Networks

4.1. Pseudolikelihood Variational EM

Following existing SRL methods, we use a conditional ran-
dom field as in Eq. (1) to model the joint distribution of ob-
ject labels conditioned on object attributes, i.e., p�(yV |xV ),
where the potential is defined over each edge, and � is the
model parameters. For now, we ignore the specific formula-
tion of the potential function, and we will discuss it later.

We learn the model parameters � by maximizing the log-
likelihood function of the observed object labels, i.e.,
log p�(yL|xV ). However, directly maximizing the log-
likelihood function is difficult, since many object labels
are unobserved. Therefore, we instead optimize the evi-
dence lower bound (ELBO) of the log-likelihood function:

log p�(yL|xV ) �
Eq✓(yU |xV )[log p�(yL,yU |xV )� log q✓(yU |xV )],

(3)

where q✓(yU |xV ) can be any distributions over yU , and the
equation holds when q✓(yU |xV ) = p�(yU |yL,xV ). Ac-
cording to the variational EM algorithm (Neal & Hinton,
1998), such a lower bound can be optimized by alternating
between a variational E-step and an M-step. In the vari-
ational E-step (a.k.a., inference procedure), the goal is to
fix p� and update the variational distribution q✓(yU |xV ) to
approximate the true posterior distribution p�(yU |yL,xV ).

In the M-step (a.k.a., learning procedure), we fix q✓ and
update p� to maximize the likelihood function below:

`(�) = Eq✓(yU |xV )[log p�(yL,yU |xV )] (4)

However, directly optimizing the likelihood function can be
difficult, as we have to calculate the partition function in p�.
To avoid calculating the partition function, we instead op-
timize the pseudolikelihood function (Besag, 1975) below:

`PL(�) , Eq✓(yU |xV )[
X

n2V

log p�(yn|yV \n,xV )]

= Eq✓(yU |xV )[
X

n2V

log p�(yn|yNB(n),xV )],
(5)

where NB(n) is the neighbor set of n, and the equation is
based on the independence properties of p�(yV |xV ) derived
from its formulation, i.e., Eq. (1). The pseudolikelihood
approach is widely used for learning Markov networks (Kok
& Domingos, 2005; Richardson & Domingos, 2006). Next,
we introduce the details of the inference and learning steps.

4.2. Inference

The inference step aims to compute the posterior distribution
p�(yU |yL,xV ). Due to the complicated relational struc-
tures between object labels, exact inference is intractable.

Therefore, we approximate it with another variational dis-
tribution q✓(yU |xV ). Specifically, we use the mean-field
method (Opper & Saad, 2001), in which q✓ is formulated as:

q✓(yU |xV ) =
Y

n2U

q✓(yn|xV ). (6)

Here, n is the index of unlabeled objects. In the variational
distribution, all object labels are assumed to be independent.

To formulate the distribution of each object label in q✓, we
follow amortized inference (Gershman & Goodman, 2014;
Kingma & Welling, 2014), and parameterize q✓(yn|xV )
with a graph neural network (GNN), which learns effective
objective representations for label prediction:

q✓(yn|xV ) = Cat(yn|softmax(W✓h✓,n)). (7)

Specifically, q✓(yn|xV ) is formulated as a categorical dis-
tribution, and the probability of each class is calculated by a
softmax classifier based on the object representation h✓,n.
The representation h✓,n is learned by a GNN model with the
object attributes xV as features, and ✓ as parameters. We de-
note the GNN model as GNN✓. With GNN✓, we can benefit
inference by learning effective representations of objects
from their attributes and connections. Moreover, by sharing
GNN✓ across different objects, we can also significantly
reduce the number of parameters required for inference,
which is more efficient (Kingma & Welling, 2014).

With the above mean-field formulation, the optimal distribu-
tion q✓(yn|xV ) satisfies the following fixed-point condition:

log q✓(yn|xV ) =

Eq✓(yNB(n)\U |xV )[log p�(yn|yNB(n),xV )] + const.
(8)

We provide the proof in appendix. The right side of the
condition involves expectation with respect to q✓. To fur-
ther simplify the condition, we estimate the expectation by
drawing a sample from q✓(yNB(n)\U |xV ), resulting in:

Eq✓(yNB(n)\U |xV )[log p�(yn|yNB(n),xV )]

' log p�(yn|ŷNB(n),xV ).
(9)

In the above formula, ŷNB(n) = {ŷk}k2NB(n) is defined
as below. For each unlabeled neighbor k of object n, we
sample ŷk ⇠ q✓(yk|xV ), and for each labeled neighbor k
of object n, ŷk is set as the ground-truth label. In practice,
we find that using one sample from q✓(yNB(n)\U |xV ) yields
comparable results with multiple samples. Therefore, in the
experiments, only one sample is used for efficiency purpose.

