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Recap

Use embedding approaches to complete KGs
- Use MLNs to complete KGs

Learn MLNs from KGs to capture “symmetries”
— Benefit also from labeled training data

n

— Can be seen as “symbolic dimension reduction

— U se pSeUd Ollkellh 00 d ?::asgt,a initii:;j,icsg,a;;;\/_si; :f :;);;I.attice data.
— Variational EM as a learning algorithm
— Exploit ELBO

- Use GNNs to compute lower bound distribution

Neal, R. M. and Hinton, G. E. A view of the em algorithm that justifies
incremental, sparse, and other variants. In Learning in graphical models, pp.
355-368. Springer, 1998.
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GMNN: Graph Markov Neural Networks

- Model the joint distribution of object labels y;,
conditioned on object attributes xy, i.e., py (Y [Xy)

. Learning the model parameters ¢ by maximizing the
lower-bound of log-likelihood of the observed (labelled)

data, log py (¥ Xy )

logpe(yr|xy) >
Eyo(vo 1xv) 10806 (YL, YU xv) — log qe(yu |xv )]
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GMNNSs: Graph Markov Neural Networks

- Towards combining statistical relational learning
and graph networks

— Approximation, but polynomial runtime
q0(yn|xv) = Cat(y, |softmax(Wyhyg ,,))

- Learning effective node representations for predicting
the node labels

— Modeling the label dependencies of nodes
with Markov blanket (neighbors in the undirected setting)
Pg(Yn|ynB(n), Xv) = Cat(yn|softmax(Wshy 1))

Meng Qu, Yoshua Bengio, Jian Tang:
GMNN: Graph Markov Neural Networks. In Proc. ICML 2019.




GMNN: Overall Optimization Procedure

Two Graph networks collaborate with each other
— pg¢: learning network, modeling the label dependency
- qg: inference network, learning the object representations
e g infer the labels of unlabeled objects trained with supervision from
Py and labeled objects
e p, istrained with a fully labeled graph, where the unlabeled objects
are labeled by gg

- Learningw/o
hidden nodes

is much easier
O Object labels

- Object features
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Applications: Object/Node Classification

- Train, validation, and test are standard split
. State-of-the-art performance

Category Algorithm Cora Citeseer Pubmed
SSL LP 74.2 56.3 71.6
PRM 77.0 63.4 68.3
SRL RMN 71.3 68.0 70.7
MLN 74.6 68.0 75.3
GNN GCN * 81.5 70.3 79.0
GAT * 83.0 72.5 79.0
W/o Attr. in p 83.4 73.1 81.4
GMNN With Attr. in pg 83.7 72.9 81.8

* = Taken from respective papers

SSL: Semi-Supervised Learning: Zhou, D., Bousquet, O., Lal, T. N., Weston, J.,
and Schélkopf, B. Learning with local and global consis- tency. In NIPS, 2004.

GAT: Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana

Romero, Pietro Lio and Yoshua Bengio. Graph Attention Networks (GATSs),
In: Proc. ICLR 2018.




Applications: Link Classification

. Construct a dual graph G from the original graph G
- Each edgein G->anodein G

— Two nodes in G are connected if the corresponding
edges in G share a node

— Use node classification in G for link classification in G

Category Algorithm Bitcoin Alpha Bitcoin OTC

SSL LP 59.68 65.58
PRM 58.59 64.37

SRL RMN 59.56 65.59
MLN 60.87 65.62

DeepWalk 62.71 63.20

GNN GCN 64.00 65.69
W/o Attr. in py 65.59 66.62

GMNN With Attr. in pg 65.86 66.83

SSL: Semi-Supervised Learning: Zhou, D., Bousquet, O., Lal, T. N., Weston, J.,
and Scholkopf, B. Learning with local and global consis- tency. In NIPS, 2004.




Summary so far

- A fundamental problem on graphs:
Semi-supervised node classification

-  GMNN: towards combining statistical relational learning and
graph networks
— Model the label dependency with one graph neural network

— Learn effective node representations with another graph
neural network
. State-of-the-art results on semi-supervised node
classification, unsupervised node representation, and link
classification

— But: Are the improvements statistically significant?

