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Time and Uncertainty

• The world changes, we need to track and predict it
• Examples: diabetes management, traffic monitoring
• Uncertainty is everywhere
• Need temporal probabilistic graphical models
• Basic idea: copy state and evidence variables for each time 

step
• Xt – set of unobservable state variables at time t

– e.g., BloodSugart, StomachContentst
• Et – set of evidence variables at time t

– e.g., MeasuredBloodSugart, PulseRatet, FoodEatent

• Assumes discrete time steps
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States and Observations

• Process of change viewed as series of snapshots, 
each describing the state of the world at a particular time

• Time slice involves a set of random variables indexed by t:
– the set of unobservable state variables Xt

– the set of observable evidence variable Et

• The observation at time t is Et = et for some set of values et
• The notation Xa:b denotes the set of variables from Xa to Xb
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Dynamic Bayesian Networks

• How can we model dynamic situations with a 
Bayesian network?

• Example: Is it raining today?
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next step: specify dependencies among the variables.

The term “dynamic” means we are modeling a dynamic system, not that
the network structure changes over time.
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Example

Raint

Umbrellat
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• Problem: all previous random variables could have an 
influence on those of the the current timestamp

1. Necessity to specify an unbounded number of conditional 
probability tables, one for each variable in each slice,

2. Each one might involve an unbounded number of parents.

• Solution:

1. Assume that changes in the world state are caused by a 
stationary process (unmoving process over time).

))(/( tt UParentUP is the same for all t

DBN - Representation
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Stationary Process/Markov Assumption

• Markov Assumption: Xt depends on some parent Xis
• First-order Markov process: 

P(Xt|X0:t-1) = P(Xt|Xt-1)

– kth order: depends on previous k time steps
• Sensor Markov assumption:

P(Et|X0:t, E0:t-1) = P(Et|Xt)

• Assume stationary process: transition model:
– P(Xt|Xt-1) and sensor model P(Et|Xt) are the same for all t
– Changes in the world state governed by 

laws not changing over time
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Dynamic Bayesian Networks

• There are two possible fixes if the approximation is too 
inaccurate:

– Increasing the order of the Markov process model. For 
example, adding as a parent of , which might 
give slightly more accurate predictions.

– Increasing the set of state variables. For example, adding
to allow to incorporate historical records of rainy 

seasons, or adding                       ,                  and Pressure
to allow to use a physical model of rainy conditions.

2−tRain

tSeason
teTemperatur ttHumidity

tRain
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Dynamic Bayesian Network

2−tX 1−tX 2+tX1+tXtX

2−tX 1−tX 2+tX1+tXtX

A second order of Markov process

Bayesian network structure corresponding to a first-order of Markov process 
with state defined by the variables Xt.
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Example

Raint-1

Umbrellat-1

Raint

Umbrellat

Raint+1

Umbrellat+1

Rt-1 P(Rt|Rt-1)
T
F

0.7
0.3

Rt P(Ut|Rt)
T
F

0.9
0.2
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Complete Joint Distribution: Markov-1

• Given:
– Transition model: P(Xt|Xt-1)
– Sensor model: P(Et|Xt)
– Prior probability: P(X0)

• Then we can specify complete joint distribution:

∏
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Inference Tasks

• Filtering:  What is the probability that it is raining today, 
given all the umbrella observations up through today?

• Prediction: What is the probability that it will rain the day 
after tomorrow, given all the umbrella observations up 
through today?

• Smoothing: What is the probability that it rained yesterday, 
given all the umbrella observations through today?

• Most likely explanation / most probable explanation: 
if the umbrella appeared the first three days but not on the 
fourth, what is the most likely weather sequence to produce 
these umbrella sightings?
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DBN – Basic Inference 

• Filtering or Monitoring: 

Compute the belief state - the posterior distribution over the current state, 
given all evidence to date

)/( :1 tt eXP

Filtering is what a rational agent needs to do in order to keep track of 
the current state so that the rational decisions can be made
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DBN – Basic Inference 

• Filtering cont.
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Given the results of filtering up to time t, one can easily compute the result 
for t+1 from the new evidence        1+te

(dividing up the evidence)

(for some function f)

(using Bayes’ Theorem)

(by the Markov property
of evidence)

α is a normalizing constant used to make probabilities sum up to 1.

