GERST
\\\\\

<}

& INSTITUT FUR INFORMATIONSSYSTEME

Non-Standard-Datenbanken
und Data Mining

Graphdatenbanken

Prof. Dr. Ralf Moller
Universitat zu Lubeck
Institut flr Informationssysteme

Acknowledgements for slides 2-36

Graph databases and graph querying

AdvancesinData Management, 2019

Dr. Petra Selmer
Query languages standards &research group, Neo4j

Property graph

name: “Dan”
born: May 29, 1970 name: “Ann”
twitter: “@dan” born: Dec 5, 1975
Node »

@® Represents an entity within the graph
@® Haszero or morelabels
@® Has zero or moreproperties
(which may differ across nodes with the same label(s))

LIVES WITH

Edge

Jan 10, 2011

brand: “Volvo”

@ Adds structure to the graph

(provides semantic context for nodes) Property model: “¥70
@ Hasonetype
@® Has zero or moreproperties @® Name-value pair (map) that can go on nodes and edges
® Relates nodes by fype and direction @ Represents the data: e.g. name, age, weight etc
@® Musthave astart and an end node @® String key; typed value (string, number, bool, list)
§ e 20 o8 e S rocu bas eaen 3

Graph databases and graph querying, PetraSelmer

Relational vs. graph models

Relational Model Graph Model

IM FOCUS DAS,LEBEN

4

DELIA

MICA

TO&IAS

Person Person-Friend Friend

Graph databases and graph querying, PetraSelmer

Relationship-centricquerying

Query complexity grows with need for JOINS
Graph patterns not easily expressible in SQL

Recursive queries
Variable-length relationshipchains

Paths cannot bereturned natively

:::::
3Rs22 % INSTITUT FUR INFORMATIONSSYSTEME

Data Integration

N
"

2

CONSUMER PRODUCT PAYMENT SOCIAL SUPPLIER
DATA DATA DATA DATA DATA

IM FOCUS DAS_LEBEN

6

Graph databases and graph querying, PetraSelmer

Introducting Cypher

Declarative graph pattern matchinglanguage

SQL-like syntax

DQLfor readingdata
DML for creating, updating and deleting data

DDL for creating constraints and indexes

Searching for (matching)graph patterns

NODE Relationship NODE
| |]

MATCH (:Person { name:"Dan"}) -[:LOVES]-> (whom) RETURN whom

| [——
Nodes: LABEL PROPERTY VARIABLE
© Uorl Edges/Relationships:

o Surround with parentheses

) e -->or-[r.TYPE]->
o Use an alias n to refer to our node later []

o Wrapped in hyphens and square brackets

. (n:LaI:;I;he query o Arelationship type starts with a colon :
. . . . <>
o Specify a Label starting with a colon : o Specify the direction of the relationships
0 U:sec.l to group nodes by roles or types :KNOWS since: 2010}]->
(similar to tags) o Relationships can have properties

* (n:Label {prop: ‘value’})

o Nodes can have properties

INSIRUT TR INFoRMATIONS SYSTEME IM FOCUS DA58LEBEN

Graph databases and graph querying, PetraSelmer

Cypher: patterns

Usedto query data
(n:Label {prop: ‘value’})-[:TYPE]->(m:Label)

Find Alicewho knows Bob In otherwords:

find Person with the name “Alice’
who KNOWS

aPerson withthe name ‘Bob’

(p1:Person {name: ‘Alice’})-[:KNOWS]->(p2:Person {name: 'Bob’})

IM FOCUS DAS LEBEN 9

Graph databases and graph querying, PetraSelmer

DML: Creating and updatingdata

/| Data creation and manipulation
CREATE(you:Person)

SETyou.name =“Jill Brown’
CREATE(you)-[:FRIEND]->(me)

Il Either match existing entities or create newentities.

