Non-Standard Databases and Data Mining Dynamic Bayesian Networks

Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssystem

IM FOCUS DAS LEBEN

Time and Uncertainty

- The world changes, we need to track and predict it
- Examples: diabetes management, traffic monitoring
- Uncertainty is everywhere
- Need temporal probabilistic graphical models
- Basic idea: copy state and evidence variables for each time step
- **X**_t set of unobservable state variables at time t
 - e.g., BloodSugar_t, StomachContents_t
- **E**_t set of evidence variables at time t
 - e.g., MeasuredBloodSugar_t, PulseRate_t, FoodEaten_t
- Assumes discrete time steps

States and Observations

- Process of change viewed as series of snapshots, each describing the state of the world at a particular time
- Time slice involves a set of random variables indexed by t:
 - the set of unobservable state variables X_t
 - the set of observable evidence variable **E**_t
- The observation at time t is $\mathbf{E}_t = \mathbf{e}_t$ for some set of values \mathbf{e}_t
- The notation $\mathbf{X}_{a:b}$ denotes the set of variables from \mathbf{X}_{a} to \mathbf{X}_{b}

Dynamic Bayesian Networks

- How can we model dynamic situations with a Bayesian network?
- Example: Is it raining today?

$$X_t = \{R_t\}$$
$$E_t = \{U_t\}$$

 \Rightarrow next step: specify dependencies among the variables.

The term "dynamic" means we are modeling a dynamic system, not that the network structure changes over time.

Example

DBN - Representation

- Problem: all previous random variables could have an influence on those of the the current timestamp
 - 1. Necessity to specify an unbounded number of conditional probability tables, one for each variable in each slice,
 - 2. Each one might involve an unbounded number of parents.
- Solution:
 - 1. Assume that changes in the world state are caused by a stationary process (unmoving process over time).

 $P(U_t / Parent(U_t))$ is the same for all t

Stationary Process/Markov Assumption

- Markov Assumption: X_t depends on some parent X_is
- First-order Markov process:

 $P(X_t|X_{0:t-1}) = P(X_t|X_{t-1})$ Transition
Model

- kth order: depends on previous k time steps
- Sensor Markov assumption:

 $P(E_t|X_{0:t}, E_{0:t-1}) = P(E_t|X_t)$

Sensor Model

- Assume stationary process: transition model:
 - $P(X_t|X_{t-1})$ and sensor model $P(E_t|X_t)$ are the same for all t
 - Changes in the world state governed by laws not changing over time

Dynamic Bayesian Networks

- There are two possible fixes if the approximation is too inaccurate:
 - Increasing the order of the Markov process model. For example, adding $Rain_{t-2}$ as a parent of $Rain_t$, which might give slightly more accurate predictions.
 - Increasing the set of state variables. For example, adding $Season_t$ to allow to incorporate historical records of rainy seasons, or adding $Temperature_t$, $Humidity_t$ and $Pressure_t$ to allow to use a physical model of rainy conditions.

Dynamic Bayesian Network

Bayesian network structure corresponding to a first-order of Markov process with state defined by the variables Xt.

A second order of Markov process

Example

Complete Joint Distribution: Markov-1

- Given:
 - Transition model: $P(X_t|X_{t-1})$
 - Sensor model: $P(E_t|X_t)$
 - Prior probability: $P(X_0)$
- Then we can specify complete joint distribution:

$$P(X_0, X_1, ..., X_t, E_1, ..., E_t) = P(X_0) \prod_{i=1}^t P(X_i | X_{i-1}) P(E_i | X_i)$$

Inference Tasks

- Filtering: What is the probability that it is raining today, given all the umbrella observations up through today?
- Prediction: What is the probability that it will rain the day after tomorrow, given all the umbrella observations up through today?
- Smoothing: What is the probability that it rained yesterday, given all the umbrella observations through today?
- Most likely explanation / most probable explanation: if the umbrella appeared the first three days but not on the fourth, what is the most likely weather sequence to produce these umbrella sightings?

DBN – Basic Inference

• Filtering or Monitoring:

Compute the belief state - the posterior distribution over the *current* state, given all evidence to date

 $P(X_t / e_{1 \cdot t})$

Filtering is what a rational agent needs to do in order to keep track of the current state so that the rational decisions can be made

DBN – Basic Inference

• Filtering cont.