- Code available at:
https://github.com/DeepGraphlLearning/GMNN



https://github.com/DeepGraphLearning/GMNN

Hm... Do we get useful MLNs?
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Very many simplifications...
— Rough estimations of respective distributions ...
Do GMNNSs really capture the semantics of MLNs?
— No notion of algorithmic correctness applied
— What is actually computed with all those simplifications?

Three dimensions for evaluation
Probably okay for IR !

— Scalability But, can we use the

— Scalability models also for other
applications?

— Scalability

Seriously: Evaluation w.r.t. other systems’ performances
(or even human performance)
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Text Semantics

* In natural language processing (NLP),
semantics is concerned with the meanings of texts.

* There are two main approaches to represent meaning
* Vector representation:
* Texts are embedded into a high-dimensional space.
* Propositional or formal semantics:

* A block of text is to converted into a formula (to be
annotated with a formula) in a logical language, e.qg.
predicate calculus.




Combination of Approaches

Propositional:
* “dog bites man” =» bites(dog-1, man-1) or (dog-1, bites, man-1)
* bites(**) is a binary relation. man, dog are objects

° LOgICa I form / KG Islam Beltagy, Cuong Chau, Gemma Boleda, Dan Garrette, Katrin Erk,

Raymond Mooney. Montague Meets Markov: Deep Semantics with
Probabilistic Logical Form. In: Proc. Second Joint Conference on Lexical
and Computational Semantics (*SEM), Volume 1: Proceedings of the Main

PrObabIIItleS can be attaChed Conference and the Shared Task: Semantic Textual Similarity. 11-21.2013.

Vector representation:
* vec(“dog bites man”) =(0.2,-0.3,1.5,...) e R"

* Sentences similar in meaning should be close to this embedding
(e.g., use human judgments)

l. Beltagy, Stephen Roller, Pengxiang Cheng, Katrin Erk, and Raymond J.
R W Mooney. 2016. Representing meaning with a combination of logical
BT NI Mebidanonssysrewe and distributional models. Comput. Linguist. 42, 4. 763-808. 2016.




Descriptions for Text Semantics

o Ontology =
Propositions can be seen as a database (CWA) s ol e ieaie gt

— RDF Tiples (s, p, 0) formulas =
— Query answering w.r.t. ontologies (OBDA) knowledge base

Propositions can be seen as a knowledge graph (OWA)
— Ground formulas R(i1, i2)

— Do propositions really represent (common) knowledge?
Possibly sometimes with named entities

Usually not For OBDA (Ontology-
- Need task-specific on-the-fly representations Based Data Access)
o see the course
- (Can be subjective Information Systems
— No need for common knowledge or consensus (CS4130-KP06)

— (Can even represent propositions that are considered as false
— Probability values do not model whether a proposition is true
but model whether a proposition is suitable (for a task)

— Find most-probabily suited SCDs (MPSSCDs)

Felix Kuhr, Magnus Bender, Tanya Braun, Ralf Mdéller: Augmenting
and Automating Corpus Enrichment. In: Int. J. Semantic Computing.
Vol.14, (2), p.173-197. 2020. 12




Latent Subjective Content Descriptions

* Subjective Content Decriptions (SCDs) describe content for a specific purpose
* An SCD may cover a (part of a) sentence, a paragraph, or a whole document

« SCDs add a value for different tasks, e.g., document retrieval

 Granularity of SCDs depends on the application

* Document contains SCDs from possibly multiple ontologies

* Must derive SCDs automatically

“J’ \\

R, j), C(j), - ‘

Q(k, 1), D(l), ... y

Felix Kuhr, Magnus Bender, Tanya Braun, Ralf Mdller: Context-specific Adaptation of
Subjective Content Descriptions. In: Proceedings of the 15th IEEE International
UNIVSETII('?LIJTT‘;UZI;JIIN‘JF%ERCI\%ATIONSSYSTEME Conference on Semantic Computing (lCSC-21 ), 2021 IM FOCUS DAS LEBEN
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KB-LDA and SCDs

* Ontologies vs. topics

* Contemporary approaches use latent variable models to group
entities (objects) and the relations between them in a data-
driven way