Il Bindin either case

MERGE(p:Person {name: ‘Bob Smith’})
ONCREAIESETp.created =timestamp(), p.updated =0
ONMATCHSET p.updated =p.updated + 1

RETURNp.created, p.updated

IM FOCUS DAS LEBEN 10

Graph databases and graph querying, PetraSelmer

DQL:Readingdata

Il Pattern description (ASCII art)
MATCH (me:Person)-[:FRIEND]->(friend)
Il Filtering with predicates

WHERE me.name =‘Frank Black’
AND friend.age > me.age

Il Projection of expressions

C N

Multiple pattern parts can be defined in a
single match clause (i.e. conjunctive
patterns); e.g:

MATCH(a)-(b)-(c), (b)-(f)
/

RETURN toUpper(friend.name) AS name, friend.title AStitle

/] Order results
ORDER BY name, title DESC

Input. a propertygraph
Output. atable

rSI
GERSIZ,

Queries are
graphs

11

Cypher patterns

Node patterns
MAICH(), (node), (node:Node), (:Node), (node {type:"NODE"})

Relationship patterns

MATCH()-->(), ()<--(), ()--() Il Single relationship
MAICH()-[edge]->(), (a)-[edge]->(b) /'l With binding
MATCH()-[:RELATES]->() Il With specific relationship type
MAICH()-[edge {score:5}]->() Il With property predicate
MATCH()-[r:LIKES|:EATS]->() /'l Union of relationship types
MATCH()-[r:LIKES|:EATS {age: 1}]->() /'l Union with property predicate

(applies to all relationship types specified)

IM FOCUS DAS LEBEN 12

Graph databases and graph querying, PetraSelmer

Cypher patterns

Variable-length relationship patterns

MATCH(me)-[:FRIEND*]-(foaf) Il Traverse 1 or more FRIEND relationships
MATCH(me)-[:FRIEND*2..4]-(foaf) Il Traverse 2 to 4 FRIEND relationships
MATCH(me)-[:FRIEND*O0..]-(foaf) /'l Traverse 0 or more FRIEND relationships
MATCH(me)-[:FRIEND*2]-(foaf) Il Traverse 2 FRIEND relationships

MATICH(me)-[:LIKES|HATES*]-(foaf) /'l Traverse union of LIKES and HATES1 or more times

/| Path binding returns all paths (p)

MATCHp = (a)-[:ONE]-()-[: TWO]-()-[: THREE]-()

Il Eachpathis alist containing the constituent nodes andrelationships, in order
RETURNp

Il Variation: return all constituent nodes of the path
RETURNNnodes(p)

Il Variation: return all constituent relationships of the path
RETURNrelationships(p)

UNIVSETI:'?LIJTTKEUZIEIII.\JUFBOERCI\%ATIONSSYSTEME I M FOCUS DAS LEBEN 13

Graph databases and graph querying, PetraSelmer

Cypher: linearcomposition and aggregation

M Parameters: $param
1. MAICH (me:Person {name: $na -[:FRIEND]-(friend)

2. WITHme, count(friend) ASfriends

3: MATCH (me)-[:ENEMY]-(en _

4. RETURN friends, count(enemy) ASenemies Aggregation
(grouped by ‘me’)

WITH provides a horizon, allowing a query to be subdivided:
@® Further matching can be done after a set of updates
@® Expressions can be evaluated, along with aggregations
@® Essentially acts like the pipe operator in Unix

Linear composition
@® Query processing begins at the top and progresses linearly to the end
@® Eachclauseis afunction takingin atable T (/ine 1) and returning a table T’

@® T’then acts asadriving table to the next clause (line 3)

IM FOCUS DAS LEBEN 14

UNIVERSITAT ZU LUBECK
STITUT FUR INFOR

Graph databases and graph querying, PetraSelmer

Example query:epidemic!

KNOWS Assume a graph G
EXPOSED_TO ..
containing doctors

3 who have
z & %, 2 potentially been
2 & ® infected with a
S S virus....

