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Node
● Represents an entity within the graph
● Has zero or morelabels
● Has zero or moreproperties

(which may differ across nodes with the same label(s))

Edge
● Addsstructure to the graph

(provides semantic context for nodes)
● Has one type
● Has zero or moreproperties
● Relates nodes by type and direction
● Must have a start and an end node

Propertygraph

Property
● Name-value pair (map) that can go on nodes and edges
● Represents the data: e.g. name, age, weight etc
● String key; typed value (string, number, bool, list)

Graph databases  and graph querying, PetraSelmer
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Relational vs. graphmodels

Graph databases  and graph querying, PetraSelmer
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Querycomplexity growswith needfor JOINs  

Graphpatterns noteasilyexpressiblein SQL

Recursivequeries
Variable-length relationshipchains  

Pathscannot bereturned natively

Relationship-centricquerying

Graph databases  and graph querying, PetraSelmer
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Data Integration

1
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6



Declarativegraphpatternmatching language  

SQL-likesyntax

DQL for readingdata
DMLfor creating, updating and deleting data  

DDLfor creating constraints and indexes

Introducting Cypher

Graph databases  and graph querying, PetraSelmer
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Searching for (matching)graph patterns

Nodes:
• () or (n)

o Surround with parentheses
o Use an alias n to refer to our node later 

in the query
• (n:Label)

o Specify a Label starting with a colon :
o Used to group nodes by roles or types 

(similar to tags)
• (n:Label {prop: ‘value’})

o Nodes can have properties

Edges/Relationships: 
• --> or -[r:TYPE]->

o Wrapped in hyphens and square brackets  
o A relationship type starts with a colon :

• <>
o Specify the direction of the relationships

• -[:KNOWS {since: 2010}]->
o Relationships can have properties

Graph databases  and graph querying, PetraSelmer
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Used to query data

( n : L a b e l { p r o p : ‘ v a l u e ’ } ) - [ : T Y P E ] - > ( m : L a b e l )

FindAlicewhoknowsBob  In otherwords:

find Person with the name ‘ A l i c e ’

who KNOWS

a Person withthe name ‘ B o b ’

(p1:Person {name: ‘Alice’})-[:KNOWS]->(p2:Person {name: ‘ B o b ’ } )

Cypher:patterns

Graph databases  and graph querying, PetraSelmer
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/ /  Data creation and manipulation  
CREATE(you:Person)
SET you.name = ‘ J i l l Brown’
CREATE(you)-[:FRIEND]->(me)

/ /  Either match existing ent i t ies or create new ent i t ies .
/ /  Bind in either case
MERGE (p:Person {name: ‘Bob Smi th ’ } )

ON CREATE SET p.created = t imestamp(), p.updated = 0
ON MATCH SET p.updated = p.updated + 1

RETURN p.created, p.updated

DML: Creating and updatingdata

Graph databases  and graph querying, PetraSelmer
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/ /  Pattern description (ASCII a r t )   
MATCH (me:Person)-[:FRIEND]->(friend)
/ /  F i l ter ing with predicates  
WHERE me.name = ‘Frank Black’
AND f r iend.age > me.age

AS   name, f r i e n d . t i t l e AS t i t l e
/ /  Projection of expressions  
RETURN toUpper(friend.name)
/ /  Order results
ORDER    BY name, t i t l e DESC

Input: a propertygraph
Output: atable

DQL: Readingdata

Multiple pattern parts can be defined in a  
single match clause (i.e. conjunctive  
patterns); e.g:
MATCH ( a ) - ( b ) - ( c ) , ( b ) - ( f )

Graph databases  and graph querying, PetraSelmer
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Node patterns
MATCH( ) ,  (node),  (node:Node), ( :Node),  (node {type:"NODE"})

Relationship patterns
MATCH ( ) - - > ( ) ,  ( ) < - - ( ) , ( ) - - ( )
MATCH( ) - [ e d g e ] - > ( ) , (a) - [edge] ->(b)
MATCH()-[:RELATES]->()
MATCH( ) - [edge {sco re :5 } ] -> ( )
MATCH( ) - [ r :LIKES|:EATS]->()
MATCH ()-[r:LIKES|:EATS {age: 1 } ] - > ( )