Ontology
. ()
Relati ! ’]//' \(/[‘\ T\ O
etarnions i — >_‘: ﬂ-o 'K—.
(- \ _)O /( ru)( %( 1>/ N
- —N,
/ \ / K - O
“.R_H\R/'——H\(_) /’_»@/ Noun Documents
;\' verb Ej ‘—*/1* )
N Tl o A
Npg \\Ak’/:\ J\’d‘] H/\\/—-\ ap
K T \ / ™~ /‘,\Hd/k__.
™~ o l/ —
Gray nodes: known i - @-@y
White nodes: latent | Na,r B N

“KB-LDA: Jointly Learning a Knowledge Base of Hierarchy, Relations,
and Facts,” Dana Movshovitz-Attias. William W. Cohen, ACL 2015




KB-LDA and SCDs

Ontology

Documents

ZEn

Subject-Object-Verb triples 1R

from parsing each sentence

IM FOCUS DAS LEBEN




KB-LDA and SCDs

Ontology
e Lo
Relations | / @
S 5l B /;k\/ > Iz
/M Ao
K .
Oz.R . Noun \ P Documents

Verb / g
@
NR Nd,I ap
SO
K N
| El2 ~Ej,
® R \ Nig
Document membership —®»< Np

observations
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KB-LDA and SCDs

Class-instance relations found from
linguistic patterns (Hearst Patterns)
“Netscape, an early web browser...”

Relations ! / -
: /i\/ \ > I’L 21,
@
\
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KB-LDA and SCDs

Per-topic instance Think of it as a matrix mapping
distribution topic to instance distribution
Ontology
Relations
O,
No
Oz. Documents
En “En
Op! Nar1

Per-topic Relation o r

N,
distribution o Np

A matrix mapping topic to relation distribution
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KB-LDA and SCDs

We could fix the topic
nodes due to the task for topic distribution
which SCDs are generated — for ontologies

\ /¥/ Ontology
o @ @ N\

Relations /_i\/ H @ o
j ~ I 0 V

| No
O".R . ‘_~ \ Documents
)0
o

~  Ng Na 1 ap
N I( \\ _.
|
Could we generate SVO ® IR Nig
triples as SCDs if we Np
N assumed that the SVO

nodes were latent?

“KB-LDA: Jointly Learning a Knowledge Base of Hierarchy, Relations,

§ USRI Nrgiidanonssvsrews and Facts,” Dana Movshovitz-Attias. William W. Cohen, ACL 2015 M FOCUS DAS LEEEN




SCD Derivation: Multimedia Information Extraction

Bootstrapping Ontology Evolution TN
with Multimedia Information
Extraction

[BOEMIE 2006]

eb ontology Ianguaie

Visual information Non-visual information
Video OCR %4 Video T Image Audio 1 Text
1 1 e

S. Castano, S. Espinosa, A. Ferrara, V. Karkaletsis, A. Kaya, R. Mdller,
S. Montanelli, G. Petasis, and M. Wessel. Multimedia Interpretation for
Dynamic Ontology Evolution. In Journal of Logic and Computation,
VINSTITUT FOR INFoRMATIONSSTSTEME volume 19, pages 859-897. Oxford University Press, 2008. IM FOCUS DAS LEEEN 22




Interpretation = Explanation

Yelena lsinbayeva of KUssia on ner way to Wetory
(Getty Images)

Abstract
N1:Person g concepts
= Objects
w

IM FOCUS DAS LEBEN 23




Logical Abduction

Given:

- Background knowledge, B, in the form of a set of (Horn)
clauses in first-order logic

- Observations, O, in the form of atomic facts in first-order
logic

Find:

- A hypothesis, H, a set of assumptions (logical formulae) that
logically entail the observations given the theory

BUH|=0

- Typically, best explanation is the one with the fewest

assumptions, e.g., minimizes |H|

5 R
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Sample First-order Abduction Problem

- Background Knowledge:
Vx Vy (Mosquito(x) A Infected(x, Malaria) A Bite(x, y) —
Infected(y, Malaria))
Vx Vy (Infected(x, Malaria) A Transfuse(Blood, x, y) —
Infected(y, Malaria))
 Observations:
Infected(John, Malaria)
Transfuse(Blood, Mary, John)
. Explanation:
Infected(Mary, Malaria)

5 R
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Previous Work in Logical Abduction

. Several first-order logic-based approaches

. Perform first-order “backward” logical reasoning to determine
the set of assumptions being sufficient
to deduce observations

- Size of H is not necessarily the right score

-  Why not finding the set H that maximizes
P(Infected(John, Malaria) A Transfuse(Blood, Mary, John))?