EXpog KNOWS
ED\ TO W ORKED_W‘TH
e S
Wt &

Doctor(3) Person(5) Viralinfection(2)

S UNIVERSITAT ZU LUBECK
% INSTITUT FUR INFORMATIONSSYSTEME

IM FOCUS DAS LEBEN 15

Graph databases and graph querying, PetraSelmer

Examplequery

The following Cypher query returns the name of each doctor in Gwho has perhaps been
exposed to some source of a viral infection, the number of exposures, and the number
of people known (both directly and indirectly) to their colleagues

- MAICH(d:Doctor)

. OPTIONAL MATCH (d)-[:EXPOSED_TO]->(v:Virallnfection)
WITHd, count(v) ASexposures

. MATCH(d)-[:WORKED_WITH]->(colleague:Person)

- OPTIONAL MAICH (colleague)<-[:KNOWS*]-(p:Person)

- RETURNd.name, exposures, count(DISTINCT p) ASthirdPartyCount

OO WN -

IM FOCUS DAS LEBEN 16
Graph databases and graph querying, PetraSelmer

Examplequery

1. MATICH(d:Doctor)
2: OPTIONAL MAICH (d)-[:EXPOSED_TO]->(v:Virallnfection)

Matches all :Doctors, along with whether or not they have been :=XPOSED TO a:Virallnfection

OPTIONAL MATCHanalogous to outer join in SQL
Produces rows provided entire pattern is found
If no matches, a single row is produced in which the binding for vis nul |

Sue SourceX

Sue PatientY \

Although we show the name property (for ease of
Alice SourceX exposition), it is actually the node that gets bound

Bob null

MATIONSSYSTEME

Graph databases and graph querying, PetraSelmer

Examplequery

3: WITHd, count(v) ASexposures

WITH projects a subset of the variables in scope - d - and their bindings onwards (to 4).
WITH also computes an aggregation:

dis used as the grouping key implicitly (asit is not aggregated) for count()

All non-null values of v are counted for each unique binding of d

Aliased as exposures
The variable vis no longer in scope after 3

d exposures
/ Sue 2
This binding table is now the driving table for the MATCHin 4 Alice 1
Bob 0

MATIONSSYSTEME IM FOCUS DAS LEBEN 18

Graph databases and graph querying, PetraSelmer

UNIVERSITAT ZU LUBECK
STITUT FUR INFOR

Examplequery

4. MAICH(d)-[:WORKED_W!ITH]->(colleague:Person)

Uses as driving table the binding table from 3 »
Finds all the colleagues (:Person) who @ e '@
have WORKED \WITH our doctors ; 5)
3 % :
s &
d exposures colleague XPOSED, 1oy ﬁ' — @ KNOWS @
I\ @
Sue 2 Chad < $
Bob
Sue 2 Carol
Bob 0 Sally

S UNIVERSITAT ZU LUBECK
% INSTITUT FUR INFORMATIONSSYSTEME

IM FOCUS DAS LEBEN 19

Graph databases and graph querying, PetraSelmer

Examplequery

5: OPTIONAL MAICH (colleague)<-[:KNOWS*]-(p:Person)

Finds all the people (:Person) who :KNOW our doctors’ colleagues (only in the one direction), both directly
and indirectly (using :KNOWS* so that one or more relationships are traversed)

d exposures colleague p

No (Carol)<-[:KNOWS]-() pattern inG

Sue 2 Chad Carol 7
Sue 2

Carol null
Bob 0 Sally Will
Bob 0 Sally Chad

* This is due to the :KNOWS* pattern: Carolis reachable from
Bob 0 Sally Carol* Sally via Chad and Will
(Carol KNOWS Will and Chad)

Bob 0 Sally Carol*

MATIONSSYSTEME IM FOCUS DAS LEBEN 20

Graph databases and graph querying, PetraSelmer

UNIVERSITAT ZU LUBECK
INSTITUT FUR INFOR

Example queryresults

- MATCH(d:Doctor)

. OPTIONAL MAICH(d)-[:EXPOSED _ TO]->(v:Virallnfection)

- WITHd, count(v) ASexposures

. MATCH(d)-[:WORKED_WITH]->(colleague:Person)

- OPTIONAL MAICH(colleague)<-[:KNOWS*]-(p:Person)

- RETURNd.name, exposures, count(DISTINCT p) ASthirdPartyCount

OO, WN -

U +
| Bob | O | 3(Will, Chad, Carol)]|
| Sue | 2 | 1 (Carol) |
U +

IM FOCUS DAS LEBEN 21

Graph databases and graph querying, PetraSelmer

Otherfunctionality

Aggregating functions
count(), max(), min(), avg(), ..

