Non-Standard Databases and Data Mining

Introduction to Causal Modeling and Reasoning

Dr. Özgür Özçep

Universität zu Lübeck
Institut für Informationssysteme

Presenter: Prof. Dr. Ralf Möller

Structural Causal Models

Slides prepared by Özgür Özçep

Part I: Basic Notions

(SCMs, d-separation)

Literature

- J. Pearl, M. Glymour, N. P. Jewell: Causal inference in statistics – A primer, Wiley, 2016.
 (Main Reference)
- J. Pearl: Causality, CUP, 2000.
 (The book on causality from the perspective of probabilistic graphical models)
- J. Pearl, D. Mackenzie: The Book of Why, Basic Books, 2018.
 (Popular science level, but worth reading)

Motivation

Usual warning:

"Correlation is not causation"

Bulk of data mining methods is about correlation

 But sometimes (if not very often) one needs causation to understand statistical data

A remarkable correlation? A simple causality!

Simpson's Paradox (Example)

Record recovery rates of 700 patients given access to a drug

	Recovery rate with drug	Recovery rate without drug
Men	81/87 (93%)	234/270 (87%)
Women	192/263 (73%)	55/80 (69%)
Combined	273/350 (78%)	289/350 (83%)

Paradox:

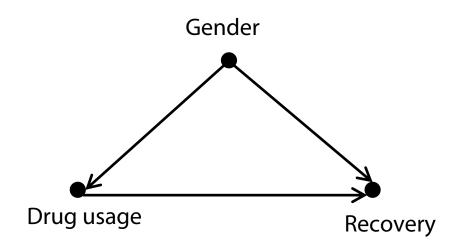
- For men, taking the drug has benefit
- For women, taking the drug has benefit, too.
- But: for all persons taking the drug seems to have no benefit

Resolving the Paradox (Informally)

- We need to understand the causal mechanisms that lead to the data in order to resolve the paradox
- In drug example
 - Why has taking the drug less benefit for women?
 Answer: Estrogen has negative effect on recovery
 - Data: Women more likely to take drug than men
 - So: Choosing randomly any person will rather give a woman – and for these, recovery is less beneficial
- In this case: Need to consider segregated data
 (not aggregated data)

Resolving the Paradox Formally (Look Ahead)

 We need to understand the causal mechanisms that lead to the data in order to resolve the paradox



- Drug usage and recovery have common cause
- Gender is a confounder

Simpson Paradox (Again)

 Record recovery rates of 700 patients given access to a drug w.r.t. blood pressure (BP) segregation

	Recovery rate with drug	Recovery rate without drug
Low BP	234/270 (87%)	81/87 (93%)
High BP	55/80 (69%)	192/263 (73%)
Combined	289/350 (83%)	273/350 (78%)

- BP recorded at end of experiment
- This time segregated data recommends not using drug whereas aggregated does

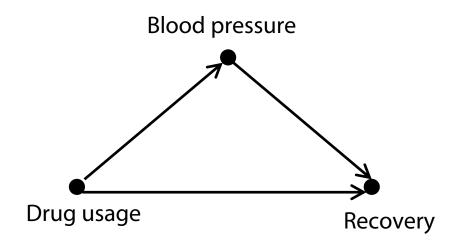
Resolving the Paradox (Informally)

 We need to understand the causal mechanisms that lead to the data in order to resolve the paradox

- In this example
 - Drug effect: lowering blood pressure (but may have toxic effects)
 - Hence: In aggregated population drug usage recommended
 - In segregated data one sees only toxic effects

Resolving the Paradox Formally (Look Ahead)

 We need to understand the causal mechanisms that lead to the data in order to resolve the paradox



Ingredients of a Statistical Theory of Causality

- Working definition of causation
- Method for creating causal models
- Method for linking causal models with features of data
- Method for reasoning over model and data

Working Definition

A (random) variable X is a cause of a (random) variable Y if Y - in any way - relies on X for its value

Structural Causal Model: Definition

Definition

A structural causal model (SCM) consists of

- A set U of exogenous variables
- A set V of endogenous variables
- A set F of functions assigning each variable in V a value based on values of other variables from V ∪ U
- Only endogenous variables V are those that are descendants of other variables
- Exogenous variables U are roots of model.
- Value instantiations of exogenous variables completely determine values of all variables in SCM

Causality in SCMs

Definition

- 1. X is a direct cause of Y iff Y = f(...,X,...) for some f.
- 2. X is a cause of Y iff it is a direct cause of Y or there is Z s.t. X is a direct cause of Z and Z is a cause of Y.

Graphical Causal Model

- Graphical causal model associated with SCM
 - Nodes = variables
 - Edges = from A to B if B = f(...,A,...)