14



Bayes Rule

P(A | B) = P(A, B) / P(B) 

P(A,B) = P(A | B) P(B) = P(B | A) P(A) = P(B, A)



Application of Bayes Rule

P(A | B, C) = P(A, B, C) / P(B, C) 
= P(C, A, B) / P(B, C)
= P(C | A, B) P(A, B) / P(B, C)
= P(C | A, B) P(A | B) P(B) / (P(C | B) P(B))
= 𝛼 P(C | A, B) P(A | B)

= 



DBN – Basic Inference 

• Filtering cont.
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Given the results of filtering up to time t, one can easily compute the result 
for t+1 from the new evidence        1+te

(dividing up the evidence)

(for some function f)

(using Bayes’ Theorem)

(by the Markov property
of evidence)

α is a normalizing constant used to make probabilities sum up to 1.
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Application of Bayes Rule

P(A | B) = 𝛴c P(A, c | B)
= 𝛴c P(A, c, B) / P(B)
= 𝛴c P(A | c, B) P(c, B) / P(B)
= 𝛴c P(A | c, B) P(c | B) P(B) / P(B)
= 𝛴c P(A | c, B) P(c | B)

=



DBN – Basic Inference 

• Filtering cont.

)/()/()/( :1:1111 tt
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The second term                        represents a one-step prediction of the 
next step, and the first term                         updates this with the new 
evidence.

Now we obtain the one-step prediction for the next step by 
conditioning on the current state Xt:

)/( 11 ++ tt XeP

∑ +++++ =
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(using the Markov property)

19



Forward Messages
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Example               P(Rain0) = (0.5 0.5)T

Raint-1

Umbrellat-1

Raint

Umbrellat

Raint+1

Umbrellat+1

Rt-1 P(Rt|Rt-1)
T
F

0.7
0.3

Rt P(Ut|Rt)
T
F

0.9
0.2
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DBN – Basic Inference 
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Illustration for two steps in the umbrella example:  

• On day 1, the umbrella appears, so U1=true. The prediction from t=0 to t=1 is

and updating it with the evidence for t=1 gives

∑=
1

)/()/()/( 111212
r

urPrRPuRP
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• On day 2, the umbrella appears, so U2=true. The prediction from t=1 to t=2 is

and updating it with the evidence for t=2 gives
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Example cntd.
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DBN – Basic Inference 

• Prediction: 

Compute the posterior distribution over the future state, 
given all evidence to date.

)/( :1 tkt eXP +
for some k>0

The task of prediction can be seen simply as filtering 
without the addition of new evidence.

24



DBN – Basic Inference 

• Smoothing or hindsight: 

Compute the posterior distribution over the past state, 
given all evidence up to the present.

)/( :1 tk eXP for some k such that 0 ≤ k < t.

Hindsight provides a better estimate of the state than 
was available at the time, because it incorporates more 
evidence.
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Smoothing
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Application of Bayes Rule

P(A | B, C) = P(A, B, C) / P(B, C) 
= P(C, A, B) / P(B, C)
= P(C | A, B) P(A, B) / P(B, C)
= P(C | A, B) P(A | B) P(B) / (P(C | B) P(B))
= 𝛼 P(C | A, B) P(A | B)



Smoothing
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Application of Bayes Rule

P(A | B) = 𝛴c P(A, c | B)
= 𝛴c P(A, c, B) / P(B)
= 𝛴c P(A | c, B) P(c, B) / P(B)
= 𝛴c P(A | c, B) P(c | B) P(B) / P(B)
= 𝛴c P(A | c, B) P(c | B)



Smoothing
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Example contd.
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DBN – Basic Inference 

• Filtering cont.
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The second term                        represents a one-step prediction of the 
next step, and the first term                         updates this with the new 
evidence.

Now we obtain the one-step prediction for the next step by 
conditioning on the current state Xt:

)/( 11 ++ tt XeP

∑ +++++ =
tX
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(using the Markov property)
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DBN – Basic Inference 

• Most likely explanation: 

Compute the sequence of states that is most likely to have generated a given 
sequence of observation.

argmaxx1:t P(X1:t | e1:t )

Algorithms for this task are useful in many applications, including, e.g., 
speech recognition.
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Most-likely explanation
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Rain/Umbrella Example
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Hidden Markov Model (HMM)

Consider special case of a dynamic Bayesian Network:
• Use vector of independent state variables Xt