Operators

Mathematical, comparison, string-specific, boolean, list

Map projections

Construct a map projection from nodes, relationships and properties

CASE expressions

Functions (scalar, list, mathematical, string, UDF, procedures)

IM FOCUS DAS LEBEN 22

Graph databases and graph querying, PetraSelmer

Property graphs areeverywhere

Many implementations

Amazon Neptune, Oracle PGX Neo4j Server, SAPHANA Graph, AgensGraph (over
PostgreSQL), Azure CosmosDB, Redis Graph, SQL Server 2017 Graph, Cypher for Apache
Spark, Cypher for Gremlin, SQLProperty Graph Querying, TigerGraph, Memgraph,
JanusGraph, DSE Graph, ...

Multiple languages
ISOSC32WG3 = SQLPGQ(Property Graph Querying) SHETR

Neo4;j ——= openCypher Participation from major

LDBC ——> GCORE (augmented with paths) DBMSvendors.
Neo4j's contributions

Oracle —— PGQL freely available*.

W3C = SPARQL(RDFdata model)

Tigergraph > GSQL ...also imperative and analytics-based languages

* http://www.opencypher.org/references#sql-pg IM FOCUS DAS LEBEN 23

Graph databases and graph querying, PetraSelmer

http://www.opencypher.org/references

Graph Query Language(GQL)

Graphs first, not graphs “extra”

Anew stand-alone / native query

[G'“@wﬁg] language for graphs
| E%}Z?:;:w E‘E}E{ ““D/‘: CNUPE‘};“D"HE Targets the labelled PGmodel
_N;ozzf:::ip:s:m - : ‘::::; P;”“ Composable graph query language with
"5::;%;1” :L;A:"T%: a(’f'v“:fq“ support for updating data

S Based on

@ “Asciiart” pattern matching
@® Published formalsemantics (Cypher,

G-CORE)
ety ® SQLPGextensions and SQL-compatible
|- Grnen Cowsraver/Prosser: foundations (some data types, some
- Comrosanic functions, ...)
https://www.gqglstandards.org QQLDocuments also available athttp://www.opencypher.org/references#sql-pg
: L N maTiONssYsTEME IM FOCUS DAS LEBEN 24

Graph databases and graph querying, PetraSelmer

http://www.gqlstandards.org/
http://www.opencypher.org/references

Example GQLQuery

//from graph or view ‘friends’ in the catalog
FROMfriends

/Imatch persons ‘a’ and ‘b’ whotravelled together
MAICH(a:Person)-[: TRAVELLED_TOGETHER]-(b:Person)
WHEREa.age = b.age

AND a.country = $country

AND b.country = $country

/Ifrom view parameterized by country
FROMcensus($country)

//find outif ‘a’ and‘b’ at somepoint movedto or were bornin aplace‘p’
MATCHSHORTEST (a)-[:BORN_IN|MOVED_TO*]->(p)<-[:BORN_IN|JMOVED_TO*]->(b)

//lthat is located in acity ‘c’
MAICH(p)-[:LOCATED _IN]->(c:City)

/laggregate the number of such pairs per city and age group
RETURNa.age ASage, c.name AScity, count(*) ASnum_pairs
GROUPBY age

;;;;;

S UNIVERSITAT ZU LUBECK
o INSTITUT FUR INFORMATIONSSYSTEME

lllustrative syntaxonly!

~

Regular path
S queries /

Lo

IM FOCUS DAS LEBEN 25

Graph databases and graph querying, PetraSelmer

Complex path patterns

Regular path queries (RPQs)

X, (likes.hates)*(eats|drinks)+, Y

Find a path whose edge labels conform to the regular expression, starting at node Xand

ending atnode Y

(Xand Yare node bindings)
/Plenty ofresearch in\

thisarea since 1987!