Based on Eq. (8) and (9), the optimal q✓(yn|xV ) satisfies:

q✓(yn|xV ) ⇡ p�(yn|ŷNB(n),xV ), (10)

To learn the optimal q✓(yn|xV ), we employ a method sim-
ilar to (Salakhutdinov & Larochelle, 2010). More specifi-
cally, we start with using the current value of ✓ to calculate



GMNNs: Graph Markov Neural Networks

• Towards combining statistical relational learning 
and graph networks
– Approximation, but polynomial runtime

• Learning effective node representations for predicting 
the node labels
– Modeling the label dependencies of nodes 

with Markov blanket (neighbors in the undirected setting)

Meng Qu, Yoshua Bengio, Jian Tang:
GMNN: Graph Markov Neural Networks. In Proc. ICML 2019.

Jian Tang



GMNN: Overall Optimization Procedure

• Two Graph networks collaborate with each other
– 𝑝!: learning network, modeling the label dependency

– 𝑞": inference network, learning the object representations

• 𝑞! infer the labels of unlabeled objects trained with supervision from
𝑝" and labeled objects

• 𝑝# is trained with a fully labeled graph, where the unlabeled objects
are labeled by 𝑞!

• Learning w/o
hidden nodes
is much easier

?
?

?
?

?
?

Object labels

Object features

Jian Tang



Applications: Object/Node Classification

• Train, validation, and test are standard split
• State-of-the-art performance

* = Taken from respective papers

GAT: Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana 
Romero, Pietro Liò and Yoshua Bengio. Graph Attention Networks (GATs), 
In: Proc. ICLR 2018.

GMNN: Graph Markov Neural Networks

Table 1. Dataset statistics. OC, NRL, LC represent object classification, node representation learning and link classification respectively.

Dataset Task # Nodes # Edges # Features # Classes # Training # Validation # Test

Cora OC / NRL 2,708 5,429 1,433 7 140 500 1,000
Citeseer OC / NRL 3,327 4,732 3,703 6 120 500 1,000
Pubmed OC / NRL 19,717 44,338 500 3 60 500 1,000

Bitcoin Alpha LC 3,783 24,186 3,783 2 100 500 3,221
Bitcoin OTC LC 5,881 35,592 5,881 2 100 500 5,947

Table 2. Results of object classification. [*] means the results are
taken from the corresponding papers.

Category Algorithm Cora Citeseer Pubmed

SSL LP 74.2 56.3 71.6

SRL

PRM 77.0 63.4 68.3
RMN 71.3 68.0 70.7
MLN 74.6 68.0 75.3

GNN

Planetoid * 75.7 64.7 77.2
GCN * 81.5 70.3 79.0
GAT * 83.0 72.5 79.0

GMNN
W/o Attr. in p� 83.4 73.1 81.4
With Attr. in p� 83.7 72.9 81.8

Table 3. Results of unsupervised node representation learning. [*]
means the results are taken from corresponding papers.

Category Algorithm Cora Citeseer Pubmed

GNN
DeepWalk * 67.2 43.2 65.3

DGI * 82.3 71.8 76.8

GMNN
With only q✓ . 78.1 68.0 79.3
With q✓ and p� 82.8 71.5 81.6

regression model locally for each object. This logistic re-
gression model takes the attributes of each object and also
those of its neighbors as features. Besides, we treat the la-
bels of two linked objects as a clique template, which is the
same as in Taskar et al. (2002). In RMN, a complete score
table is employed for modeling label dependency, which
maintains a potential score for every possible combination of
object labels in a clique. In MLN, we simply use a indicator
function in the potential function, and the indicator function
judges whether the linked objects in a clique have the same
label. Loop belief propagation (Murphy et al., 1999) is used
for approximation inference in RMN and MLN.

SSL Methods. For the methods of graph-based semi-
supervised classification, we choose the label propagation
method (Zhou et al., 2004) to compare with.

6.3. Parameter Settings

Object Classification. For GMNN, p� and q✓ are com-
posed of two graph convolutional layers with 16 hidden units
and the ReLU activation function (Nair & Hinton, 2010),
followed by the softmax function, as suggested in Kipf &
Welling (2017). Dropout (Srivastava et al., 2014) is applied
to the network inputs with p = 0.5. We use the RMSProp
optimizer (Tieleman & Hinton, 2012) during training, with

the initial learning rate as 0.05 and weight decay as 0.0005.
In each iteration, both networks are trained for 100 epochs.
The mean accuracy over 100 runs is reported in experiment.