/ /  Single relationship
/ /  With binding
/ /  With specific relationship type
/ /  With property predicate
/ /  Union of relationship types
/ /  Union with property predicate
(applies to a l l  relationship types specified)

Cypherpatterns

Graph databases  and graph querying, PetraSelmer
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Variable-length relationship patterns
MATCH(me)-[:FRIEND*]-(foaf)
MATCH(me)-[ :FRIEND*2..4]-( foaf)
MATCH(me)-[ :FRIEND*0.. ] -( foaf)
MATCH(me)-[:FRIEND*2]-(foaf)
MATCH(me)-[:LIKES|HATES*]-(foaf)

/ /  Traverse 1 or more FRIEND relationships
/ /  Traverse 2 to 4 FRIEND relationships
/ /  Traverse 0 or more FRIEND relationships
/ /  Traverse 2 FRIEND relationships
/ /  Traverse union of LIKES and HATES 1 or more times

/ /  Path binding returns a l l  paths (p)
MATCH p = (a)-[ :ONE]-()- [ :TWO]-()- [ :THREE]-()
/ /  Each path is  a l i s t  containing the constituent nodes and relationships, in order  
RETURNp

/ /  Variation: return a l l  constituent nodes of the path  
RETURNnodes(p)
/ /  Variation: return a l l  constituent relationships of the path  
RETURNre la t ionsh ips(p)

Cypherpatterns

Graph databases  and graph querying, PetraSelmer
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3 : MATCH (me)-[:ENEMY]-(enemy)
4 : RETURN f r i ends , count(enemy) ASenemies

WITHprovides ahorizon, allowing a query to be subdivided:
● Further matching can be done after a set of updates
● Expressions can be evaluated, along with aggregations
● Essentially acts like the pipe operator in Unix

Linear composition
● Query processing begins at the top and progresses linearly to the end
● Eachclause is a function taking in a table T (line 1) and returning a table T’
● T’ then acts asa driving table to the next clause (line 3)

Cypher: linearcomposition and aggregation

Parameters: $param

1 : MATCH (me:Person {name: $name})-[:FRIEND]-(friend)  
2 :  WITH me, count ( f r iend)  AS f r iends

Aggregation  
(grouped by ‘me’ )

Graph databases  and graph querying, PetraSelmer
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Example query:epidemic!

Assume a graph G  
containing doctors  
who have  
potentially been  
infected with a  
virus….

Graph databases  and graph querying, PetraSelmer
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The following Cypher query returns the name of each doctor in Gwho has perhaps been  
exposed to some source of a viral infection, the number of exposures, and the number
of  people known (both directly and indirectly) to their colleagues

1 :  MATCH(d:Doctor)
2 : OPTIONAL  MATCH (d)-[:EXPOSED_TO]->(v:ViralInfection)
3 :   WITH d , count(v) AS exposures
4 :  MATCH(d)-[:WORKED_WITH]->(colleague:Person)
5 : OPTIONAL  MATCH (colleague)<-[:KNOWS*]-(p:Person)
6 :  RETURN d.name, exposures, count(DISTINCT p) ASthirdPartyCount

Examplequery

Graph databases  and graph querying, PetraSelmer

16



1 :  MATCH(d:Doctor)
2 : OPTIONAL  MATCH (d)-[:EXPOSED_TO]->(v:ViralInfection)

Matches all :Doctors, along with whether or not they have been :EXPOSED_TOa :ViralInfection
OPTIONAL MATCH analogous to outer join in SQL  

Produces rows provided entire pattern is found
If no matches, a single row is produced in which the binding for v is n u l l

Examplequery

d v

Sue SourceX

Sue PatientY

Alice SourceX

Bob null

Although we show the name property (for easeof  
exposition), it is actually the node that gets bound

Graph databases  and graph querying, PetraSelmer
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3 :   WITH d , count(v) ASexposures

WITHprojects a subset of the variables in scope - d - and their bindings onwards (to 4).
WITH also computes anaggregation:

d is used as the grouping key implicitly (as it is not aggregated) for count()  
All non-null values of v are counted for each unique binding of d
Aliased asexposures

The variable v is no longer in scope after 3

Examplequery

d exposures

Sue 2

Alice 1

Bob 0

This binding table is now the driving table for the MATCHin 4

Graph databases  and graph querying, PetraSelmer
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4 : MATCH (d)-[:WORKED_WITH]->(colleague:Person)