SPARQL 1.1 has
support for RPQs:

“property paths”

\

J

I.F. Cruz, A. O. Mendelzon, and P. T. Wood

A graphical query language supporting recursion
In Proc. ACM SIGMOD, pages 323-330, 1987 IM FOCUS DAS LEBEN 26

Graph databases and graph querying, PetraSelmer

Complex paths in the property graph data model

ﬂmcatenation \

Property graph datamodel: a.b-ais followed by b
Alternation
. . alb-eitheraorb
Properties need to be considered Tran;itive closure
*-0or more
. +-1ormore
Node labels need to be considered {m, n}- atleastm, at mostn
Optionality:

?-0or1

Grouping/nesting
u - allows nesting/defines scope

Specifying a cost for paths (ordering and comparing)

Path patterns (e.g., GXPATH)

L. Libkin, W. Martens, and D. Vrgo¢
Querying Graphs with Data
ACM Journal, pages 1-53, 2016 IM FOCUS DAS LEBEN 27

Graph databases and graph querying, PetraSelmer

Composition of Path Patterns

Sequence / Concatenation: ()-/ aB /-() {Provisional syntax J
Alternation / Disjunction: (V-1 a|B/-()
Transitive closure:

1 or more ()-1 a* /-()

20r more ()-1 a+ [-()

n ormore ()-/ a*n.. /-()

Atleastn, at mostm ()-/ a*n.m [-()
Overriding direction forsub-pattern:

Left to right direction ()-1 a>1-()

Right to left direction ()-1 <al-()

Any direction ()-/ <a>1/-()

IM FOCUS DAiIéBEN

Graph databases and graph querying, PetraSelmer

Path Pattern:example

PATH PATTERN
older_friends = (a)-[:FRIEND]-(b) WHERE b.age > a.age

MAICH p=(me)-/~older_ friends+/-(you)
WHERE me.name = $myName AND you.name = $yourName
RETURN p AS friendship

29

Nested Path Patterns: Example

PATH PATTERN
older friends = (a)-[:FRIEND]-(b) WHERE b.age > a.age

PATH PATTERN
same city = (a)-[:LIVES_IN]->(:City)<-[:LIVES_IN]-(b)

PATH PATTERN
older_friends _in_same_city = (a)-/~older friends/-(b)

WHERE EXISTS { (a)-/~same_ city/-(b) }

2 WUAYT & UNIVERSITAT ZU LUBECK

=~ INSTITUT FUR INFORMATIONSSYSTEME
C§

30

Costfunctionfor cheapest path search

PATH PATTERN road = (a)-[r:ROAD_SEGMENT]-(b) COST r.length

MAICH route = (start)-/~road*/-(end)

WHERE start.location = $currentLocation
AND end.name = $destination

RETURN route

ORDER BY cost(route) ASC LIMIT 3

31

“Cyphermorphism”

Usefulness proven in practice over
multiple industrial verticals: we have not
seen any worst-case examples

Pattern matching today uses edge isomorphism (no repeated relationships)

:Person Person Person
{ name : Jack } FRIEND { name : Anne } "FRIEND Tom}

MAICH(p:Person {name: Jack})-[r1:FRIEND]-()-[r2:FRIEND]-(friend_of_a_friend)
RETURNfriend of a friend.name ASfofName

Fommmmana- + 1 2 Rationale was to avoid potentially
| fofName | r1 and r2 may not be returning infinite results for varlength

REEEEEEEES * bound to the same patterns when matching graphs
| “Tom” | relationship withinthe

containing cycles (this would have been
Fameaa + same pattern J\‘ different if we were just checking for the
existence of apath)

rSI
GERSIZ,

S S

5 “

g U{ © UNIVERSITAT ZU LUBECK 32
);’ i: TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

215 srsn”

Graph projection

-

~
7

/

Sharing elements in the projected graph
Deriving new elements in the projected graph

