
Non-Standard-Datenbanken
und Data Mining

Graphdatenbanken

Prof. Dr. Ralf Möller
Universität zu Lübeck

Institut für Informationssysteme

Acknowledgements for slides 2-36

Graph databases andgraphquerying

Advances inData Management, 2019

Dr. PetraSelmer
Querylanguagesstandards &researchgroup, Neo4j

2

Node
● Represents an entity within the graph
● Has zero or morelabels
● Has zero or moreproperties

(which may differ across nodes with the same label(s))

Edge
● Addsstructure to the graph

(provides semantic context for nodes)
● Has one type
● Has zero or moreproperties
● Relates nodes by type and direction
● Must have a start and an end node

Propertygraph

Property
● Name-value pair (map) that can go on nodes and edges
● Represents the data: e.g. name, age, weight etc
● String key; typed value (string, number, bool, list)

Graph databases and graph querying, PetraSelmer

3

Relational vs. graphmodels

Graph databases and graph querying, PetraSelmer
4

Querycomplexity growswith needfor JOINs

Graphpatterns noteasilyexpressiblein SQL

Recursivequeries
Variable-length relationshipchains

Pathscannot bereturned natively

Relationship-centricquerying

Graph databases and graph querying, PetraSelmer

5

Data Integration

1

Graph databases and graph querying, PetraSelmer
6

Declarativegraphpatternmatching language

SQL-likesyntax

DQL for readingdata
DMLfor creating, updating and deleting data

DDLfor creating constraints and indexes

Introducting Cypher

Graph databases and graph querying, PetraSelmer

7

Searching for (matching)graph patterns

Nodes:
• () or (n)

o Surround with parentheses
o Use an alias n to refer to our node later

in the query
• (n:Label)

o Specify a Label starting with a colon :
o Used to group nodes by roles or types

(similar to tags)
• (n:Label {prop: ‘value’})

o Nodes can have properties

Edges/Relationships:
• --> or -[r:TYPE]->

o Wrapped in hyphens and square brackets
o A relationship type starts with a colon :

• <>
o Specify the direction of the relationships

• -[:KNOWS {since: 2010}]->
o Relationships can have properties

Graph databases and graph querying, PetraSelmer
8

Used to query data

(n : L a b e l { p r o p : ‘ v a l u e ’ }) - [: T Y P E] - > (m : L a b e l)

FindAlicewhoknowsBob In otherwords:

find Person with the name ‘ A l i c e ’

who KNOWS

a Person withthe name ‘ B o b ’

(p1:Person {name: ‘Alice’})-[:KNOWS]->(p2:Person {name: ‘ B o b ’ })

Cypher:patterns

Graph databases and graph querying, PetraSelmer

9

/ / Data creation and manipulation
CREATE(you:Person)
SET you.name = ‘ J i l l Brown’
CREATE(you)-[:FRIEND]->(me)

/ / Either match existing ent i t ies or create new ent i t ies .
/ / Bind in either case
MERGE (p:Person {name: ‘Bob Smi th ’ })

ON CREATE SET p.created = t imestamp(), p.updated = 0
ON MATCH SET p.updated = p.updated + 1

RETURN p.created, p.updated

DML: Creating and updatingdata

Graph databases and graph querying, PetraSelmer

10

/ / Pattern description (ASCII a r t)
MATCH (me:Person)-[:FRIEND]->(friend)
/ / F i l ter ing with predicates
WHERE me.name = ‘Frank Black’
AND f r iend.age > me.age

AS name, f r i e n d . t i t l e AS t i t l e
/ / Projection of expressions
RETURN toUpper(friend.name)
/ / Order results
ORDER BY name, t i t l e DESC

Input: a propertygraph
Output: atable

DQL: Readingdata

Multiple pattern parts can be defined in a
single match clause (i.e. conjunctive
patterns); e.g:
MATCH (a) - (b) - (c) , (b) - (f)

Graph databases and graph querying, PetraSelmer

11

Queries are
graphs

Node patterns
MATCH() , (node), (node:Node), (:Node), (node {type:"NODE"})

Relationship patterns
MATCH () - - > () , () < - - () , () - - ()
MATCH() - [e d g e] - > () , (a) - [edge] ->(b)
MATCH()-[:RELATES]->()
MATCH() - [edge {sco re :5 }] -> ()
MATCH() - [r :LIKES|:EATS]->()
MATCH ()-[r:LIKES|:EATS {age: 1 }] - > ()