Usesasdriving table the binding table from 3  

Finds all the colleagues (:Person) who
have :WORKED_WITH our doctors

Examplequery

d exposures colleague

Sue 2 Chad

Sue 2 Carol

Bob 0 Sally

Graph databases  and graph querying, PetraSelmer
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Examplequery

d exposures colleague p

Sue 2 Chad Carol

Sue 2 Carol null

Bob 0 Sally Will

Bob 0 Sally Chad

Bob 0 Sally Carol*

Bob 0 Sally Carol*

5 : OPTIONAL  MATCH (colleague)<-[:KNOWS*]-(p:Person)

Finds all the people (:Person) who :KNOWour doctors’ colleagues (only in the one direction), both directly  
and indirectly (using :KNOWS*so that one or more relationships are traversed)

No Carol)<-[:KNOWS]-() pattern inG

* This is due to the :KNOWS* pattern: Carol is reachable from
Sally via Chad andWill
(Carol :KNOWS Will andChad)

Graph databases  and graph querying, PetraSelmer
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| Bob | 0 |  3 ( Wi l l ,  Chad, Carol)|
| Sue | 2 | 1 (Carol) |

1 :  MATCH(d:Doctor)
2 :  OPTIONAL MATCH(d)-[:EXPOSED_TO]->(v:ViralInfection)
3 :  WITH d ,  count(v) AS exposures
4 :  MATCH(d)-[:WORKED_WITH]->(colleague:Person)
5 :  OPTIONAL MATCH(colleague)<-[:KNOWS*]-(p:Person)
6 :  RETURN d.name, exposures, count(DISTINCT p) ASthirdPartyCount

+ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +
|  d.name  |  exposures | thirdPartyCount |
+ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +

+ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +

Example queryresults

Graph databases  and graph querying, PetraSelmer
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Aggregating functions

count ( ) , max(), min( ) , avg()

Operators
Mathematical, comparison, string-specific, boolean, list  

Mapprojections

Construct a map projection from nodes, relationships and properties

CASEexpressions

Functions (scalar, list, mathematical, string, UDF,  procedures)

Otherfunctionality

Graph databases  and graph querying, PetraSelmer
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Many implementations
Amazon Neptune, Oracle PGX, Neo4j Server, SAP HANA Graph, AgensGraph (over  
PostgreSQL),Azure CosmosDB, Redis Graph, SQLServer 2017 Graph, Cypher for Apache  
Spark, Cypher for Gremlin, SQL Property Graph Querying, TigerGraph, Memgraph,  
JanusGraph, DSE Graph, ...

Multiple languages
SQL PGQ (Property Graph Querying)  
openCypher
G-CORE (augmented withpaths)  
PGQL
SPARQL (RDF data model)

ISOSC32.WG3
Neo4j  
LDBC
Oracle  
W3C
Tigergraph GSQL ...also imperative and analytics-based languages

Property graphs areeverywhere

SQL2020
Participation frommajor  
DBMSvendors.
Neo4j’scontributions  
freely available*.

* http://www.opencypher.org/references#sql-pg

Graph databases  and graph querying, PetraSelmer
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Anew stand-alone / native query  
language for graphs
Targets the labelledPG model

Composable graph query language with  
support for updating data

Basedon

● “Ascii art” pattern matching
● Published formalsemantics (Cypher,  

G-CORE)
● SQL PG extensions andSQL-compatible  

foundations (some data types, some  
functions, ...)

Graphs first, not graphs “extra”

https://www.gqlstandards.org

Graph Query Language(GQL)

GQL Documents also available athttp://www.opencypher.org/references#sql-pg

Graph databases  and graph querying, PetraSelmer
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/ / f rom graph or view ‘ f r i e n d s ’  i n  the catalog
FROMf r iends

//match persons ‘ a ’  and ‘ b ’  who t rave l led together
MATCH(a:Person)-[:TRAVELLED_TOGETHER]-(b:Person)
WHERE a.age = b.age

AND      a.country  = $country
AND      b.country  = $country

/ / f rom view parameterized by country
FROMcensus($country)

/ / f i n d  out i f  ‘ a ’  and ‘ b ’  a t  some point  moved to  or were born i n  a place ‘ p ’
MATCH SHORTEST(a)-[:BORN_IN|MOVED_TO*]->(p)<-[:BORN_IN|MOVED_TO*]->(b)

/ / t h a t  i s  located i n  a c i t y ‘ c ’
MATCH(p)-[:LOCATED_IN]->(c:City)

//aggregate the number o f  such pai rs  per c i t y  and age group
RETURN a.age AS age, c.name AS c i t y ,  count (*)  ASnum_pairs

GROUP BYage

Example GQLQuery

Illustrative syntaxonly!