Unsupervised Node Representation Learning. For
GMNN, p� and q✓ are composed of two graph convolu-
tional layers followed by a linear layer and the softmax
function. The dimension of hidden layers is set as 512 for
Cora and Citeseer, and 256 for Pubmed, which are the same
as in Veličković et al. (2019). ReLU (Nair & Hinton, 2010)
is used as the activation function. We apply dropout (Sri-
vastava et al., 2014) to the inputs of both networks with
p = 0.5. The Adam SGD optimizer (Kingma & Ba, 2014)
is used for training, with initial learning rate as 0.1 and
weight decay as 0.0005. We empirically train q✓ for 200
epoches during pre-training. Afterwards, we train both p�

and q✓ for 2 iterations, with 100 epochs for each network
per iteration. The mean accuracy over 50 runs is reported.

Link Classification. The setting of GMNN is similar as in
the object classification task, with the following differences.
The dimension of the hidden layers is set as 128. No weight
decay and dropout are used. In each iteration, both networks
are trained for 5 epochs with the Adam optimizer (Kingma
& Ba, 2014), and the initial learning rate is 0.01.

6.4. Results

1. Comparison with the Baseline Methods. The quantita-
tive results on the three tasks are presented in Tab. 2, 3, 4
respectively. For object classification, our approach GMNN
significantly outperforms all the SRL methods. The per-
formance gain is from two folds. First, during inference,
GMNN employs a GNN model, which can learn effective
object representations to improve inference. Second, during
learning, we model the local label dependency with an-
other GNN, which is more effective than the SRL methods.
GMNN is also superior to the label propagation method,
as GMNN can utilize object attributes and propagate la-
bels in a non-linear way. Compared with GCN, which
employs the same architecture as the inference network
in GMNN, GMNN significantly outperforms GCN, and the
performance gain mainly comes from the capability of mod-
eling label dependencies. Besides, GMNN also outperforms
GAT, but their performances are quite close. This is because
GAT utilizes a much more complicated architecture. Since
GAT is less efficient, we did not try it in GMNN, but we

Jian Tang

SSL: Semi-Supervised Learning: Zhou, D., Bousquet, O., Lal, T. N., Weston, J., 
and Schölkopf, B. Learning with local and global consis- tency. In NIPS, 2004.



Applications: Link Classification

• Construct a dual graph +𝐺 from the original graph 𝐺
– Each edge in G -> a node in !𝐺
– Two nodes in !𝐺 are connected if the corresponding

edges in G share a node
– Use node classification in !𝐺 for link classification in 𝐺

GMNN: Graph Markov Neural Networks

anticipate the results can be further improved by using GAT,
and we leave it as future work. In addition, by incorporating
the object attributes in the learning network p�, we further
improve the performance, showing that GMNN is flexible
and also effective to use additional features in the learning
network. For link classification, we obtain similar results.

For unsupervised node representation learning, GMNN
achieves the state-of-the-art performance on the Cora and
Pubmed datasets. The reason is that it effectively models the
smoothness of the neighbor distributions for different nodes
with the p� network. Also, the performance of GMNN is
quite close to the performance in the semi-supervised setting
(Tab. 2), showing that the learned representations are quite
effective. We also compare with a variant without using
the p� network (with only q✓). In this case, we see that the
performance drops significantly, showing the importance of
using p� as a regularizer over the neighbor distributions.

Table 4. Results of link classification.
Category Algorithm Bitcoin Alpha Bitcoin OTC

SSL LP 59.68 65.58

SRL

PRM 58.59 64.37
RMN 59.56 65.59
MLN 60.87 65.62

GNN
DeepWalk 62.71 63.20

GCN 64.00 65.69

GMNN
W/o Attr. in p� 65.59 66.62
With Attr. in p� 65.86 66.83

2. Analysis of the Amortized Inference. In GMNN, we
employ amortized inference, and parameterize the posterior
label distribution by using a GNN model. In this section, we
thoroughly look into this strategy, and present some anal-
ysis in Tab. 5. Here, the variant “Non-amortized” simply
models each q✓(yn|xV ) as a categorical distribution with in-
dependent parameters, and performs fix-point iteration (i.e.,
Eq. (8)) to calculate the value. We see that the performance
of this variant is very poor on all datasets. By parameter-
izing the posterior distribution as a neural network, which
leverages the own attributes of each object for inference, the
performance (1 Linear Layer) is significantly improved, but
sill not satisfactory. With several GC layers, we are able to
incorporate the attributes from the surrounding neighbors for
each object, yielding further significant improvement. The
above observations prove the effectiveness of our strategy
for inferring the posterior label distributions.