/ / Single relationship
/ / With binding
/ / With specific relationship type
/ / With property predicate
/ / Union of relationship types
/ / Union with property predicate
(applies to a l l relationship types specified)

Cypherpatterns

Graph databases and graph querying, PetraSelmer

12

Variable-length relationship patterns
MATCH(me)-[:FRIEND*]-(foaf)
MATCH(me)-[:FRIEND*2..4]-(foaf)
MATCH(me)-[:FRIEND*0..] -(foaf)
MATCH(me)-[:FRIEND*2]-(foaf)
MATCH(me)-[:LIKES|HATES*]-(foaf)

/ / Traverse 1 or more FRIEND relationships
/ / Traverse 2 to 4 FRIEND relationships
/ / Traverse 0 or more FRIEND relationships
/ / Traverse 2 FRIEND relationships
/ / Traverse union of LIKES and HATES 1 or more times

/ / Path binding returns a l l paths (p)
MATCH p = (a)-[:ONE]-()- [:TWO]-()- [:THREE]-()
/ / Each path is a l i s t containing the constituent nodes and relationships, in order
RETURNp

/ / Variation: return a l l constituent nodes of the path
RETURNnodes(p)
/ / Variation: return a l l constituent relationships of the path
RETURNre la t ionsh ips(p)

Cypherpatterns

Graph databases and graph querying, PetraSelmer

13

3 : MATCH (me)-[:ENEMY]-(enemy)
4 : RETURN f r i ends , count(enemy) ASenemies

WITHprovides ahorizon, allowing a query to be subdivided:
● Further matching can be done after a set of updates
● Expressions can be evaluated, along with aggregations
● Essentially acts like the pipe operator in Unix

Linear composition
● Query processing begins at the top and progresses linearly to the end
● Eachclause is a function taking in a table T (line 1) and returning a table T’
● T’ then acts asa driving table to the next clause (line 3)

Cypher: linearcomposition and aggregation

Parameters: $param

1 : MATCH (me:Person {name: $name})-[:FRIEND]-(friend)
2 : WITH me, count (f r iend) AS f r iends

Aggregation
(grouped by ‘me’)

Graph databases and graph querying, PetraSelmer

14

Example query:epidemic!

Assume a graph G
containing doctors
who have
potentially been
infected with a
virus….

Graph databases and graph querying, PetraSelmer

15

The following Cypher query returns the name of each doctor in Gwho has perhaps been
exposed to some source of a viral infection, the number of exposures, and the number
of people known (both directly and indirectly) to their colleagues

1 : MATCH(d:Doctor)
2 : OPTIONAL MATCH (d)-[:EXPOSED_TO]->(v:ViralInfection)
3 : WITH d , count(v) AS exposures
4 : MATCH(d)-[:WORKED_WITH]->(colleague:Person)
5 : OPTIONAL MATCH (colleague)<-[:KNOWS*]-(p:Person)
6 : RETURN d.name, exposures, count(DISTINCT p) ASthirdPartyCount

Examplequery

Graph databases and graph querying, PetraSelmer

16

1 : MATCH(d:Doctor)
2 : OPTIONAL MATCH (d)-[:EXPOSED_TO]->(v:ViralInfection)

Matches all :Doctors, along with whether or not they have been :EXPOSED_TOa :ViralInfection
OPTIONAL MATCH analogous to outer join in SQL

Produces rows provided entire pattern is found
If no matches, a single row is produced in which the binding for v is n u l l

Examplequery

d v

Sue SourceX

Sue PatientY

Alice SourceX

Bob null

Although we show the name property (for easeof
exposition), it is actually the node that gets bound

Graph databases and graph querying, PetraSelmer

17

3 : WITH d , count(v) ASexposures

WITHprojects a subset of the variables in scope - d - and their bindings onwards (to 4).
WITH also computes anaggregation:

d is used as the grouping key implicitly (as it is not aggregated) for count()
All non-null values of v are counted for each unique binding of d
Aliased asexposures

The variable v is no longer in scope after 3

Examplequery

d exposures

Sue 2

Alice 1

Bob 0

This binding table is now the driving table for the MATCHin 4

Graph databases and graph querying, PetraSelmer

18

4 : MATCH (d)-[:WORKED_WITH]->(colleague:Person)