Graph databases  and graph querying, PetraSelmer
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Regular path queries(RPQs)

X, ( l i kes .ha tes ) * (ea ts |d r inks )+ , Y

Complex pathpatterns

Find a path whose edge labels conform to the regular expression, starting at node Xand  
ending atnode Y

(X and Y are nodebindings)
Plenty ofresearch in
thisarea since 1987!

SPARQL 1.1 has
support forRPQs:  
“property paths”

I. F. Cruz, A. O. Mendelzon, and P. T. Wood
A graphical query language supporting recursion
In Proc. ACM SIGMOD, pages 323–330, 1987

Graph databases  and graph querying, PetraSelmer
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Property graph datamodel:
Propertiesneed to be considered

Node labels need to be considered

Specifying a cost for paths (ordering and comparing)

Complexpaths in the property graph data model

Concatenation
a.b - a is followed by b
Alternation

a|b - either aor b
Transitiveclosure

* - 0or more
+ - 1 ormore
{m, n} - at least m, at most n
Optionality:

? - 0 or1
Grouping/nesting

() - allows nesting/defines scope

Path patterns (e.g., GXPATH)

Graph databases  and graph querying, PetraSelmer
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Sequence / Concatenation:

Alternation / Disjunction:  

Transitive closure:

1 or more
2or more  
n ormore
At least n, at most m

Overriding direction forsub-pattern:

Left to right direction
Right to left direction
Any direction

Composition of PathPatterns

( ) - /  𝛂𝛃 / - ( )

( ) - /  𝛂 | 𝛃 / - ( )

( ) - /  𝛂* / - ( )
( ) - /  𝛂+ / - ( )
( ) - /  𝛂*n. . / - ( )
( ) - /  𝛂*n..m / - ( )

( ) - /  𝛂 > / - ( )
( ) - /  < 𝛂 / - ( )
( ) - /  < 𝛂> / - ( )

Graph databases  and graph querying, PetraSelmer
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PATH PATTERN
older_fr iends = (a)-[ :FRIEND]-(b) WHERE b.age > a.age

MATCH p=(me)-/~older_fr iends+/-(you)
WHERE me.name = $myName AND you.name = $yourName
RETURN p AS f r iendship

Path Pattern:example

Graph databases  and graph querying, PetraSelmer
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PATH PATTERN
older_fr iends = (a)-[ :FRIEND]-(b) WHERE b.age > a.age

PATH PATTERN
same_city = (a)- [ :LIVES_IN]->( :Ci ty)<- [ :LIVES_IN]-(b)

PATH PATTERN
older_friends_in_same_city = (a ) - /~o lde r_ f r i ends / - (b )

WHERE EXISTS { (a) - /~same_ci ty / - (b) }

Nested Path Patterns: Example

Graph databases  and graph querying, PetraSelmer
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PATH PATTERN road = (a)-[r:ROAD_SEGMENT]-(b) COST r. l eng th

MATCH route = (s ta r t ) - /~ road* / - (end )

WHERE s t a r t . l o c a t i o n = $currentLocation

AND end.name = $dest inat ion

RETURN route

ORDER BY cost ( route) ASC LIMIT 3

Costfunctionfor cheapestpathsearch

Graph databases  and graph querying, PetraSelmer
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Patternmatching today usesedge isomorphism (no repeated relationships)

MATCH (p:Person {name: Jack})-[r1:FRIEND]-()-[r2:FRIEND]-(fr iend_of_a_fr iend)
RETURN friend_of_a_friend.name ASfofName

“Cyphermorphism”