— Find those explanations that maximize the probability of the
observations




Abduction using MLNs and Transformation

Given:

Infected(Mary,Malaria) A Transfuse(Blood,Mary,John) —
Infected(John,Malaria))

Transfuse(Blood, Mary, John)
Infected(John, Malaria)

- The clause is satisfied whether Infected(Mary, Malaria) is
true or false

. Given the observations, a world has the same
probability in MLN whether the explanation is true or
false, explanations cannot be inferred

- The MLN inference mechanism is inherently deductive
and not abductive

Kate, R. J., and Mooney, R. J. Probabilistic abduction using Markov logic
networks. In [JCAI-09 Workshop on Plan, Activity, and Intent Recognition. 2009




Adapting MLNs for Abduction

. Explicitly include the reverse implications
Vx Vy (Infected(x,Malaria) A Transfuse(Blood,x,y) —

Infected(y,Malaria))

_Vy (Infected(y,Malaria) —

dx (Transfuse(Blood,x,y) A Infected(x,Malaria)))

- Existentially quantify the universally quantified variables
which appear on the LHS but not on the RHS in the
original clause

- Now, given Transfuse(Blood, Mary, John) and

Infected(John, Malaria), the probability of the world(s) in
which Infected(Mary, Malaria) is true will be higher




Adapting MLNs for Abduction

- However, there could be multiple explanations for the
same observations:

Vx Vy (Infected(x, Malaria) A Transfuse(Blood, x, y) — Infected(y, Malaria))

Vy (Infected(y, Malaria) —
dx (Transfuse(Blood, x, y) A Infected(x, Malaria)))

Y

Vx Vy (Mosquito(x) A Infected(x, Malaria) A Bite(x,y) — Infected(y, Malaria))

Vy (Infected(y,Malaria) —

Y

dx (Mosquito(x) A Infected(x, Malaria) A Bite(x, y)))

- An observation should be explained by one explanation
and not multiple explanations

5 R
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Adapting MLNs for Abduction

- Add the disjunction clause and the mutual exclusivity clause
for the same RHS term

Vx Vy (Mosquito(x) A Infected(x,Malaria) A Bite(x,y) — Infected(y,Malaria))
Vx Vy (Infected(x,Malaria) A Transfuse(Blood,x,y) — Infected(y,Malaria))

g Vy (Infected(y,Malaria) —
dx (Transfuse(Blood,x,y) A Infected(x,Malaria))) v
: : Elx(l\/losquito(x)./\Infected(x,l\/lalaria)/\Bite(x,y)))
y (Infected(y,Malaria) —
—(3x (Transfuse(Blood,x,y) A Infected(x,Malaria))) v
\_ —(3x (Mosquito(x) A Infected(x,Malaria) A Bite(x,y))))

- Since MLN clauses are “soft constraints” both explanations
can still be true (probability ranking principle can be applied)

rSI
QERSIZ,



Adapting MLNs for Abduction

 In general, for the Horn clauses P, — Q, P, - Q, ...,
P, — Qin the background knowledge base, add:
— Areverse implication disjunction clause
Q—P,vP,v...VP,

— A mutual exclusivity clause for every pair of
explanations

Q—>—|P1V—|P2
Q—>—|P1V—|Pn

Q—>—|P2V—|Pn

- Weights can be learned from training examples or can be
set heuristically

T NS AMATIONSSYSTEME IM FOCUS DAS LEBEN

Probabilistic Abduction using Markov Logic Networks, Rohit J. Kate, Raymond J. Mooney



Interpretation = Explanation

N

N1:Person, Pole vaulter.

F1:Face
P1:Pole

.