Example SCM

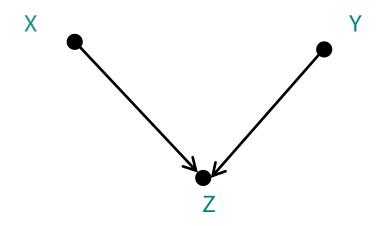
$$- U = \{X,Y\}$$

$$- V = \{Z\}$$

$$- F = \{f_7\}$$

$$- f_7 : Z = 2X + 3Y$$

(Z = salary, X = years of experience,Y = years of profession)



Graphical Models

- Graphical models capture SCMs only partially
- But they are very intuitive and still allow for conserving much of the causal information of an SCM

 Convention: Consider only Directed Acyclic Graphs (DAGs)

SCMs and Probabilities

- Consider SCMs where all variables are random variables (RVs)
- Full specification of functions f not always possible
- Instead: Use conditional probabilities as in BNs
 - $f_X(...Y...)$ becomes P(X | ... Y...)
 - Technically: Non-measurable RVs U model (probabilistic) indeterminism:

$$P(X | Y) = f_X(...Y ..., U)$$

U not mentioned here

SCMs and Probabilities

• Product rule as in BNs used for full specification of joint distribution of all RVs $X_1, ..., X_n$

$$P(X_1 = X_1, ..., X_n = X_n) = \prod_{1 \le i \le n} P(X_i \mid parents(X_i))$$

- Can make same considerations on (probabilistic) (in)dependence of RVs
- Will be done in the following systematically

Bayesian Networks vs. SCMs

- BNs model statistical (in)dependencies
 - Directed, but not necessarily cause-relation
 - Inherently statistical
 - Very often used for RVs with discrete domains
- SCMs model causal relations
 - SCMs with random variables (RVs) induce BNs
 - Assumption: There is hidden causal (deterministic)
 structure behind statistical data
 - More expressive than BNs: Every BN can be modeled by SCMs but not vice versa
 - Default application: continuous variables

Reminder: Conditional Independence

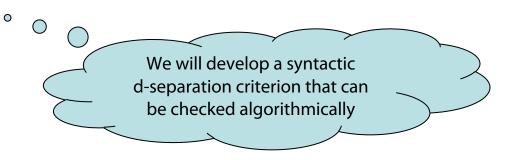
- Event A independent of event B iff $P(A \mid B) = P(A)$
- RV X is independent of RV Y iff
 P(X | Y) = P(X) iff
 for every x-value of X and for every y-value Y event X = x is independent of event Y = y
 Notation: (X | Y)_P or even shorter: (X | Y)
- X is conditionally independent of Y given Z
 iff P(X | Y, Z) = P(X | Z)
 Notation: (X ⊥ Y | Z)_P or even shorter: (X ⊥ Y | Z)

Independence in SCM graphs

- Almost all interesting independences of RVs in an SCM can be identified in its associated graph
- Relevant graph theoretical notion: d-separation

Property

- X is independent of Y (conditioned on Z) iff
- X is d-separated from Y (by Z)
- D-separation in turn rests on 3 basic graph patterns
 - Chains
 - Forks
 - Colliders



Independence in SCM graphs

Property

- X is independent of Y (conditioned on Z) iff
- X is d-separated from Y by Z

There are two conditions here due to "iff":

Markov condition:

```
If X is d-separated from Y (by Z)
```

then X is independent of Y (conditioned on Z)

Faithfulness:

```
If X is independent of Y (conditioned on Z)
```

then X is d-separated from Y (by Z)

Chains

Example (SCM 1)

(X = school funding of high school, Y = its average)satisfaction score, Z = average college acceptance)

$$- V = \{X, Y, Z\}$$

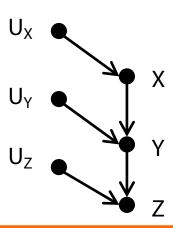
$$- V = \{X,Y,Z\}$$
 $U = \{U_X,U_Y,U_Z\}$ $F = \{f_X,f_Y,f_Z\}$

$$F = \{f_X, f_Y, f_Z\}$$

$$- f_X: X = U_X$$

$$f_{Y}$$
: Y = x/3 + U_{Y}

$$- f_X: X = U_X$$
 $f_Y: Y = x/3 + U_Y$ $f_Z: Z = y/16 + U_Z$



Chains

Example (SCM 2)