:Person
{  name :  Jack }

:Person
{  name :  Anne }

:Person
{  name :  Tom}

:FRIEND

+ - - - - - - - - - +
|  fofName  |
+ - - - - - - - - - +
|  “Tom” |
+ - - - - - - - - - +

r1 and r2 may not be  
bound to the same  
relationship withinthe  
samepattern

Rationale was to avoid potentially  
returning infinite results for varlength  
patterns when matching graphs  
containing cycles (this would have been  
different if we were just checking for the  
existence of apath)

Usefulness proven in practice over  
multiple industrial verticals: we have not  
seen any worst-caseexamples

:FRIEND

Graph databases  and graph querying, PetraSelmer
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Sharing elements in the projected graph  
Deriving new elements in the projected graph
Shared edges always point to the same (shared) endpoints in the projected graph

Graphprojection

Graph databases  and graph querying, PetraSelmer
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Projectionisthe inverseofpattern matching

Turns graphs into  
matches for the pattern

Turns matches for the  
pattern back into graphs

Graph databases  and graph querying, PetraSelmer
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● Usethe output of one query as input to another to enable abstraction and views
● Applies to queries with tabular output and graph output
● Support fornested subqueries
● Extract parts of a query to a view for re-use
● Replace parts of a query without affecting other parts
● Build complex workflowsprogrammatically

Queries are composable procedures

Graph databases  and graph querying, PetraSelmer
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Passboth multiple graphs and tabular data into a query

Return both multiple graphs and tabular data from a query  

Select which graph to query

Construct new graphs from existing graphs

Implications

Graph databases  and graph querying, PetraSelmer
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Acknowledgements for slides 38-48

• Slides are taken from the following Presentation
• Emerging Graph Queries in Linked Data 

– Arijit Khan, Yinghui Wu, Xifeng Yan
– Department of Computer Science
– University of California, Santa Barbara

• All errors are mine

Emerging Graph Queries in Linked Data, Arijit Khan, Yinghui Wu, Xifeng Yan
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Graph Search Queries

38

Containment Query

Similarity Query

Matching Query

Retrieves all graphs from a graph
database, such that they contain a
given query graph (exact and
approximate).

G1 G2

Q

Emerging Graph Queries in Linked Data, Arijit Khan, Yinghui Wu, Xifeng Yan



Graph Search Queries

39

Retrieves all graphs from a graph
database, that are similar to the
query graph (exact and
approximate).

G1

G2

Q

Containment Query

Similarity Query

Matching Query

Emerging Graph Queries in Linked Data, Arijit Khan, Yinghui Wu, Xifeng Yan



Graph Search Queries

Find all occurrences of a query
graph in a large target network
(exact and approximate).

G

Q

Containment Query

Similarity Query

Matching Query

Emerging Graph Queries in Linked Data, Arijit Khan, Yinghui Wu, Xifeng Yan

40



Containment Query

Subgraph Isomorphism 
Problem is NP-hard.

Filtering and Verification

Filtering Phase:
Feature-based index is used to
filter out the negative results
and generate candidate sets.

Verification Phase:
Precise Subgraph Isomorphism
Testing to generate final results
from the candidate set.

G1
G2

Q

G1

G1

G1

G1

G1

G2

G2

G2

---

---

Containment Query

Edge Based Index

Q

---

---

Q

Q

Filtering
Emerging Graph Queries in Linked Data, Arijit Khan, Yinghui Wu, Xifeng Yan
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Similarity Query

Graph Isomorphism is neither 
known to be Polynomial or NP-
Complete 
Graph Edit Distance NP-hard

G1

Q

G2

Maximum Common Subgraph 
(MCS) based approach.

| d( Q, MCS(Q,G1) ) | = 2
| d(G1, MCS(Q,G1)) | = 2
Δ = |d( Q, MCS(Q,G1) )| + 

|d(G1, MCS(Q,G1))| = 4

| d( Q, MCS(Q,G2) ) | = 0 
| d(G2, MCS(Q,G2)) | = 10
Δ = |d( Q, MCS(Q,G1) )| + 

|d(G1, MCS(Q,G1))| = 10

Maximum Common Subgraph 
(MCS) based approach.

Δ = |d( Q, MCS(Q,G) )| + 
|d(G, MCS(Q,G))|
MCS is NP-hard. 
Efficiently Finding MCS of two 
large networks (Approximate)  
- Zhu et al., CIKM ’11

Indexing based on MCS in 
Filtering Phase – Zhu et. al., EDBT 
‘12

Emerging Graph Queries in Linked Data, Arijit Khan, Yinghui Wu, Xifeng Yan
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Kernel Based Approach.
Measure similarity of two graphs by comparing their substructures.