We need to introduce

new constants
(not done by MLN

engines)
\\/\er "

\
- Abstract

concepts

St
T

Objects

Combine abduction

with deduction

IM FOCUS DAS LEBEN 32
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SCD Generation by Deduction with MLNs

- Transformation is a general method for existing
off-the-shelf deductive inference systems for MLNs

— Handles uncertainties using MLN weights
— Model can be trained

Kate, R. J., and Mooney, R. J. Probabilistic abduction using Markov logic
networks. In 1JCAI-09 Workshop on Plan, Activity, and Intent Recognition. 2009

James Blythe, Jerry R. Hobbs, Pedro Domingos, Rohit J. Kate, and Raymond J.

Mooney. 2011. Implementing weighted abduction in Markov logic. In
Proceedings of the Ninth International Conference on Computational

Semantics (IWCS'11). 2011.

- Not clear how to control the generation of new objects
(in particular in the context of recursive rules)

— When to reuse old constants, when to create new ones?

5 RUIT © UNIVERSITAT ZU L
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Text modality

- Low-level analysis of text , ,
A Yelena Isinbayeva of Russia on

her way to victory (Getty Images)

Yelena Isinbayeva of Russia on her way to victory
(Getty Images)

Words

Pn1:Person
Name
C1:Country

IM FOCUS DAS LEBEN 34




Text modality (2)

- Textinterpretation

Yelena Isinbayeva of Russia on
her way to victory (Getty Images)

Yelena Isinbayeva of Russia on her way to victory
(Getty Images)

/ Abstract

@ concepts N3:Person
g
S O 3
S8 S
g 5

Irma Sofia Espinosa Peraldi, Atila Kaya, Sylvia Melzer, and Ralf Méller. 2008.
On ontology based abduction for text interpretation. In Proceedings
CICLing’08, 194-205. 2008.

IM FOCUS DAS LEBEN 35
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Fusion

her WayAto vic,:tory (Getty Images)

Yelena Isinbayeva of Russia on her way to victory
(Getty Images)

N2:Pole vault triey

N1:Person, Pole vaulter. S > (@ N3:Person, Pole vaulter

F1:Face
Pn1:Person
Name
C1:Country

Atila Kaya: A Logic-Based Approach to Multimedia Interpretation,
INSIRUT TR INFoRMATIONS SYSTEME Dissertation, Hamburg University of Technology, 2010. IM FOCUS DAS LEBEN 36




Relations between text parts

- Combine logic with embedding approaches

- Use, e.g., embeddings to represent relations between
text constituents (point in an embedding space)

- Relation tuples are vectors in a embedding space

- No need to have an infinite number of
predicate names for relations

« Avoid brittleness of MLNs

. Can use logic for abstraction of embedded SCDs
— Can compute abstractions on the fly

— Useful feature for “standard” applications
that benefit from SCDs

GERST
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Subjective Content Descriptions

Structure
descriptions

y2: polygon
2: image

y1: polygon

y3: polygon

c2: caption

slisegment

fl:person face :segment

Yelena Isinbayeva of Russia on her vay to victory
(Getty Images)

pl: Person Name

Domain descriptions

L N maTiONssYsTEME IM FOCUS DAS LEBEN 38




Applications of SCDs

http//repository.boemie.org:8. bad-a063-01de1124825¢.¢-1.html e
Mutola stays on track for USS 1 Million Jackpot doubts abouthis .. A
, s {800m; might not have been the - Live from Zurich - IAAF Golden League
race of the evening, and the times recorded quotes
were certainly nothing special, yet there is no Fri 15 Aug 2003

denying that Maria Mutola has a third World
outdoorm and the USS 1 Million Golden
League Jackpot firmly in her sights, after she

controlled tonight's race with ease.