Table 5. Analysis of amortized inference.
Architecture Cora Citeseer Pubmed

Non-amortized 45.3 28.1 42.2
1 Linear Layer 55.8 57.5 69.8

1 GC Layer 72.9 67.6 71.8
2 GC Layers 83.4 73.1 81.4
3 GC Layers 82.0 70.6 80.7

3. Ablation Study of the Learning Network. In GMNN,
the conditional distribution p�(yn|yNB(n),xV ) is parameter-
ized as another GNN, which essentially models the local
label dependency. In this section, we compare different
architectures of the GNN on the object classification task,
and the results are presented in Tab. 6. Here, the variant “1
Mean Pooling Layer” computes the distribution of yn as the
linear combination of {yk}k2NB(n). This variant is similar to
the label propagation methods, and its performance is quite
competitive. However, the weights of different neighbors
during propagation are fixed. By parameterizing the con-
ditional distribution with several GC layers, we are able to
automatically learn the propagation weights, and thus obtain
superior results on all datasets. This observation proves the
effectiveness of employing GNNs in the learning procedure.

Table 6. Ablation study of the learning network.
Architecture Cora Citeseer Pubmed

1 Mean Pooling Layer 82.4 71.9 80.7
1 GC Layer 83.1 73.1 80.9
2 GC Layers 83.4 73.1 81.4
3 GC Layers 83.6 73.0 81.5

4. Convergence Analysis. In GMNN, we utilize the varia-
tional EM algorithm for optimization, which consists of an
E-step and an M-step in each iteration. Next, we analyze
the convergence of GMNN. We take the Cora and Citeseer
datasets on object classification as examples, and report the
validation accuracy of both the q✓ and p� networks at each
iteration. Fig. 2 presents the convergence curve, in which it-
eration 0 corresponds to the pre-training stage. GMNN takes
only few iterations to convergence, which is very efficient.

(a) Cora (b) Citeseer

Figure 2. Convergence analysis.

7. Conclusion

This paper studies semi-supervised object classification,
which is a fundamental problem in relational data mod-
eling, and a novel approach called the GMNN is proposed.
GMNN employs a conditional random field to model the
joint distribution of object labels, and two graph neural net-
works are utilized to improve both the inference and learning
procedures. Experimental results on three tasks prove the
effectiveness of GMNN. In the future, we plan to further
improve GMNN to deal with graphs with multiple edge
types, such as knowledge graphs (Bollacker et al., 2008).

SSL: Semi-Supervised Learning: Zhou, D., Bousquet, O., Lal, T. N., Weston, J., 
and Schölkopf, B. Learning with local and global consis- tency. In NIPS, 2004.

Jian Tang



Summary so far

• A fundamental problem on graphs:
Semi-supervised node classification

• GMNN: towards combining statistical relational learning and
graph networks
– Model the label dependency with one graph neural network
– Learn effective node representations with another graph

neural network
• State-of-the-art results on semi-supervised node

classification, unsupervised node representation, and link
classification
– But: Are the improvements statistically significant?

• Code available at:
https://github.com/DeepGraphLearning/GMNN

Jian Tang

https://github.com/DeepGraphLearning/GMNN


Hm… Do we get useful MLNs? 

• Very many simplifications…
– Rough estimations of respective distributions …

• Do GMNNs really capture the semantics of MLNs?
– No notion of algorithmic correctness applied
– What is actually computed with all those simplifications?

• Three dimensions for evaluation
– Scalability 
– Scalability 
– Scalability

• Seriously: Evaluation w.r.t. other systems’ performances 
(or even human performance)

9

Probably okay for IR !
But, can we use the 

models also for other 
applications?



Text Semantics

• In natural language processing (NLP), 
semantics is concerned with the meanings of texts.

• There are two main approaches to represent meaning 

• Vector representation:

• Texts are embedded into a high-dimensional space.  

• Propositional or formal semantics: 

• A block of text is to converted into a formula (to be 
annotated with a formula) in a logical language, e.g. 
predicate calculus.

CS294-129: John Canny, Lecture 13: Text Processing with DNNs



Combination of Approaches

Propositional:

• “dog bites man” è bites(dog-1, man-1)  or (dog-1, bites, man-1)

• bites(*,*) is a binary relation. man, dog are objects

• Logical form / KG

• Probabilities can be attached

Vector representation:

• vec(“dog bites man”) = (0.2, -0.3, 1.5,…) ÎÂn

• Sentences similar in meaning should be close to this embedding 
(e.g., use human judgments)

CS294-129: John Canny, Lecture 13: Text Processing with DNNs

Islam Beltagy, Cuong Chau, Gemma Boleda, Dan Garrette, Katrin Erk, 
Raymond Mooney. Montague Meets Markov: Deep Semantics with 
Probabilistic Logical Form. In: Proc. Second Joint Conference on Lexical 
and Computational Semantics (*SEM), Volume 1: Proceedings of the Main 
Conference and the Shared Task: Semantic Textual Similarity. 11–21. 2013.