Shared edges always point to the same (shared) endpoints in the projected graph

U’;"!lvsgf':'?LIJTT‘;UZI;JIII-‘IUF%ERCJATIONSSYSTEME I M FOCUS DAS LEBEN 33

Graph databases and graph querying, PetraSelmer

Projectionisthe inverse of pattern matching

Turns graphs into
matches for the pattern
GRAPH MATCHING
NEW ENTITIES NEW GRAPH

(#1)—>(#2) a: #1, b: #2 (#1)—-[#5]->(#2)
(#1)—>(#3) Byfits e 22 (#1)-[#6]-> (#3)
a: #3, b: #2
(#3)->(#2) a: #3, b: #4 (#3)-[#7]->(#2)
(#3)—>(#4) a: #4, b: #2 (#3)—[#8]->(#4)
(#4)->(#2) (#4)-[#9]->(#2)
ORIGINAL GRAPH SUBGRAPH MATCHES DRIVING TABLE
GRAPH CONSTRUCTION
Turns matches for the
pattern back into graphs

IM FOCUS DAS-J’LiBEN

Graph databases and graph querying, PetraSelmer

Queries are composable procedures

s e e

Use the output of one query as input to another to enable abstraction and views
Applies to queries with tabular output and graph output

Support fornested subqueries

Extract parts of a query to a view for re-use

Replace parts of a query without affecting other parts

Build complex workflows programmatically

U’;"!lvsgf':'?LIJTT‘;UZI;JIII.\JUF%ERCJATIONSSYSTEME I M FOCUS DAS LEBEN 35

Graph databases and graph querying, PetraSelmer

Implications

Pass both multiple graphs and tabular data into a query

Return both multiple graphs and tabular data from a query
Select which graph to query

Construct new graphs from existing graphs

OO0
. _
al 0.g° RETURN .. GRAPHS O% ?(*.O Sl
a2 O/ -0 -0 a3
a2 (5 (5

based on slide by S. Plantikow

IM FOCUS DAS LEBEN 36

Graph databases and graph querying, PetraSelmer

Acknowledgements for slides 38-48

- Slides are taken from the following Presentation

- Emerging Graph Queries in Linked Data
— Arijit Khan, Yinghui Wu, Xifeng Yan
— Department of Computer Science
— University of California, Santa Barbara

« All errors are mine

:::::
3Rs22 % INSTITUT FUR INFORMATIONSSYSTEME

37

Graph Search Queries

Retrieves all graphs from a graph\
@ Containment Query database, such that they contain a

given query graph (exact and
@ Similarity Query approximate).)

@ Matching Query

—

il e

IM FOCUS DAS LEBEN 38

Emerging Graph Queries in Linked Data, Arijit Khan, Yinghui Wu, Xifeng Yan

Graph Search Queries

Retrieves all graphs from a graph\
@ Containment Query database, that are similar to the

query graph (exact and
v Similarity Query Kapproximate)_)

@ Matching Query

G,

IM FOCUS DAS LEBEN 39

Emerging Graph Queries in Linked Data, Arijit Khan, Yinghui Wu, Xifeng Yan

Graph Search Queries

. Find all occurrences of a query
@ Containment Query graph in a large target network
(exact and approximate).
@ Similarity Query J

@ Matching Quer

IM FOCUS DAS LEBEN 40

Emerging Graph Queries in Linked Data, Arijit Khan, Yinghui Wu, Xifeng Yan

Containment Query

@ Subgraph Isomorphism
Problem is NP-hard.

@ Filtering and Verification

@ Filtering Phase:
Feature-based index is used to
filter out the negative results
and generate candidate sets.

@ Verification Phase: G, Q

Precise Subgraph Isomorphism
ing to generate fina re o0 -
Testing to generate final results

from the candidate set. ‘— G, - Q

= G, G,

Edge Based Index Filtering 41

Similarity Query

)

)

9

ERSI
sssssss

Graph Isomorphism is neither
known to be Polynomial or NP-
Complete

Graph Edit Distance NP-hard

Maximumdoemmmuo Agagdrgphph
(MCS) lzaselchppradch.