Usesasdriving table the binding table from 3

Finds all the colleagues (:Person) who
have :WORKED_WITH our doctors

Examplequery

d exposures colleague

Sue 2 Chad

Sue 2 Carol

Bob 0 Sally

Graph databases and graph querying, PetraSelmer

19

Examplequery

d exposures colleague p

Sue 2 Chad Carol

Sue 2 Carol null

Bob 0 Sally Will

Bob 0 Sally Chad

Bob 0 Sally Carol*

Bob 0 Sally Carol*

5 : OPTIONAL MATCH (colleague)<-[:KNOWS*]-(p:Person)

Finds all the people (:Person) who :KNOWour doctors’ colleagues (only in the one direction), both directly
and indirectly (using :KNOWS*so that one or more relationships are traversed)

No Carol)<-[:KNOWS]-() pattern inG

* This is due to the :KNOWS* pattern: Carol is reachable from
Sally via Chad andWill
(Carol :KNOWS Will andChad)

Graph databases and graph querying, PetraSelmer

20

| Bob | 0 | 3 (Wi l l , Chad, Carol)|
| Sue | 2 | 1 (Carol) |

1 : MATCH(d:Doctor)
2 : OPTIONAL MATCH(d)-[:EXPOSED_TO]->(v:ViralInfection)
3 : WITH d , count(v) AS exposures
4 : MATCH(d)-[:WORKED_WITH]->(colleague:Person)
5 : OPTIONAL MATCH(colleague)<-[:KNOWS*]-(p:Person)
6 : RETURN d.name, exposures, count(DISTINCT p) ASthirdPartyCount

+ - +
| d.name | exposures | thirdPartyCount |
+ - +

+ - +

Example queryresults

Graph databases and graph querying, PetraSelmer

21

Aggregating functions

count () , max(), min() , avg()

Operators
Mathematical, comparison, string-specific, boolean, list

Mapprojections

Construct a map projection from nodes, relationships and properties

CASEexpressions

Functions (scalar, list, mathematical, string, UDF, procedures)

Otherfunctionality

Graph databases and graph querying, PetraSelmer

22

Many implementations
Amazon Neptune, Oracle PGX, Neo4j Server, SAP HANA Graph, AgensGraph (over
PostgreSQL),Azure CosmosDB, Redis Graph, SQLServer 2017 Graph, Cypher for Apache
Spark, Cypher for Gremlin, SQL Property Graph Querying, TigerGraph, Memgraph,
JanusGraph, DSE Graph, ...

Multiple languages
SQL PGQ (Property Graph Querying)
openCypher
G-CORE (augmented withpaths)
PGQL
SPARQL (RDF data model)

ISOSC32.WG3
Neo4j
LDBC
Oracle
W3C
Tigergraph GSQL ...also imperative and analytics-based languages

Property graphs areeverywhere

SQL2020
Participation frommajor
DBMSvendors.
Neo4j’scontributions
freely available*.

* http://www.opencypher.org/references#sql-pg

Graph databases and graph querying, PetraSelmer

23

http://www.opencypher.org/references

Anew stand-alone / native query
language for graphs
Targets the labelledPG model

Composable graph query language with
support for updating data

Basedon

● “Ascii art” pattern matching
● Published formalsemantics (Cypher,

G-CORE)
● SQL PG extensions andSQL-compatible

foundations (some data types, some
functions, ...)

Graphs first, not graphs “extra”

https://www.gqlstandards.org

Graph Query Language(GQL)

GQL Documents also available athttp://www.opencypher.org/references#sql-pg

Graph databases and graph querying, PetraSelmer

24

http://www.gqlstandards.org/
http://www.opencypher.org/references

/ / f rom graph or view ‘ f r i e n d s ’ i n the catalog
FROMf r iends

//match persons ‘ a ’ and ‘ b ’ who t rave l led together
MATCH(a:Person)-[:TRAVELLED_TOGETHER]-(b:Person)
WHERE a.age = b.age

AND a.country = $country
AND b.country = $country

/ / f rom view parameterized by country
FROMcensus($country)

/ / f i n d out i f ‘ a ’ and ‘ b ’ a t some point moved to or were born i n a place ‘ p ’
MATCH SHORTEST(a)-[:BORN_IN|MOVED_TO*]->(p)<-[:BORN_IN|MOVED_TO*]->(b)

/ / t h a t i s located i n a c i t y ‘ c ’
MATCH(p)-[:LOCATED_IN]->(c:City)

//aggregate the number o f such pai rs per c i t y and age group
RETURN a.age AS age, c.name AS c i t y , count (*) ASnum_pairs

GROUP BYage

Example GQLQuery

Illustrative syntaxonly!

