
Non-Standard-Datenbanken
und Data Mining

Learned Index Structures

Prof. Dr. Ralf Möller
Universität zu Lübeck

Institut für Informationssysteme

Acknowledgements

Paper by Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean,
Neoklis Polyzotis

• Presentations taken from 2 talks by
Deniz Altinbuken and John Yang (CS 294, 2019), resp.

• Presentations are possibly adapted or extended

• All faults are mine

2

Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The Case for Learned Index Structures. In Proc. of the 2018 International
Conference on Management of Data (SIGMOD '18). 2018.

Assumption:
• A model can be learned from specific data to

encode the sort order of lookup keys

Goal:
• The model is to be used to effectively

predict the position or existence of records, such that …
• … data records can be found approximately

or with minimal search (in case completeness matters)

Main Idea

3

• Predict the location of a value given a key
- B-tree (range index)

- Model that takes a key as inputand predicts the position of the
first data record in a range such that the specified range of
records is found with minimal search (scan)

- Hashmap

- Model that takes a key as inputand predicts the position of a
single data record (search in case of collisions)

- Bloom filter

- Binary classifier model, which, given a key,
predicts if a key exists in a set or not (but with false positives)

Recap: Index Structures

4

B-Tree

The B-tree provides a mapping from a lookup key into a
position inside the sorted array of records (in case of a so-
called clustered b-tree) or to the first page on disk to access

For efficiency,
index to page

granularity Map a key to a
position with

min and max error

5

Key Idea

B-Trees as a Cumulative Distribution Function

Predicted Position = P(x < key) * # of Keys

If completeness required,
scan starts too early:

more overhead

Need to scan to the left as well as to
the right in order to be complete

(doubly linked list of pages required)

6

• Replace index structures such as B-trees with ML models
providing guarantees about min and max error

• Retain properties of B-trees

- Bounded cost for inserts and lookups

- Taking advantage of caches

- Map keys to pages
that are not necessarily
continuously mapped
to memory or disk

Challenges

CPU Cache

Main Memory

Disk / Main
Memory

7

• Using ML models has the potential to transform
log n B-tree look-up costs into constant costs
(in the best case)

• For instance, networks are able to learn a variety of
multidimensional data distributions, mixtures and other
data peculiarities

- Distributions allow for the estimation of positions

- Error estimations, e.g., by
Markov, Chebyshev, Hoeffding, or Chernoff inequations

• Balance the complexity of a model
with its accuracy and the complexity of acquiring the model

ML-derived models

8

First Approach

Tensorflow implementation of B-Tree-like index

• 200M Web Server Log Records sorted by Timestamp
• 2 layer network, 32-width fully connected, ReLU activation function
• Given the timestamp, predict the position!

Results:

• Tensorflow: 1250 Predictions / Sec ~ 80000 ns Lookup
• B-Trees: 300 ns Lookup,
• 900 ns w/ binary search across entire data set

9

Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The Case for Learned Index Structures. In Proc. of the 2018 International
Conference on Management of Data (SIGMOD '18). 2018.

Daunting?

Improve last-mile accuracy

• Reducing min/max error to 100 from 100M records using
a single model is very hard

• Reducing the error to 10k from 100M is much easier to
achieve even with simple models

• Reducing the error from 10k to 100 is simpler as the model
can focus only on a subset of the data

Use a hierarchical approach where we can have
models focus on smaller subsets of data.

The Recursive Model Index

10

Recursive Model Index (RMI)

Problem: Accuracy of Last Mile Search

Solution: Recursive Regression Model
• Idea: Reduce error across a

hierarchy of models focusing on
subsets of data

Initialization

1.5 Million Records,
~60 Cycles

24K Records,
120 Cycles

11

The Recursive Model Index

Take a layered approach and have models focus on limited layers:

12

Reduce from
100M to 1M

Reduce from
1M to 10k

Reduce from
10k to 100

Hybrid End-to-End Training

With a layered approach we can build mixtures of models!

Reduce from
100M to 1M

Reduce from
1M to 10k

Reduce from
10k to 100

small
ReLU NN

Linear
Regression

Linear
Regression

Linear
Regression

B-tree B-tree B-tree B-tree

13

Hybrid Recursive Model Index

Problem: Specific data at the bottom of RMI may
be harder to learn

Solution: Combine different models at different
layers of RMI

• Networks with ReLU activations at the top
• Simple linear regression in the middle
• Fall back on B-Trees if data is particularly difficult to

learn

14

Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The Case for Learned Index Structures. In Proc. of the 2018 International
Conference on Management of Data (SIGMOD '18). 2018.

To find the record either binary search or scanning is used
Models might generate more information than page location

• Model Binary Search
- Set first middle point to pos predicted by the model.

• Biased Search
- Use standard deviation σ of the last stage model to

set middle.
• Biased Quaternary Search

- Pick three middle points as pos − σ, pos, pos + σ.