I. Beltagy, Stephen Roller, Pengxiang Cheng, Katrin Erk, and Raymond J. 
Mooney. 2016. Representing meaning with a combination of logical 
and distributional models. Comput. Linguist. 42, 4. 763–808. 2016.



Descriptions for Text Semantics

• Propositions can be seen as a database (CWA)
– RDF Tiples (s, p, o)
– Query answering w.r.t. ontologies (OBDA)

• Propositions can be seen as a knowledge graph (OWA)
– Ground formulas R(i1, i2)
– Do propositions really represent (common) knowledge?

• Possibly sometimes with named entities
• Usually not

• Need task-specific on-the-fly representations
– Can be subjective
– No need for common knowledge or consensus
– Can even represent propositions that are considered as false
– Probability values do not model whether a proposition is true

but model whether a proposition is suitable (for a task)
– Find most-probabily suited SCDs (MPSSCDs)

12

Ontology = 
set of predicate logic 

formulas = 
knowledge base

Felix Kuhr, Magnus Bender, Tanya Braun, Ralf Möller: Augmenting 
and Automating Corpus Enrichment. In: Int. J. Semantic Computing. 
Vol.14, (2), p.173-197. 2020.

For OBDA (Ontology-
Based Data Access)

see the course 
Information Systems 

(CS4130-KP06)



Latent Subjective Content Descriptions

• Subjective Content Decriptions (SCDs) describe content for a specific purpose
• An SCD may cover a (part of a) sentence, a paragraph, or a whole document
• SCDs add a value for different tasks, e.g., document retrieval
• Granularity of SCDs depends on the application
• Document contains SCDs from possibly multiple ontologies
• Must derive SCDs automatically

Lorem ipsum dolor sitamet,
consectetur adipiscing elit, sed  
do eiusmod tempor incididunt
ut labore et dolore magna  
aliqua. Dolor sed viverra ipsum
nunc aliquet bibendum enim. In  
massa tempor nec feugiat.
Nunc aliquet bibend

P(i, j), C(i), …

R(k, j), C(j), …

Q(k, l), D(l), …

Felix Kuhr, Magnus Bender, Tanya Braun, Ralf Möller: Context-specific Adaptation of 
Subjective Content Descriptions. In: Proceedings of the 15th IEEE International 
Conference on Semantic Computing (ICSC-21), 2021



KB-LDA and SCDs

“KB-LDA: Jointly Learning a Knowledge Base of Hierarchy, Relations,
and Facts,” Dana Movshovitz-Attias. William W. Cohen, ACL 2015

• Ontologies vs. topics

• Contemporary approaches use latent variable models to group 
entities (objects) and the relations between them in a data-
driven way

Noun
Verb

Gray nodes: known
White nodes: latent



KB-LDA and SCDs

Subject-Object-Verb triples
from parsing each sentence



KB-LDA and SCDs

Document membership
observations

Noun
Verb



KB-LDA and SCDs

Class-instance relations found from
linguistic patterns (Hearst Patterns)
“Netscape, an early web browser…”



KB-LDA and SCDs

Per-topic Relation 
distribution

Per-topic instance 
distribution

Think of it as a matrix mapping 
topic to instance distribution

A matrix mapping topic to relation distribution



KB-LDA and SCDs

topic distribution
for ontologies

“KB-LDA: Jointly Learning a Knowledge Base of Hierarchy, Relations,
and Facts,” Dana Movshovitz-Attias. William W. Cohen, ACL 2015

Could we generate SVO 
triples as SCDs if we 

assumed that the SVO 
nodes were latent?

We could fix the topic 
nodes due to the task for 

which SCDs are generated
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SCD Derivation: Multimedia Information Extraction

Bootstrapping Ontology Evolution 
with Multimedia Information 
Extraction 
[BOEMIE 2006]

S. Castano, S. Espinosa, A. Ferrara, V. Karkaletsis, A. Kaya, R. Möller, 
S. Montanelli, G. Petasis, and M. Wessel. Multimedia Interpretation for 
Dynamic Ontology Evolution. In Journal of Logic and Computation, 
volume 19, pages 859–897. Oxford University Press, 2008.
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Interpretation = Explanation

N1:Person

Objects

Abstract
concepts

F1
:F

ac
e

B1
:B

od
y

P1
:P

ol
e



Logical Abduction

Given:
• Background knowledge, B, in the form of a set of (Horn) 

clauses in first-order logic 
• Observations, O, in the form of atomic facts in first-order 

logic
Find:
• A hypothesis, H, a set of assumptions (logical formulae) that 

logically entail the observations given the theory
BÈH |= O

• Typically, best explanation is the one with the fewest 
assumptions, e.g., minimizes |H|