15 August 2003 - "Zurich is just magic
have been winning every year since 1¢
here and today ...

- Zurich offers high profile dress rehear

Run it slow, run it fast, attack her with 300m to outhAfn dears Paris Worlds
go, attack her with 200m to go, whatever her |2 Fri 15 Aug 2003
opponents do there seems little that will

[ v |

d Definition of an athlete
""" More articles about high jump trials

More references to 1 places

1 More articles about jumping trials

6 More articles about other high jump athletes
7 More articles about other jump athletes

Back to his best - £l Guerrouj

Rumours abounded in the Iast wee

World record holder was suffenng from a backi mjury Well ifthe

A4S

Moroccan's 3:29.13; world lead m performance is any

.-.. B A

running as free and easy as any athlete can when he sustains a
sub 3:30 pace for the distance.

Never in trouble, always calm and collected, El
wor from Kenya rd Lagas, M|

Sofia Espinosa, Content Management and Knowledge Management: Two

Faces of Ontology-Based Text Interpretation, Dissertation, Hamburg
U’;‘IEIVSFIII?LIJTT‘;UZI;JIII.\JUF%ERCJATIONSSYSTEME University of TeChnO|Ogy, 201 1 . I M FOC U S DAS L E B E N 39




Our Approach: Abductive query answering

e Simple example
- Query: ans() < C'(x), D(y), R(x,y)
- KG : {R@, /), C(D}

— Preferred solution (optimal, according to score defined below)

T,y — ) QA w.rt. KB, e.g.,
A = {D@)} KB ={Vx C(x) - D(x)}
— Other solution (plus 7 more, 32=9), e.g. A=

x < newl,y «— newsy
A = {C(new,),D(new,), R(new;, new,)}
» Exponential number of solutions has to be computed to find ,,the best*

— optimization idea: early dynamic cutoff of search space based on
score evaluation on partially computed explanations (deltas)

Nz, &
2 WUAYT & UNIVERSITAT ZU LUBECK
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Depth-first abductive query evaluation

KG:{R(, ), C(>i)}

Ao Query

Evaluation
Plan

G = Generator, T = Tester

$ %
BB -

S & universiTAT Zu LuBECK
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Score for comparing solutions

Very simple:

entailed Assertions minus hypothesized Assertions

AT |A | — maximize

score(A) =y

A =A"UA" (entailed, hypothesized)

IM FOCUS DAS LEBEN




lllustration of partial scores

KG: {R(i, ), C(i)} AT |A| — score — max.

NN\ VYA

$ %
BB -

S & universiTAT Zu LuBECK

3R USTTUT FOR INFORMATIONSSYSTEME IM FOCUS DAS LEBEN
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Score-based cutoff

KG: {R(i, ), C (D)}
NI\ VRN

Rem. points I can make: 1

-2+1=-1—- CUTOFF
A()' (is worse than B.S.F)
CAN PRUNE WHOLE

27 _1=1 SUBTREES!

IM FOCUS DAS LEBEN




More formally

n = A"+ |A | (n const. for cach rule body)

score(A) =g |[AT] — |AT| — maximize (not monotone)
n + score(A) = 2|A™

score(A) = 2|A"| — n — maximize (and monotone!)

e Let A, C A.m, =n—|A,| (remaining conjuncts)

- If score(A,,) + (n — |A,]) < score(Aycsi_so_jar)

Score(Ah('sl_H()_./'u,'r') o SCOre(A«/,) > (,n’ o ‘APU
reject Ap

Ralf Méller, Ozgiir L. Ozcep, Volker Haarslev, Anahita Nafissi, Michael

Wessel: Abductive Conjunctive Query Answering w.r.t. Ontologies
in: KI - Kiinstliche Intelligenz, Vol.30, (2), p.177-182, 2016.

Volker Haarslev, Kay Hidde, Ralf Méller, and Michael Wessel.
The RacerPro knowledge representation and reasoning system.
Semantic Web Journal, 3(3):267-277, 2012. IM FOCUS DAS LEBEN




How effective is this?

e Synthetic benchmark: finding graph 1somorphisms (n nodes)

e Problem reductions:
Graph Isomorphism —  Abductive query answering

Seconds '

14

12

T 10

s =8 Optimized
== Unoptimized

# Nodes
0 n Ring

2 4 6 8 10 12 14

IM FOCUS DAS LEBEN




KG Difference w.r.t. KB

- “What needs to be minimally added to K G,
such that KG, is entailed w.r.t. KB”