Search Strategies

16

• Turn strings into inputs that the network model can use
- Represent string as a vector, where each element is

the decimal ASCII value of a char
- Limit size of vector to N to have equally-sized inputs

• Vector inputs slow the model down significantly

• Further research is needed to speed up this case :)

Indexing strings

17

Inserts and Updates

• Appends
- No need to relearn if the model is able to

learn the key trend for the new items

• Inserts in the middle
- If inserts follow roughly a similar pattern as the learned

CDF, retraining is not needed since the index
“generalizes” over the new items and inserts become an
O(1) operation.

18

Hashmap

Hashmaps use a hash function to deterministically
map keys to random positions inside an array

19

Hashmap

Main challenge is to reduce conflicts

• Use a linked-list to handle the “overflow”
• Use linear or quadratic probing
• Most solutions allocate significantly more memory than

records and combine it with additional data structures

20

• If we could learn a model which uniquely maps every key
into a unique position inside the array, we could avoid
conflicts

• Learned models are capable of reaching higher utilization of
the hashmap depending on the learnt data distribution

• Scale the distribution by the targeted size M of the
hashmap and use h(K) = F(K)∗ M, K is key

• If the model F perfectly learned the distribution, no
conflicts would exist

Hashmap

21

Bloom Filters and Learned Hashmaps

Bloom filters are probabilistic data structures used to test
whether an element is a member of a set.

Bl
oo

m
fil

te
r

in
se

rti
on

Le
ar

ne
d

bl
oo

m

fil
te

ri
ns

er
tio

n

22

Bloom Filter

• A bloom filter index needs to learn a function
that separates keys from everything else
- A good hash function for a bloom filter can have

lots of collisions among keys and lots of collisions
among non-keys, but few collisions of keys and
non-keys

23

As a classification problem: learn a model f that
can predict if an input x is a key or non-key

• Use sigmoid activation function
to find probability value in [0,1]

• The output is the probability that input x is a key in our
database

• Choose a threshold t above which we will assume the key
exists in our database

• Tune threshold t to achieve the desired false positive rate
• To prevent false negatives, use overflow bloom filter

Bloom Filter

24

• 4 datasets to compare the performance of learned
index structures with B-trees
- Compare lookup-time (model execution time + local search time)
- Compare index structure size
- Compare model error and error variance

• These results focus on read performance only,
loading and insertion time are not included
- A model without hidden layers can be trained

on over 200M records in just few seconds

B-tree Results

25

• 200M log entries for requests to a
major university website.

• Index over all unique timestamps.

Web Log Dataset
The model error is the
averaged standard error
over all models on the
last stage, whereas the
error variance indicates
how much this standard
error varies between the
models

Baseline

26

Model is 3× faster and up to an order-of-magnitude smaller.

Web Log Dataset

27

Quarternary search only helps a little bit.

Web Log Dataset

28

The error is high, which influences the search time.

Web Log Dataset

29

Maps Dataset

Index of the longitude of ≈ 200M user-maintained features
across the world. Relatively linear.

30

Maps Dataset

Model is 3× faster and up to an order-of-magnitude smaller.

31

Maps Dataset

Quarternary search does not help.

32

Lognormal Dataset

Synthetic dataset of 190M unique values to test how the index
works on heavy-tail distributions. Highly non-linear, making the
distribution more difficult to learn.

33

Lognormal Dataset

The error is high, which influences the search time.

34

Important Observations

• 3× faster and being up to an order-of-magnitude smaller.
• Quarternary search only helps for some datasets.
• The model accuracy varies widely. Most noticeable for the

synthetic dataset and the weblog data the error is much
higher.

• Second stage size has a significant impact on the index size
and lookup performance.
- This is not surprising as the second stage determines

how many models have to be stored. Worth noting is
that our second stage uses 10,000 or more models.

35

Web Document Dataset

The web-document dataset consists of the 10M non-continuous
document-ids of a large web index used as part of a real product at
a large internet company.

36

Web Document Dataset

Speedups for learned indexes is not as prominent, so hybrid
indexes, which replace bad performing models with B-trees
actually help to improve performance.

37

Web Document Dataset

Because cost of searching is higher, the different search strategies
make a bigger difference. The reason why biased search and
quaternary search performs better is that they can take the standard
error into account.

38

Conclusion

• Well known “static” structures perform surprisingly well
• It is quite difficult to be faster with learning…
• … and hierarchies of index function are pretty complex
• But there is light at the end of the tunnel

42

Learning index structures
is just at the beginning

• Multi-Dimensional Indexes:
- Extend learned indexes

to multi-dimensional index structures.
- Network models, especially ConvNets, are extremely

good at capturing complex high-dimensional
relationships

• Learned Algorithms: A model can alsospeed-up
sorting and joins, not just indexes

• GPU/TPUs: GPU/TPUs will make the idea of learned
indexes even more viable

Future Work

43