• Use vector of independent evidence variables Et

• This was already used in the rain-umbrella example
• For high-dimensional vectors the transition and sensor 

models become quite complex: O(d2) space
NB: 
• In a general dynamic Bayesian network, 

state variables are not necessarily independent
• Even evidence variables might be dependent on one 

another (naïve Bayes does not work)
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The occasionally dishonest casino

• A casino uses a fair die most of the time, but 
occasionally switches to a loaded one
– Fair die: Prob(1) = Prob(2) = . . . = Prob(6) = 1/6
– Loaded die: Prob(1) = Prob(2) = . . . = Prob(5) = 1/10, 

Prob(6) = ½
– These are the emission probabilities

• Transition probabilities
– Prob(Fair ® Loaded) = 0.01
– Prob(Loaded ® Fair) = 0.2
– Transitions between states modeled by

a Markov process 

Slide by Changui Yan 37



Transition model for the casino

Slide by Changui Yan 38



The occasionally dishonest casino

• Known:
– The structure of the model
– The transition probabilities

• Hidden:  What the casino did
– FFFFFLLLLLLLFFFF...

• Observable:  The series of die tosses
– 3415256664666153... 

• What we must infer:
– When was a fair die used?
– When was a loaded one used?

• The answer is a sequence
FFFFFFFLLLLLLFFF...

Slide by Changui Yan 39



Making the inference

• Model assigns a probability to each explanation of the observation:
P(326|FFL) 
= P(3|F)·P(F®F)·P(2|F)·P(F®L)·P(6|L)
= 1/6 · 0.99 · 1/6 · 0.01 · ½

• Maximum Likelihood: Determine which explanation is most likely 
– Find the path most likely to have produced the observed sequence

• Total probability: Determine probability that observed sequence was 
produced by the model

– Consider all paths that could have produced the observed sequence

Slide by Changui Yan 40



Notation

• x is the sequence of symbols emitted by model
– xi is the symbol emitted at time i

• A path, p, is a  sequence of states
– The i-th state in p is pi

• akr is the probability of making a transition from state k to 
state r:

• ek(b) is the probability that symbol b is emitted when in 
state k

akr = Pr(π i = r |π i−1 = k)

ek (b) = Pr(xi = b |π i = k)
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A “parse” of a sequence
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The occasionally dishonest casino

Pr(x,π (1) ) = a0FeF (6)aFFeF (2)aFFeF (6)

= 0.5× 1
6
×0.99× 1

6
×0.99× 1

6
≈ 0.00227

Pr(x,π (2) ) = a0LeL (6)aLLeL (2)aLLeL (6)
= 0.5×0.5×0.8×0.1×0.8×0.5
= 0.008

Pr(x,π (3) ) = a0LeL (6)aLFeF (2)aFLeL (6)aL0

= 0.5×0.5×0.2× 1
6
×0.01×0.5

≈ 0.0000417

FFF=)1(p

LLL=)2(p

LFL=)3(p

x = x1, x2, x3 = 6,2, 6
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The most probable path

The most likely path p* satisfies

π * = argmax
π

Pr(x,π )

To find p*, consider all possible ways the last symbol 
of x could have been emitted

vk (i) = ek (xi )maxr vr (i−1)ark( )

Let

Then

vk (i) = Prob. of path π1,!,π i  most likely  

to emit x1,…, xi  such that π i = k

Slide by Changui Yan 44



The Viterbi Algorithm

• Initialization (i = 0)

• Recursion (i = 1, . . . , L): For each state k

• Termination:

vk (i) = ek (xi )maxr vr (i−1)ark( )

Pr(x,π *) =max
k

vk (Length)ak0( )

v0 (0) =1,    vk (0) = 0 for k > 0

To find p*, use trace-back, as in dynamic programming
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Viterbi: Example

1

p

x

0

0

6 2 6e

(1/6)´(1/2)
= 1/12

0

(1/2)´(1/2)
= 1/4

(1/6)´max{(1/12)´0.99,
(1/4)´0.2}

= 0.01375

(1/10)´max{(1/12)´0.01,
(1/4)´0.8}

= 0.02

B

F

L

0 0

(1/6)´max{0.01375´0.99,
0.02´0.2}

= 0.00226875

(1/2)´max{0.01375´0.01,
0.02´0.8}

= 0.08

vk (i) = ek (xi )maxr vr (i−1)ark( )
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Viterbi gets it right more often than not
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