- AK¢, kg, = argming score(A) s.t. KG; U A =g KG,
- But: KG; and KG, can use different names
.« Thus, a name substitution needs to be computed

- AK¢, kg, = argming , score(A) s.t. KG; U A Egp oxg, (KG3)

- Implemented by abductive query anwering

— Treat KG4 as query to be answered w.rt. KG,
and possibly a given first-order knowledge base KB)

47



Interpretation Example

Y,y causes(z,y) < Iz CarEntry(z), hasObject(z, z), hasEffect(z,y), Car(z), DoorSlam(y)

, causes(c1,ds1) P
cl1: Car ds1: DoorSlam

4
8

IM FOCUS DAS LEBEN




Interpretation Example Continued

Vx,y causes(z,y) < 3z CarEntry(z), hasObject(z, x), hasEffect(z,y), Car(z), DoorSlam(y)

Vr,y causes(z,y) < 3z CarExit(z), hasObject(z, x), hasEffect(z,y), Car(zx), DoorSlam(y)

cel: CarEntry ce2: CarExit

hasObject(ce1,c1 hasObject(ce2,c1

hasEffect(ce1,ds1) hasEffect(ce2,ds1)

causes(c1,ds1

ds1: DoorSlam

Branching

IM FOCUS DAS LEBEN




Maximum Aposterior Inference Problem

0.3 Car(c1)

0.6 DoorSlam() - gi‘gf;)am 0
causes(ct,) causes(c1,))
0.2 EngineSound(i) T 2

IM FOCUS DAS LEBEN




Controlling the InterpretationProcess: Max;

unexplained -A
unexplained exp.| A .A1
unexplained exp. A Az
unexplained explained A A3
m . n
P-Score
1 n
P R) = m x 0.5 £ i |
(A, WR) = (m X U.0 + ZZ:; MLN(AWR)(Qi(A) | 6’(«4)))

m = Number of unexplained observa(ons
n =Number of explained observa(ons 1

Anahita Nafissi, Applying Markov Logics for Controlling ABox Abduction,

Dissertation, Hamburg University of Technology. 2013. IM FOCUS DAS LEBEN




Interpretation ControllingExample: Beam Search

A
Assume 4 observa(ons /\
Depth =2 A, A,
0.8 0.7
(1 1) «+—— explained S
(3 3) <«—— unexplained 1
A A A
0.9 0.6 0.7
(2 2 1) <+—— explained S
(2 2 3) +«—— Uunexplained 2
AS AZ ./44
0.9 0.7 0.6
(2 1 2) <«—— explained S
2 3 2) <—— Unexplained 3
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Development of the P-Score

1 | R —
0. 8 i XXX xxX xxx xxx xxx |
R P R I I o I N ) . -
0.4f .
0.2 -
B B2 B3 B4 BS5 B6 B7 B8 B9
X = time axis indicated with arrival time of bunches
y = scoring value of the interpretation Abox
(Strategy : Stop--Processing)
13
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Increasing the Score by Explaining Observations

X 120 0

x =time spent for explaining observations
y =number of observations to be explained inabunch
Z=scoring value
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Increasing the Score by Explaining Observations

—] —_—
% x x
0 8 % X % x X
. x x
x X XX x x
X % x X X
%
x
%
X % X
s |l XX %
x x b P
xxxxxxxxxxx

e . | O < daiicancl| IR SO - ]

5 goees e TR L ___Zignoemhasie. 1 el o o5
0 N C.oiciai N B S O SOt
x

X = time axis indicated with arrival time of bunches
y = scoring value of the interpretation Abox
(Strategy : Do-Not-Stop-Processing)
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Summary: Logical Abduction

* Incrementally collect process input data
« Stream-based approach

« Control the abduction process in terms of branching
(beam search), depth, and reactivity

 Deal with uncertain and inconsistent observations

« Rank interpretation alternatives probabilistically
using MLNs

Anahita Nafissi, Applying Markov Logics for Controlling ABox Abduction,
Dissertation, Hamburg University of Technology. 2013.

* Increase the rank of interpretation alternatives
monotonically by successively explaining observations

« Exploit formulas if available
« Formulas not always available, however
* Need also other ways to construct SCDs
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