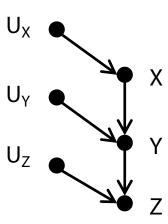
```
(X = switch, Y = circuit, Z = light bulb)
   - V = \{X,Y,Z\} U = \{U_x,U_y,U_7\}
                                  F = \{f_x, f_y, f_z\}
   - f_X: X = U_X
   if (Y=closed & U_7=0) or (Y=open & U_7=1)
   f_{Z}: Z = \begin{cases} on \\ off \end{cases}
                      otherwise
```

Chains

Example (SCM 3)

(X = work hours, Y = training, Z = race time)

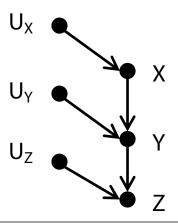
- $V = \{X,Y,Z\} U = \{U_X,U_Y,U_Z\} F = \{f_X,f_Y,f_Z\}$
- $f_X: X = U_X$
- $f_Y: Y = 84 x + U_Y$
- $f_z: Z = 100/y + U_z$



(In)Dependences in Chains

- Z and Y are likely dependent
 (For some z,y: P(Z=z | Y = y) ≠ P(Z = z))
- Y and X are likely dependent
 (...)
- Z and X are likely dependent
- Z and X are independent, conditioned on Y
 (For all x z x; P(Z=z | X=x Y = x)) = P(Z=z | X=x Y = x)

(For all x,z,y:
$$P(Z=z \mid X=x,Y=y) = P(Z=z \mid Y=y)$$
)



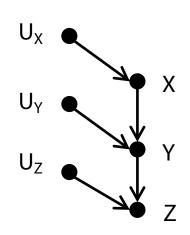
Dependence not Transitive

Example (SCM 4)

$$V = \{X,Y,Z\}$$
 $U = \{U_X,U_Y,U_Z\}$ $F = \{f_X,f_Y,f_Z\}$ $-f_X: X = U_X$

$$- f_{Y}: Y = \begin{cases} a & \text{if } X = 1 \& U_{Y} = 1 \\ b & \text{if } X = 2 \& U_{Y} = 1 \\ c & \text{if } U_{Y} = 2 \end{cases}$$

$$- f_Z: Z = \begin{cases} i & \text{if } Y = c & \text{or } U_Z = 1 \\ j & \text{if } Y \neq c & \& U_Z = 2 \end{cases}$$



- Y depends on X, Z depends on Y but
 - Z does not depend on X

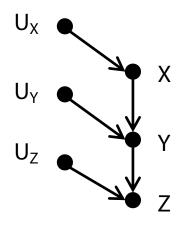
Typo in book of Pearl et al.

Independence Rule in Chains

Rule 1 (Conditional Independence in Chains)

Variables X and Z are independent given set of variables Y iff

there is only one path between X and Z and this path is unidirectional and Y intercepts that path



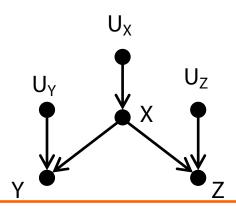
Forks

Example (SCM 5)

(X = Temperature, Y = Ice cream sale, Z = Crime)

- $V = \{X,Y,Z\}$ $U = \{U_X,U_Y,U_Z\}$
- $F = \{f_x, f_y, f_z\}$

- $f_X: X = U_X$
- $f_{Y}: Y = 4x + U_{y}$
- $f_7: Z = x/10 + U_7$



Forks

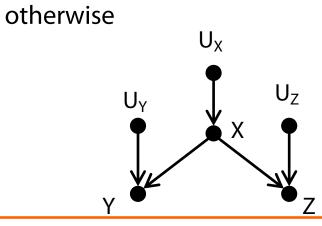
Example (SCM 5)

$$(X = \text{switch, } Y = \text{light bulb 1, } Z = \text{light bulb 2})$$

$$- V = \{X,Y,Z\} \qquad U = \{U_X,U_Y,U_Z\} \qquad F = \{f_X,f_Y,f_Z\}$$

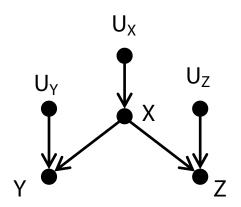
$$- f_X: X = U_X \qquad \text{if } (X = \text{up \& } U_Y = 0) \text{ or } (X = \text{down \& } U_Y = 1)$$

$$- f_Y: Y = \begin{cases} \text{on} & \text{if } (X = \text{up \& } U_Z = 0) \text{ or } (X = \text{down \& } U_Z = 1) \\ \text{off} & \text{otherwise} \end{cases}$$



(In)Dependences in Forks

- X and Z are likely dependent
 (∃x,z: P(X=x | Z = z) ≠ P(X = x))
- X and Y are likely dependent
 ...
- Z and Y are likely dependent
- Y and Z are independent, conditional on X
 (∀x,y,z: P(Y=y | Z=z,X = x) = P(Y = y | X = x))



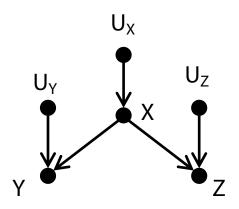
Independence Rule in Forks

Rule 2 (Conditional Independence in Forks)

If variable X is a common cause of variables Y and Z

and there is only one path between Y, Z

then Y and Z are independent conditional on X.