Given the results of filtering up to time *t*, one can easily compute the result for t+1 from the new evidence e_{t+1}

$$\begin{split} P(X_{t+1} / e_{1:t+1}) &= f(e_{t+1,} P(X_t / e_{1:t+1})) & \text{(for some function } f) \\ &= P(X_{t+1} / e_{1:t,} e_{t+1}) & \text{(dividing up the evidence)} \\ &= \alpha P(e_{t+1} / X_{t+1,} e_{1:t}) P(X_{t+1} / e_{1:t}) & \text{(using Bayes' Theorem)} \\ &= \alpha P(e_{t+1} / X_{t+1}) P(X_{t+1} / e_{1:t}) & \text{(by the Markov property} \\ &= \alpha P(e_{t+1} / X_{t+1}) P(X_{t+1} / e_{1:t}) & \text{of evidence)} \end{split}$$

 α is a normalizing constant used to make probabilities sum up to 1.

Bayes Rule

$P(A \mid B) = P(A, B) / P(B)$

P(A,B) = P(A | B) P(B) = P(B | A) P(A) = P(B, A)

IM FOCUS DAS LEBEN

Application of Bayes Rule

 $P(A \mid B, C) = P(A, B, C) / P(B, C)$ = P(C, A, B) / P(B, C) = P(C | A, B) P(A, B) / P(B, C) = P(C | A, B) P(A | B) P(B) / (P(C | B) P(B)) = α P(C | A, B) P(A | B)

$$P(X_{t+1} / e_{1:t}, e_{t+1}) = \alpha P(e_{t+1} / X_{t+1}, e_{1:t}) P(X_{t+1} / e_{1:t})$$

DBN – Basic Inference

• Filtering cont.

Given the results of filtering up to time *t*, one can easily compute the result for t+1 from the new evidence e_{t+1}

$$\begin{split} P(X_{t+1} / e_{1:t+1}) &= f(e_{t+1,} P(X_t / e_{1:t+1})) & \text{(for some function f)} \\ &= P(X_{t+1} / e_{1:t,} e_{t+1}) & \text{(dividing up the evidence)} \\ &= \alpha P(e_{t+1} / X_{t+1,} e_{1:t}) P(X_{t+1} / e_{1:t}) & \text{(using Bayes' Theorem)} \\ &= \alpha P(e_{t+1} / X_{t+1}) P(X_{t+1} / e_{1:t}) & \text{(by the Markov property} \\ &= \alpha P(e_{t+1} / X_{t+1}) P(X_{t+1} / e_{1:t}) & \text{of evidence)} \end{split}$$

 α is a normalizing constant used to make probabilities sum up to 1.

Application of Bayes Rule

 $P(A \mid B) = \Sigma_{c} P(A, c \mid B)$ $= \Sigma_{c} P(A, c, B) / P(B)$

 $= \Sigma_{c} P(A | c, B) P(c, B) / P(B)$

 $= \Sigma_{c} P(A \mid c, B) P(c \mid B) P(B) / P(B)$

 $= \Sigma_{c} P(A \mid c, B) P(c \mid B)$

$$P(X_{t+1} / e_{1:t}) = \sum_{X_t} P(X_{t+1} / x_t, e_{1:t}) P(x_t / e_{1:t})$$

DBN – Basic Inference

• Filtering cont.

The second term $P(X_{t+1} / e_{1:t})$ represents a one-step prediction of the next step, and the first term $P(e_{t+1} / X_{t+1})$ updates this with the new evidence.

Now we obtain the one-step prediction for the next step by conditioning on the current state Xt:

$$P(X_{t+1} / e_{1:t+1}) = \alpha P(e_{t+1} / X_{t+1}) \sum_{X_t} P(X_{t+1} / x_t, e_{1:t}) P(x_t / e_{1:t})$$
$$= \alpha P(e_{t+1} / X_{t+1}) \sum_{X_t} P(X_{t+1} / x_t) P(x_t / e_{1:t})$$
(using the Markov property)

$\mathbf{f}_{1:t+1} = \operatorname{FORWARD}(\mathbf{f}_{1:t}, \mathbf{e}_{t+1}) \text{ where } \mathbf{f}_{1:t} = \mathbf{P}(\mathbf{X}_t | \mathbf{e}_{1:t})$ Time and space **constant** (independent of t)

Example $P(Rain_0) = (0.5 \ 0.5)^T$

Illustration for two steps in the umbrella example:

• On day 1, the umbrella appears, so U1=true. The prediction from t=0 to t=1 is

$$P(R_1) = \sum_{r_0} P(R_1 / r_0) P(r_0)$$

and updating it with the evidence for t=1 gives

$$P(R_1 / u_1) = \alpha P(u_1 / R_1) P(R_1)$$

• On day 2, the umbrella appears, so U2=true. The prediction from t=1 to t=2 is

$$P(R_2 / u_1) = \sum_{r_1} P(R_2 / r_1) P(r_1 / u_1)$$

and updating it with the evidence for t=2 gives

$$P(R_2 / u_1, u_2) = \alpha P(u_2 / R_2) P(R_2 / u_1)$$

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME

Example cntd.