Probabilistic Abduction using Markov Logic Networks, Rohit J. Kate, Raymond J. Mooney



Sample First-order Abduction Problem

• Background Knowledge:
"x "y (Mosquito(x) Ù Infected(x, Malaria) Ù Bite(x, y) →

Infected(y, Malaria))
"x "y (Infected(x, Malaria) Ù Transfuse(Blood, x, y) →

Infected(y, Malaria))

• Observations:
Infected(John, Malaria)
Transfuse(Blood, Mary, John)

• Explanation:
Infected(Mary, Malaria)

Probabilistic Abduction using Markov Logic Networks, Rohit J. Kate, Raymond J. Mooney



Previous Work in Logical Abduction

• Several first-order logic-based approaches 
[Kautz & Allen 86; Poole et al. 87; Stickel 88; Ng & Mooney 91; Kakas et al. 93] 

• Perform first-order “backward” logical reasoning to determine 
the set of assumptions being sufficient 
to deduce observations

• Size of H is not necessarily the right score
• Why not finding the set H that maximizes

P(Infected(John, Malaria) ^ Transfuse(Blood, Mary, John))?
– Find those explanations that maximize the probability of the 

observations

Probabilistic Abduction using Markov Logic Networks, Rohit J. Kate, Raymond J. Mooney



Abduction using MLNs and Transformation

• Given:
Infected(Mary,Malaria) Ù Transfuse(Blood,Mary,John) →

Infected(John,Malaria))  
Transfuse(Blood, Mary, John)
Infected(John, Malaria)

• The clause is satisfied whether Infected(Mary, Malaria) is 
true or false

• Given the observations, a world has the same 
probability in MLN whether the explanation is true or 
false, explanations cannot be inferred  

• The MLN inference mechanism is inherently deductive 
and not abductive

Probabilistic Abduction using Markov Logic Networks, Rohit J. Kate, Raymond J. Mooney

Kate, R. J., and Mooney, R. J. Probabilistic abduction using Markov logic 
networks. In IJCAI-09 Workshop on Plan, Activity, and Intent Recognition. 2009



Adapting MLNs for Abduction

• Explicitly include the reverse implications
"x "y (Infected(x,Malaria) Ù Transfuse(Blood,x,y) →

Infected(y,Malaria))     

"y (Infected(y,Malaria) →
$x (Transfuse(Blood,x,y) Ù Infected(x,Malaria)))

• Existentially quantify the universally quantified variables 
which appear on the LHS but not on the RHS in the 
original clause

• Now, given Transfuse(Blood, Mary, John) and 
Infected(John, Malaria), the probability of the world(s) in 
which Infected(Mary, Malaria) is true will be higher

Probabilistic Abduction using Markov Logic Networks, Rohit J. Kate, Raymond J. Mooney



Adapting MLNs for Abduction

• However, there could be multiple explanations for the 
same observations:
"x "y (Infected(x, Malaria) Ù Transfuse(Blood, x, y) → Infected(y, Malaria))     

"y (Infected(y, Malaria) →
$x (Transfuse(Blood, x, y) Ù Infected(x, Malaria)))

"x "y (Mosquito(x) Ù Infected(x, Malaria) Ù Bite(x,y) → Infected(y, Malaria))

"y (Infected(y,Malaria) →
$x (Mosquito(x) Ù Infected(x, Malaria) Ù Bite(x, y)))

• An observation should be explained by one explanation 
and not multiple explanations

Probabilistic Abduction using Markov Logic Networks, Rohit J. Kate, Raymond J. Mooney



"x "y (Mosquito(x) Ù Infected(x,Malaria) Ù Bite(x,y) → Infected(y,Malaria))
"x "y (Infected(x,Malaria) Ù Transfuse(Blood,x,y) → Infected(y,Malaria))

Adapting MLNs for Abduction

• Add the disjunction clause and the mutual exclusivity clause 
for the same RHS term

• Since MLN clauses are “soft constraints” both explanations 
can still be true (probability ranking principle can be applied)

"y (Infected(y,Malaria) →
$x (Transfuse(Blood,x,y) Ù Infected(x,Malaria))) v
$x (Mosquito(x) Ù Infected(x,Malaria) Ù Bite(x,y)))

"y (Infected(y,Malaria) →
¬($x (Transfuse(Blood,x,y) Ù Infected(x,Malaria))) v
¬($x (Mosquito(x) Ù Infected(x,Malaria) Ù Bite(x,y))))

Probabilistic Abduction using Markov Logic Networks, Rohit J. Kate, Raymond J. Mooney