Graph databases and graph querying, PetraSelmer

25

Regular path
queries

Regular path queries(RPQs)

X, (l i kes .ha tes) * (ea ts |d r inks)+ , Y

Complex pathpatterns

Find a path whose edge labels conform to the regular expression, starting at node Xand
ending atnode Y

(X and Y are nodebindings)
Plenty ofresearch in
thisarea since 1987!

SPARQL 1.1 has
support forRPQs:
“property paths”

I. F. Cruz, A. O. Mendelzon, and P. T. Wood
A graphical query language supporting recursion
In Proc. ACM SIGMOD, pages 323–330, 1987

Graph databases and graph querying, PetraSelmer

26

Property graph datamodel:
Propertiesneed to be considered

Node labels need to be considered

Specifying a cost for paths (ordering and comparing)

Complexpaths in the property graph data model

Concatenation
a.b - a is followed by b
Alternation

a|b - either aor b
Transitiveclosure

* - 0or more
+ - 1 ormore
{m, n} - at least m, at most n
Optionality:

? - 0 or1
Grouping/nesting

() - allows nesting/defines scope

Path patterns (e.g., GXPATH)

Graph databases and graph querying, PetraSelmer

27

L. Libkin, W. Martens, and D. Vrgoč
Querying Graphs with Data
ACM Journal, pages 1-53, 2016

Sequence / Concatenation:

Alternation / Disjunction:

Transitive closure:

1 or more
2or more
n ormore
At least n, at most m

Overriding direction forsub-pattern:

Left to right direction
Right to left direction
Any direction

Composition of PathPatterns

() - / 𝛂𝛃 / - ()

() - / 𝛂 | 𝛃 / - ()

() - / 𝛂* / - ()
() - / 𝛂+ / - ()
() - / 𝛂*n. . / - ()
() - / 𝛂*n..m / - ()

() - / 𝛂 > / - ()
() - / < 𝛂 / - ()
() - / < 𝛂> / - ()

Graph databases and graph querying, PetraSelmer
28

PATH PATTERN
older_fr iends = (a)-[:FRIEND]-(b) WHERE b.age > a.age

MATCH p=(me)-/~older_fr iends+/-(you)
WHERE me.name = $myName AND you.name = $yourName
RETURN p AS f r iendship

Path Pattern:example

Graph databases and graph querying, PetraSelmer

29

PATH PATTERN
older_fr iends = (a)-[:FRIEND]-(b) WHERE b.age > a.age

PATH PATTERN
same_city = (a)- [:LIVES_IN]->(:Ci ty)<- [:LIVES_IN]-(b)

PATH PATTERN
older_friends_in_same_city = (a) - /~o lde r_ f r i ends / - (b)

WHERE EXISTS { (a) - /~same_ci ty / - (b) }

Nested Path Patterns: Example

Graph databases and graph querying, PetraSelmer

30

PATH PATTERN road = (a)-[r:ROAD_SEGMENT]-(b) COST r. l eng th

MATCH route = (s ta r t) - /~ road* / - (end)

WHERE s t a r t . l o c a t i o n = $currentLocation

AND end.name = $dest inat ion

RETURN route

ORDER BY cost (route) ASC LIMIT 3

Costfunctionfor cheapestpathsearch

Graph databases and graph querying, PetraSelmer

31

Patternmatching today usesedge isomorphism (no repeated relationships)

MATCH (p:Person {name: Jack})-[r1:FRIEND]-()-[r2:FRIEND]-(fr iend_of_a_fr iend)
RETURN friend_of_a_friend.name ASfofName

“Cyphermorphism”