DBN – Basic Inference

• Prediction:

Compute the posterior distribution over the *future* state, given all evidence to date.

$$P(X_{t+k} / e_{1:t}) \qquad \text{for some } k > 0$$

The task of prediction can be seen simply as filtering without the addition of new evidence.

DBN – Basic Inference

• Smoothing or hindsight:

Compute the posterior distribution over the *past* state, given all evidence up to the present.

$$P(X_k \, / \, e_{1:t})$$
 for some k

for some k such that $0 \le k < t$.

Hindsight provides a better estimate of the state than was available at the time, because it incorporates more evidence.

Smoothing

Divide evidence $\mathbf{e}_{1:t}$ into $\mathbf{e}_{1:k}$, $\mathbf{e}_{k+1:t}$:

$$\mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:t}) = \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k}, \mathbf{e}_{k+1:t})$$

= $\alpha \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k})\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_{k}, \mathbf{e}_{1:k})$
= $\alpha \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k})\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_{k})$
= $\alpha \mathbf{f}_{1:k}\mathbf{b}_{k+1:t}$

Backward message computed by a backwards recursion:

$$\begin{aligned} \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k) &= \sum_{\mathbf{x}_{k+1}} \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k, \mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k) \\ &= \sum_{\mathbf{x}_{k+1}} P(\mathbf{e}_{k+1:t}|\mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k) \\ &= \sum_{\mathbf{x}_{k+1}} P(\mathbf{e}_{k+1}|\mathbf{x}_{k+1}) P(\mathbf{e}_{k+2:t}|\mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k) \end{aligned}$$

Forward-backward algorithm: cache forward messages along the way Time linear in t (polytree inference), space $O(t|\mathbf{f}|)$

Application of Bayes Rule

 $P(A \mid B, C) = P(A, B, C) / P(B, C)$ = P(C, A, B) / P(B, C) = P(C \mid A, B) P(A, B) / P(B, C) = P(C \mid A, B) P(A \mid B) P(B) / (P(C \mid B) P(B)) = α P(C \mid A, B) P(A \mid B)

$\mathbf{P}(\mathbf{X}_k|\mathbf{e}_{1:k},\mathbf{e}_{k+1:t}) = \alpha \mathbf{P}(\mathbf{X}_k|\mathbf{e}_{1:k})\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k,\mathbf{e}_{1:k})$

Smoothing

Divide evidence $\mathbf{e}_{1:t}$ into $\mathbf{e}_{1:k}$, $\mathbf{e}_{k+1:t}$:

$$\mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:t}) = \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k}, \mathbf{e}_{k+1:t})$$

= $\alpha \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k})\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_{k}, \mathbf{e}_{1:k})$
= $\alpha \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k})\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_{k})$
= $\alpha \mathbf{f}_{1:k}\mathbf{b}_{k+1:t}$

Backward message computed by a backwards recursion:

$$\begin{aligned} \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k) &= \sum_{\mathbf{x}_{k+1}} \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k, \mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k) \\ &= \sum_{\mathbf{x}_{k+1}} P(\mathbf{e}_{k+1:t}|\mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k) \\ &= \sum_{\mathbf{x}_{k+1}} P(\mathbf{e}_{k+1}|\mathbf{x}_{k+1}) P(\mathbf{e}_{k+2:t}|\mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k) \end{aligned}$$

Forward-backward algorithm: cache forward messages along the way Time linear in t (polytree inference), space $O(t|\mathbf{f}|)$

Application of Bayes Rule

 $P(A | B) = \Sigma_{c} P(A, c | B)$

- $= \Sigma_{c} P(A, c, B) / P(B)$
- $= \Sigma_{c} P(A | c, B) P(c, B) / P(B)$
- = $\Sigma_{c} P(A \mid c, B) P(c \mid B) P(B) / P(B)$
- $= \Sigma_{c} P(A | c, B) P(c | B)$