Adapting MLNs for Abduction

• In general, for the Horn clauses P1→ Q, P2→ Q , …,
Pn→ Q in the background knowledge base, add:

– A reverse implication disjunction clause
Q → P1 v P2 v… v Pn

– A mutual exclusivity clause for every pair of 
explanations
Q →¬ P1 v ¬ P2

Q →¬ P1 v ¬ Pn

…
Q →¬ P2 v ¬ Pn

• Weights can be learned from training examples or can be 
set heuristically 

Probabilistic Abduction using Markov Logic Networks, Rohit J. Kate, Raymond J. Mooney
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Interpretation = Explanation

N1:Person, Pole vaulter 
N2:Pole vault trial

Objects

Abstract
concepts

F1
:F

ac
e

B1
:B

od
y

P1
:P

ol
e

We need to introduce 
new constants

(not done by MLN 
engines)

Combine abduction 
with deduction



SCD Generation by Deduction with MLNs

• Transformation is a general method for existing 
off-the-shelf deductive inference systems for MLNs 

– Handles uncertainties using MLN weights 
– Model can be trained

• Not clear how to control the generation of new objects 
(in particular in the context of recursive rules)
– When to reuse old constants, when to create new ones?

Probabilistic Abduction using Markov Logic Networks, Rohit J. Kate, Raymond J. Mooney

James Blythe, Jerry R. Hobbs, Pedro Domingos, Rohit J. Kate, and Raymond J. 
Mooney. 2011. Implementing weighted abduction in Markov logic. In 
Proceedings of the Ninth International Conference on Computational 
Semantics (IWCS '11). 2011.

Kate, R. J., and Mooney, R. J. Probabilistic abduction using Markov logic 
networks. In IJCAI-09 Workshop on Plan, Activity, and Intent Recognition. 2009
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Text modality

• Low-level analysis of text
Yelena Isinbayeva of Russia on 
her way to victory (Getty Images)

Words
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Text modality (2)

• Text interpretation

Yelena Isinbayeva of Russia on 
her way to victory (Getty Images)

N3:Person

Abstract
concepts
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Irma Sofia Espinosa Peraldi, Atila Kaya, Sylvia Melzer, and Ralf Möller. 2008. 
On ontology based abduction for text interpretation. In Proceedings 
CICLing’08, 194–205. 2008.
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Fusion

Yelena Isinbayeva of Russia on 
her way to victory (Getty Images)

=

N3:Person, Pole vaulter
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N1:Person, Pole vaulter 
N2:Pole vault trial
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Atila Kaya: A Logic-Based Approach to Multimedia Interpretation, 
Dissertation, Hamburg University of Technology, 2010.



Relations between text parts

• Combine logic with embedding approaches
• Use, e.g., embeddings to represent relations between 

text constituents (point in an embedding space)
• Relation tuples are vectors in a embedding space
• No need to have an infinite number of 

predicate names for relations
• Avoid brittleness of MLNs
• Can use logic for abstraction of embedded SCDs

– Can compute abstractions on the fly
– Useful feature for “standard” applications

that benefit from SCDs
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Subjective Content Descriptions

38



Applications of SCDs

39

Sofia Espinosa, Content Management and Knowledge Management: Two 
Faces of Ontology-Based Text Interpretation, Dissertation, Hamburg 
University of Technology, 2011.



Our Approach: Abductive query answering

KG

QA w.r.t. KB, e.g.,
KB = { ∀𝑥 𝐶 𝑥 → 𝐷(𝑥)}

Δ = {}

{𝑅 𝑖, 𝑗 , 𝐶(𝑖)}

{𝐷(𝑖)}

{𝐶 𝑛𝑒𝑤# , 𝐷 𝑛𝑒𝑤$ , 𝑅 𝑛𝑒𝑤#, 𝑛𝑒𝑤$ }



Depth-first abductive query evaluation

KG : {𝑅 𝑖, 𝑗 , 𝐶(𝑖)}

G = Generator, T = Tester



Score for comparing solutions



Illustration of partial scores

KG : {𝑅 𝑖, 𝑗 , 𝐶(𝑖)}



Score-based cutoff

KG : {𝑅 𝑖, 𝑗 , 𝐶(𝑖)}



More formally

Volker Haarslev, Kay Hidde, Ralf Möller, and Michael Wessel.
The RacerPro knowledge representation and reasoning system. 
Semantic Web Journal, 3(3):267–277, 2012.

Ralf Möller, Özgür L. Özcep, Volker Haarslev, Anahita Nafissi, Michael 
Wessel: Abductive Conjunctive Query Answering w.r.t. Ontologies
in: KI - Künstliche Intelligenz, Vol.30, (2), p.177-182, 2016.