:Person
{ name : Jack }

:Person
{ name : Anne }

:Person
{ name : Tom}

:FRIEND

+ - - - - - - - - - +
| fofName |
+ - - - - - - - - - +
| “Tom” |
+ - - - - - - - - - +

r1 and r2 may not be
bound to the same
relationship withinthe
samepattern

Rationale was to avoid potentially
returning infinite results for varlength
patterns when matching graphs
containing cycles (this would have been
different if we were just checking for the
existence of apath)

Usefulness proven in practice over
multiple industrial verticals: we have not
seen any worst-caseexamples

:FRIEND

Graph databases and graph querying, PetraSelmer

32

Sharing elements in the projected graph
Deriving new elements in the projected graph
Shared edges always point to the same (shared) endpoints in the projected graph

Graphprojection

Graph databases and graph querying, PetraSelmer

33

Projectionisthe inverseofpattern matching

Turns graphs into
matches for the pattern

Turns matches for the
pattern back into graphs

Graph databases and graph querying, PetraSelmer
34

● Usethe output of one query as input to another to enable abstraction and views
● Applies to queries with tabular output and graph output
● Support fornested subqueries
● Extract parts of a query to a view for re-use
● Replace parts of a query without affecting other parts
● Build complex workflowsprogrammatically

Queries are composable procedures

Graph databases and graph querying, PetraSelmer

35

Passboth multiple graphs and tabular data into a query

Return both multiple graphs and tabular data from a query

Select which graph to query

Construct new graphs from existing graphs

Implications

Graph databases and graph querying, PetraSelmer

36

Acknowledgements for slides 38-48

• Slides are taken from the following Presentation
• Emerging Graph Queries in Linked Data

– Arijit Khan, Yinghui Wu, Xifeng Yan
– Department of Computer Science
– University of California, Santa Barbara

• All errors are mine

Emerging Graph Queries in Linked Data, Arijit Khan, Yinghui Wu, Xifeng Yan

37

Graph Search Queries

38

Containment Query

Similarity Query

Matching Query

Retrieves all graphs from a graph
database, such that they contain a
given query graph (exact and
approximate).

G1 G2

Q

Emerging Graph Queries in Linked Data, Arijit Khan, Yinghui Wu, Xifeng Yan

Graph Search Queries

39

Retrieves all graphs from a graph
database, that are similar to the
query graph (exact and
approximate).

G1

G2

Q

Containment Query

Similarity Query

Matching Query

Emerging Graph Queries in Linked Data, Arijit Khan, Yinghui Wu, Xifeng Yan

Graph Search Queries

Find all occurrences of a query
graph in a large target network
(exact and approximate).

G

Q

Containment Query

Similarity Query

Matching Query

Emerging Graph Queries in Linked Data, Arijit Khan, Yinghui Wu, Xifeng Yan

40

Containment Query

Subgraph Isomorphism
Problem is NP-hard.

Filtering and Verification

Filtering Phase:
Feature-based index is used to
filter out the negative results
and generate candidate sets.

Verification Phase:
Precise Subgraph Isomorphism
Testing to generate final results
from the candidate set.

G1
G2

Q

G1

G1

G1

G1

G1

G2

G2

G2

Containment Query

Edge Based Index

Q

Q

Q

Filtering
Emerging Graph Queries in Linked Data, Arijit Khan, Yinghui Wu, Xifeng Yan

41

Similarity Query

Graph Isomorphism is neither
known to be Polynomial or NP-
Complete
Graph Edit Distance NP-hard

G1

Q

G2

Maximum Common Subgraph
(MCS) based approach.

| d(Q, MCS(Q,G1)) | = 2
| d(G1, MCS(Q,G1)) | = 2
Δ = |d(Q, MCS(Q,G1))| +

|d(G1, MCS(Q,G1))| = 4

| d(Q, MCS(Q,G2)) | = 0
| d(G2, MCS(Q,G2)) | = 10
Δ = |d(Q, MCS(Q,G1))| +

|d(G1, MCS(Q,G1))| = 10

Maximum Common Subgraph
(MCS) based approach.

Δ = |d(Q, MCS(Q,G))| +
|d(G, MCS(Q,G))|
MCS is NP-hard.
Efficiently Finding MCS of two
large networks (Approximate)
- Zhu et al., CIKM ’11

Indexing based on MCS in
Filtering Phase – Zhu et. al., EDBT
‘12

Emerging Graph Queries in Linked Data, Arijit Khan, Yinghui Wu, Xifeng Yan

42

Kernel Based Approach.
Measure similarity of two graphs by comparing their substructures.