Map two graphs G1 and G2 via mapping φ into feature space H.

Measure their similarity in H as scalar product <φ(G1), φ(G2)> .

Kernel Trick: Compute inner product in H as kernel in input space
k(G1, G2) = <φ(G1), φ(G2)> ; e.g., compute walks in the product
graph G1×G2 .

- Positive Definite.

a

c

r

t

φ  ≡ length of all walks between every ordered pair of labels.

e.g., φ(c , a) = φ(a , r) = φ(r , t) = 1
φ(a , t)  = 1+2 = 3
φ(c , t)  = 2+3 = 5  
φ(c , c) = 0 etc.

Similarity Query

Emerging Graph Queries in Linked Data, Arijit Khan, Yinghui Wu, Xifeng Yan
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Complete Graph Kernel: Let k(G1, G2) = <φ(G1),φ(G2)> be a graph
kernel. If φ is injective, k is called a complete graph kernel.

Example: The graph kernel that has one feature ΦH for each possible
graph H, each feature ΦH(G) measuring how many subgraphs of G
have the same structure as graph H.

The above example of Complete Graph Kernel is NP-hard.

Theorem: Computing any complete graph kernel is at 
least as hard as deciding whether two graphs are 
isomorphic [Gärtner et. al., COLT ‘03]

Similarity Query

Emerging Graph Queries in Linked Data, Arijit Khan, Yinghui Wu, Xifeng Yan
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Graph Kernels

45

Polynomial Time Computable Graph Kernels:

Ø Random Walk  - Kashima et al., ICML ’03
- Gaertner et al., COLT ’03
- Mahe et al., ICML ’04
- Vishwanathan et al., NIPS ‘06

Ø Shortest Path - Borgwardt et. al., ICDM ‘05

Ø Optimal assignment kernel  - Froehlich et al, ICML ‘05    
[NOT Positive definite, Vert, ‘08]

Ø Weighted Decomposition Kernel - Menchetti et al., ICML ’05

Ø Edit-Distance Kernel - Neuhaus et. al., SSPR/SPR ‘06

Ø Subtree Kernel - Ramon et. al., Mining Graphs, Trees and  Sequences ’04
- Shervashidze et. al., NIPS ’09

Ø Cyclic Pattern Kernel  - Horvath et al., KDD ’04

Ø Neighborhood Kernel  - Wang et. al., EDBT ’09

Emerging Graph Queries in Linked Data, Arijit Khan, Yinghui Wu, Xifeng Yan
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Graph Pattern Mining

a

d

c

b a

d

c

b

a

d

c

b

e

fe

f

a

d f

G1 G3G2 G4

46

Given a graph dataset D, find all subgraphs g, s.t.
freq(g) ≥ θ

Where freq(g) is the (relative) number of graphs that contain g.

Θ=3
a

c

b

d

a b

b c

b d

a cb

a db

c db

Emerging Graph Queries in Linked Data, Arijit Khan, Yinghui Wu, Xifeng Yan



Why Mine Graph Patterns?

Direct Use:

Mining over-represented sub-structures in chemical 
databases.

Mining conserved sub-networks.

Program control flow analysis.

Indirect Uses:

Index the data graph and query graph using local features. 

Building block of further analysis, i.e., Classification, 
Clustering, Similarity Searches, Indexing

47
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Why is Graph Mining Hard?

The search space is huge.
A graph with e edges has 2e subgraphs.
Exponential search space + graph isomorphism + subgraph
isomorphism.

48

a b c

a a a a cb b b b c cc

a a a

a ba

a a c

a b a

b ba

a b c

a c a

c ba

a c c

b c b

c cb

c c c

b b b

b cb

b c a

b a b

a bc

b a c

Pattern Search Tree

Emerging Graph Queries in Linked Data, Arijit Khan, Yinghui Wu, Xifeng Yan



Summary

• Graph database language
– Cypher and others à GQL

• Hardness results
• Implementation issues

– Containment and matching
• Indexing / filtering (still false positive, no false negatives)
• Verification (eliminate false positives)

– Similarity
• Mapping into feature space 

with polynomial graph kernels

• Graph mining
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