How effective is this?

KG

KG 
B

KG 
A

Abductive query answering



KG Difference w.r.t. KB

• “What needs to be minimally added to 𝐾𝐺$
such that 𝐾𝐺% is entailed w.r.t. KB”
– Δ!"%,!"&

!$ = argmin% score Δ 𝑠. 𝑡. 𝐾𝐺& ∪ Δ ⊨!$ 𝐾𝐺'
• But: 𝐾𝐺$ and 𝐾𝐺% can use different names
• Thus, a name substitution needs to be computed

– Δ!"%,!"&
!$ = argmin%,( score Δ 𝑠. 𝑡. 𝐾𝐺& ∪ Δ ⊨!$ 𝜎!"%(𝐾𝐺')

• Implemented by abductive query anwering
– Treat 𝐾𝐺7 as query to be answered w.r.t. 𝐾𝐺8

and possibly a given first-order knowledge base KB)
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Interpretation Example

!"#$%$&!'()$'*

!"# $%& '("#)**&+,%-

!
"



Interpretation Example Continued

!."#$%&/01&2 !.3#$%&/451

!"#$%$&!'()$'*

!"# $%& '("#)**&+,%-

!"#$%$&!'()$'*

!"# $%& '("#)**&+,%-

6%(789.!1:!.";!"< 6%(789.!1:!.3;!"<
6%(/=.!1:!.3;'("<6%(/=.!1:!.";'("<

Branching



Maximum Aposterior Inference Problem

>?@ $%&:!"<
>?A)**&+,%-:5<BB
!%C(.(:!";5<
>?3 /0D50.+*C0':5<

$%&:!"<BB
)**&+,%-:5<BB
!%C(.(:!";5<

!"#

EF

!"



Controlling the InterpretationProcess: MaxP

-BGBHC-8.&B*IBC0.4J,%50.'*8(.&K%:*0(BB
0BGBHC-8.&B*IB.4J,%50.'*8(.&K%:*0( ##

C0.4J,%50.'

C0.4J,%50.' .4J?

C0.4J,%50.' .4J?

C0.4J,%50.' .4J,%50.'

:
:

- 0

"

3

@

Anahita Nafissi, Applying Markov Logics for Controlling ABox Abduction, 
Dissertation, Hamburg University of Technology. 2013.

P-Score



Interpretation ControllingExample: Beam Search

L((C-.BM *8(.&K%:*0(
).J16BG3

#$



Development of the P‐Score

!"#"$%&'"(!%)"%*+%,($'+"-%$."(//%0(1"$%&'"23"45*,.')
6"#"),2/%*7"0(15'"23"$.'"%*$'/8/'$($%2*"942!
:;$/($'76"<";$28=>?/2,'))%*7@

#%



Increasing the Scoreby ExplainingObservations

!"#"$%&'")8'*$"32/"'!81(%*%*7 24)'/0($%2*)
6"#"*5&4'/"23"24)'/0($%2*) $2"4'"'!81(%*'+"%*("45*,.""
A"#"),2/%*70(15'

!#



Increasing the Score by Explaining  Observations

!"#"$%&'"(!%)"%*+%,($'+"-%$."(//%0(1"$%&'"23"45*,.')""
6"#"),2/%*7"0(15'"23"$.'"%*$'/8/'$($%2*"942!
:;$/($'76"<"B2=C2$=;$28=?/2,'))%*7@ #&



!$

Summary: Logical Abduction

• D*,/'&'*$(116",211',$"8/2,'))"%*85$"+($(
• ;$/'(&=4()'+"(88/2(,.

• E2*$/21"$.'"(4+5,$%2*"8/2,'))"%*"$'/&)"23"4/(*,.%*7"
:4'(&")'(/,.@F"+'8$.F"(*+"/'(,$%0%$6

• B'(1"-%$."5*,'/$(%*"(*+"%*,2*)%)$'*$"24)'/0($%2*)
• G(*H"%*$'/8/'$($%2*"(1$'/*($%0')"8/24(4%1%)$%,(116
5)%*7"IJC)

• D*,/'()'"$.'"/(*H"23"%*$'/8/'$($%2*"(1$'/*($%0')"
&2*2$2*%,(116"46")5,,'))%0'16"'!81(%*%*7"24)'/0($%2*)
• K!812%$"32/&51()"%3"(0(%1(41'
• L2/&51()"*2$"(1-(6)"(0(%1(41'F".2-'0'/

• C''+"(1)2"2$.'/"-(6)"$2",2*)$/5,$";EB)

Anahita Nafissi, Applying Markov Logics for Controlling ABox Abduction, 
Dissertation, Hamburg University of Technology. 2013.