Map two graphs G1 and G2 via mapping φ into feature space H.

Measure their similarity in H as scalar product <φ(G1), φ(G2)> .

Kernel Trick: Compute inner product in H as kernel in input space
k(G1, G2) = <φ(G1), φ(G2)> ; e.g., compute walks in the product
graph G1×G2 .

- Positive Definite.

a

c

r

t

φ ≡ length of all walks between every ordered pair of labels.

e.g., φ(c , a) = φ(a , r) = φ(r , t) = 1
φ(a , t) = 1+2 = 3
φ(c , t) = 2+3 = 5
φ(c , c) = 0 etc.

Similarity Query

Emerging Graph Queries in Linked Data, Arijit Khan, Yinghui Wu, Xifeng Yan

43

Complete Graph Kernel: Let k(G1, G2) = <φ(G1),φ(G2)> be a graph
kernel. If φ is injective, k is called a complete graph kernel.

Example: The graph kernel that has one feature ΦH for each possible
graph H, each feature ΦH(G) measuring how many subgraphs of G
have the same structure as graph H.

The above example of Complete Graph Kernel is NP-hard.

Theorem: Computing any complete graph kernel is at
least as hard as deciding whether two graphs are
isomorphic [Gärtner et. al., COLT ‘03]

Similarity Query

Emerging Graph Queries in Linked Data, Arijit Khan, Yinghui Wu, Xifeng Yan

44

Graph Kernels

45

Polynomial Time Computable Graph Kernels:

Ø Random Walk - Kashima et al., ICML ’03
- Gaertner et al., COLT ’03
- Mahe et al., ICML ’04
- Vishwanathan et al., NIPS ‘06

Ø Shortest Path - Borgwardt et. al., ICDM ‘05

Ø Optimal assignment kernel - Froehlich et al, ICML ‘05
[NOT Positive definite, Vert, ‘08]

Ø Weighted Decomposition Kernel - Menchetti et al., ICML ’05

Ø Edit-Distance Kernel - Neuhaus et. al., SSPR/SPR ‘06

Ø Subtree Kernel - Ramon et. al., Mining Graphs, Trees and Sequences ’04
- Shervashidze et. al., NIPS ’09

Ø Cyclic Pattern Kernel - Horvath et al., KDD ’04

Ø Neighborhood Kernel - Wang et. al., EDBT ’09

Emerging Graph Queries in Linked Data, Arijit Khan, Yinghui Wu, Xifeng Yan

45

Graph Pattern Mining

a

d

c

b a

d

c

b

a

d

c

b

e

fe

f

a

d f

G1 G3G2 G4

46

Given a graph dataset D, find all subgraphs g, s.t.
freq(g) ≥ θ

Where freq(g) is the (relative) number of graphs that contain g.

Θ=3
a

c

b

d

a b

b c

b d

a cb

a db

c db

Emerging Graph Queries in Linked Data, Arijit Khan, Yinghui Wu, Xifeng Yan

Why Mine Graph Patterns?

Direct Use:

Mining over-represented sub-structures in chemical
databases.

Mining conserved sub-networks.

Program control flow analysis.

Indirect Uses:

Index the data graph and query graph using local features.

Building block of further analysis, i.e., Classification,
Clustering, Similarity Searches, Indexing

47

Emerging Graph Queries in Linked Data, Arijit Khan, Yinghui Wu, Xifeng Yan

Why is Graph Mining Hard?

The search space is huge.
A graph with e edges has 2e subgraphs.
Exponential search space + graph isomorphism + subgraph
isomorphism.

48

a b c

a a a a cb b b b c cc

a a a

a ba

a a c

a b a

b ba

a b c

a c a

c ba

a c c

b c b

c cb

c c c

b b b

b cb

b c a

b a b

a bc

b a c

Pattern Search Tree

Emerging Graph Queries in Linked Data, Arijit Khan, Yinghui Wu, Xifeng Yan

Summary

• Graph database language
– Cypher and others à GQL

• Hardness results
• Implementation issues

– Containment and matching
• Indexing / filtering (still false positive, no false negatives)
• Verification (eliminate false positives)

– Similarity
• Mapping into feature space

with polynomial graph kernels

• Graph mining

49