$\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k) = \Sigma_{\mathbf{x}_{k+1}} \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k, \mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k)$

Smoothing

Divide evidence $\mathbf{e}_{1:t}$ into $\mathbf{e}_{1:k}$, $\mathbf{e}_{k+1:t}$:

$$\mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:t}) = \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k}, \mathbf{e}_{k+1:t})$$

= $\alpha \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k})\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_{k}, \mathbf{e}_{1:k})$
= $\alpha \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k})\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_{k})$
= $\alpha \mathbf{f}_{1:k}\mathbf{b}_{k+1:t}$

Backward message computed by a backwards recursion:

$$\begin{aligned} \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k) &= \sum_{\mathbf{x}_{k+1}} \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k, \mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k) \\ &= \sum_{\mathbf{x}_{k+1}} P(\mathbf{e}_{k+1:t}|\mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k) \\ &= \sum_{\mathbf{x}_{k+1}} P(\mathbf{e}_{k+1}|\mathbf{x}_{k+1}) P(\mathbf{e}_{k+2:t}|\mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k) \end{aligned}$$

Forward-backward algorithm: cache forward messages along the way Time linear in t (polytree inference), space $O(t|\mathbf{f}|)$

Example contd.

DBN – Basic Inference

• Filtering cont.

The second term $P(X_{t+1} / e_{1:t})$ represents a one-step prediction of the next step, and the first term $P(e_{t+1} / X_{t+1})$ updates this with the new evidence.

Now we obtain the one-step prediction for the next step by conditioning on the current state Xt:

$$P(X_{t+1} / e_{1:t+1}) = \alpha P(e_{t+1} / X_{t+1}) \sum_{X_t} P(X_{t+1} / x_t, e_{1:t}) P(x_t / e_{1:t})$$
$$= \alpha P(e_{t+1} / X_{t+1}) \sum_{X_t} P(X_{t+1} / x_t) P(x_t / e_{1:t})$$
(using the Markov property)

DBN – Basic Inference

• Most likely explanation:

Compute the sequence of states that is most likely to have generated a given sequence of observation.

$$\arg \max_{x_{1:t}} P(X_{1:t} | e_{1:t})$$

Algorithms for this task are useful in many applications, including, e.g., speech recognition.

Most-likely explanation

Most likely sequence \neq sequence of most likely states!!!!

Most likely path to each \mathbf{x}_{t+1} = most likely path to some \mathbf{x}_t plus one more step

 $\max_{\mathbf{x}_{1}...\mathbf{x}_{t}} \mathbf{P}(\mathbf{x}_{1},\ldots,\mathbf{x}_{t},\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1})$ = $\mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \max_{\mathbf{x}_{t}} \left(\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_{t}) \max_{\mathbf{x}_{1}...\mathbf{x}_{t-1}} P(\mathbf{x}_{1},\ldots,\mathbf{x}_{t-1},\mathbf{x}_{t}|\mathbf{e}_{1:t}) \right)$

Identical to filtering, except $\mathbf{f}_{1:t}$ replaced by

$$\mathbf{m}_{1:t} = \max_{\mathbf{x}_1...\mathbf{x}_{t-1}} \mathbf{P}(\mathbf{x}_1,\ldots,\mathbf{x}_{t-1},\mathbf{X}_t | \mathbf{e}_{1:t}),$$

I.e., $\mathbf{m}_{1:t}(i)$ gives the probability of the most likely path to state *i*. Update has sum replaced by max, giving the Viterbi algorithm:

 $\mathbf{m}_{1:t+1} = \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \max_{\mathbf{X}_t} \left(\mathbf{P}(\mathbf{X}_{t+1} | \mathbf{x}_t) \mathbf{m}_{1:t} \right)$

Rain/Umbrella Example

Consider special case of a dynamic Bayesian Network:

- Use vector of independent state variables **X**_t
- Use vector of independent evidence variables E_t
- This was already used in the rain-umbrella example
- For high-dimensional vectors the transition and sensor models become quite complex: O(d²) space

NB:

- In a general dynamic Bayesian network, state variables are not necessarily independent
- Even evidence variables might be dependent on one another (naïve Bayes does not work)

The occasionally dishonest casino

- A casino uses a fair die most of the time, but occasionally switches to a loaded one
 - Fair die: Prob(1) = Prob(2) = ... = Prob(6) = 1/6
 - Loaded die: Prob(1) = Prob(2) = ... = Prob(5) = 1/10, $Prob(6) = \frac{1}{2}$
 - These are the *emission* probabilities