M&%@@ 1b§|

J ME%@JMH%P@G
9 Effl(.lleﬁ'ﬂ Nﬁcéggh M’Kfoftwo

, la%% sgmkss prprommate)
9 méﬁgim Sic())a gbll%p(MCSln

(¥

uet.al., EDBT

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

{O

N\
o9

AN
O

©«—0 ¢ #»

N
9
°@
|

19

20
N
—@

/

o
S \‘/

&

-

RN N
o—e o 9°

Similarity Query

@ Kernel Based Approach.

@ Measure similarity of two graphs by comparing their substructures.

@ Map two graphs G, and G, via mapping ¢ into feature space H.
a ,), ¢ = length of all walks between every ordered pair of labels.
c/ \t¢ €9y Pr,a)=Pa,n=Pr, 9= 1

(P(c,t) == 2+3 == 5
(p(C,C) - 0 etc.

@ Measure their similarity in H as scalar product <@(G,), ¢(G,)>.

@ Kernel Trick: Compute inner product in H as kernel in input space
k(Gy, G,) = <0(G,), ¢(Gy)> ; e.g., compute walks in the product
graph G, X G,.

- Positive Definite.

43

Similarity Query

@ Complete Graph Kernel: Let k(G;, G,) = <o(G,),9(G,)> be a graph
kernel. If @ is injective, k is called a complete graph kernel.

@ Example: The graph kernel that has one feature Oy for each possible
graph H, each feature ®4(G) measuring how many subgraphs of G
have the same structure as graph H.

@ The above example of Complete Graph Kernel is NP-hard.

Theorem: Computing any complete graph kernel is at
least as hard as deciding whether two graphs are
isomorph IC [Gdrtner et. al, COLT ‘03]

GERST
< 74

44

Graph Kernels

@ Polynomial Time Computable Graph Kernels:

> Random Walk - Kashima et al., ICML ‘03
- Gaertner et al.,, COLT 03
- Mahe et al., ICML '04
- Vishwanathan et al., NIPS 06

» Shortest Path - Borgwardt et. al., ICDM ‘05

» Optimal assignment kernel - Froehlich et al, ICML ‘05
[NOT Positive definite, Vert, ‘08]

» Weighted Decomposition Kernel - Menchetti et al., ICML 05
» Edit-Distance Kernel - Neuhaus et. al., SSPR/SPR ‘06

» Subtree Kernel - Ramon et. al., Mining Graphs, Trees and Sequences ‘04
- Shervashidze et. al., NIPS '09

» Cyclic Pattern Kernel - Horvath et al., KDD 04
»> Neighborhood Kernel - Wang et. al., EDBT 09

5 |||||||||||||||||||

45

Graph Pattern Mining

Given a graph dataset D, find all subgraphs g, s.t.
freq(g) = 6
Where freq(g) is the (relative) number of graphs that contain g.

46

Why Mine Graph Patterns?

@ Direct Use:

@ Mining over-represented sub-structures in chemical
databases.

@ Mining conserved sub-networks.
@ Program control flow analysis.
@ |ndirect Uses:
©@ Index the data graph and query graph using local features.

@ Building block of further analysis, i.e., Classification,
Clustering, Similarity Searches, Indexing

,,,,,
\\\\\

5 R
= S z; TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
s,

47

Why is Graph Mining Hard?

® | Apriori Property

) If a graph is frequent, all of its subgraphs are frequent.

jraph

1oUIT1TVUI 'JI mmoiilt.

Pattern Search Tree

IM FOCUS DAS LEBEN 48

Emerging Graph Queries in Linked Data, Arijit Khan, Yinghui Wu, Xifeng Yan

Summary

Graph database language
— Cypher and others - GQL
Hardness results

Implementation issues

— Containment and matching
- Indexing / filtering (still false positive, no false negatives)

- Verification (eliminate false positives)
— Similarity
- Mapping into feature space
with polynomial graph kernels

« Graph mining

49