Transition probabilities

- Prob(Fair \rightarrow Loaded) = 0.01
- Prob(Loaded \rightarrow Fair) = 0.2
- Transitions between states modeled by a Markov process

Transition model for the casino

The occasionally dishonest casino

- Known:
 - The structure of the model
 - The transition probabilities
- Hidden: What the casino did

 FFFFLLLLLLFFFF...
- Observable: The series of die tosses
 - 3415256664666153...
- What we must infer:
 - When was a fair die used?
 - When was a loaded one used?
 - The answer is a sequence FFFFFFFLLLLLFFF...

Making the inference

- Model assigns a probability to each explanation of the observation: P(326|FFL)
 - $= P(3|F) \cdot P(F \rightarrow F) \cdot P(2|F) \cdot P(F \rightarrow L) \cdot P(6|L)$
 - $= 1/6 \cdot 0.99 \cdot 1/6 \cdot 0.01 \cdot \frac{1}{2}$
- **Maximum Likelihood:** Determine which explanation is most likely
 - Find the path *most likely* to have produced the observed sequence
- **Total probability:** Determine probability that observed sequence was produced by the model
 - Consider all paths that could have produced the observed sequence

Notation

- *x* is the sequence of symbols emitted by model
 - x_i is the symbol emitted at time *i*
- A *path*, π , is a sequence of states
 - The *i*-th state in π is π_i
- *a_{kr}* is the probability of making a transition from state *k* to state *r*:

$$a_{kr} = \Pr(\pi_i = r \mid \pi_{i-1} = k)$$

e_k(b) is the probability that symbol *b* is emitted when in state *k*

$$e_k(b) = \Pr(x_i = b \mid \pi_i = k)$$

A "parse" of a sequence

The occasionally dishonest casino

$$x = \langle x_1, x_2, x_3 \rangle = \langle 6, 2, 6 \rangle$$

$$Pr(x, \pi^{(1)}) = a_{0F}e_F(6)a_{FF}e_F(2)a_{FF}e_F(6)$$

$$= 0.5 \times \frac{1}{6} \times 0.99 \times \frac{1}{6} \times 0.99 \times \frac{1}{6}$$

$$\approx 0.00227$$

$$\pi^{(2)} = LLL$$

$$Pr(x, \pi^{(2)}) = a_{0L}e_L(6)a_{LL}e_L(2)a_{LL}e_L(6)$$

= 0.5 × 0.5 × 0.8 × 0.1 × 0.8 × 0.5
= 0.008

$$\pi^{(3)} = LFL$$

$$Pr(x, \pi^{(3)}) = a_{0L}e_L(6)a_{LF}e_F(2)a_{FL}e_L(6)a_{L0}$$
$$= 0.5 \times 0.5 \times 0.2 \times \frac{1}{6} \times 0.01 \times 0.5$$
$$\approx 0.0000417$$

The most likely path
$$\pi^*$$
 satisfies
 $\pi^* = \arg \max_{\pi} \Pr(x, \pi)$
To find π^* , consider all possible ways the last symbol
of x could have been emitted
Let

$$v_k(i) = \text{Prob. of path } \langle \pi_1, \dots, \pi_i \rangle \text{ most likely}$$

to emit $\langle x_1, \dots, x_i \rangle$ such that $\pi_i = k$
Then
 $v_k(i) = e_k(x_i) \max_r (v_r(i-1)a_{rk})$

Т

The Viterbi Algorithm

• Initialization (i = 0)

$$v_0(0) = 1$$
, $v_k(0) = 0$ for $k > 0$

• Recursion (i = 1, ..., L): For each state k

$$v_k(i) = e_k(x_i) \max_r (v_r(i-1)a_{rk})$$

• Termination:

$$\Pr(x,\pi^*) = \max_k \left(v_k(Length)a_{k0} \right)$$

To find π^* , use trace-back, as in dynamic programming

Viterbi: Example

Viterbi gets it right more often than not

Rolls	315116246446644245321131631164152133625144543631656626566666
Die	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	6511664531326512456366646316366631623264552352666666625151631
Die	LLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	LLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	222555441666566563564324364131513465146353411126414626253356
Die	FFFFFFFFLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	366163666466232534413661661163252562462255265252266435353336
Die	LLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	LLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	23312162536441443233516324363366556246666626326666612355245242
Die	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