Colliders

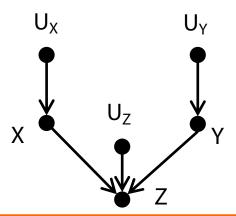
Example (SCM 6)

(X = musical talent, Y = grade point, Z = scholarship) - $V = \{X,Y,Z\}$ $U = \{U_X,U_Y,U_Z\}$ $F = \{f_X,f_Y,f_Z\}$

- $f_X: X = U_X$
- () () () () ()
- $f_Y: Y = U_Y$

$$- f_Z: Z = \begin{cases} yes \\ no \end{cases}$$

if X = yes or Y > 80% otherwise



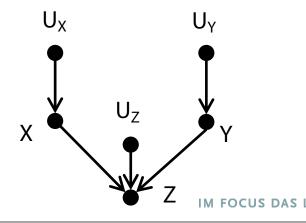
(In)dependence in Colliders

- X and Z are likely dependent
 (∃z,y: P(X=x | Z = z) ≠ P(X = x))
- Y and Z are likely dependent
- X and Y are independent
- X and Y are likely dependent, conditional on Z

$$(\exists x,z,y: P(X=x \mid Y=y,Z=z) \neq P(X=x \mid Z=z))$$

If scholarship received (Z) but low grade (Y), then must be musically talented (X)

X-Y dependence (conditional on Z) is statistical but not causal



(In)dependence in Colliders (Extended)

Example (SCM 7)

(X = coin flip, Y = second coin flip,

Z = bell rings, W = bell witness)

$$- V = \{X, Y, Z, W\}$$

$$- V = \{X,Y,Z,W\}$$
 $U = \{U_X,U_Y,U_{Z_Y},U_{W}\}$

$$F = \{f_X, f_Y, f_W\}$$

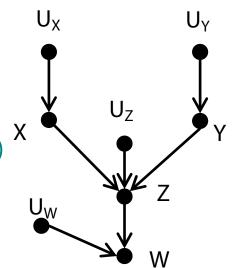
$$- f_X: X = U_X$$

$$- f_Y: Y = U_Y$$

$$- f_{Z:}Z = \begin{cases} yes & if X = head or Y = head \\ no & otherwise \end{cases}$$

-
$$f_W: W = \begin{cases} yes & \text{if } Z= yes \text{ or } (Z=no \text{ and } U_W = \frac{1}{2}) \\ no & \text{otherwise} \end{cases}$$

X and Y are dependent conditional on Z and on W.

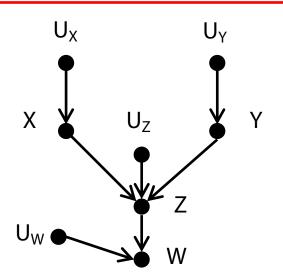


Independence Rule in Colliders

Rule 3 (Conditional Independence in Colliders)

If a variable Z is the collision node between variables X and Y and there is only one path between X, Y,

then X and Y are unconditionally independent, but are dependent conditional on Z and any descendant of Z



D-separation

Recap: Property

X independent of Y (conditional on Z) w.r.t. a probability distribution iff

X d-separated from Y (by Z) in graph

Definition (informal)

X is d-separated from Y by Z iff

Z blocks every possible path between X and Y

- Z (possibly a set of variables) prohibits the ``flow" of statistical effects/dependence between X and Y
 - Must block every path

Pipeline metaphor

Need only one blocking variable for each path

Blocking Conditions

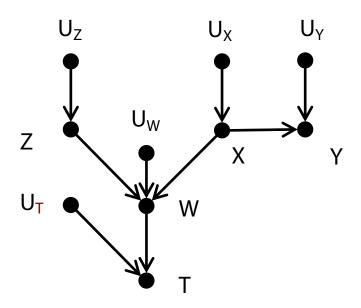
Definition (formal)

A path p in G (between X and Y) is blocked by Z iff

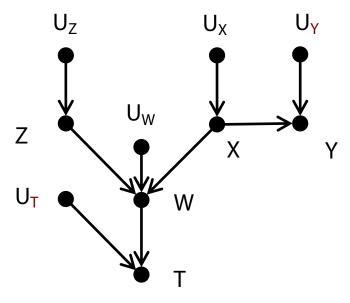
- 1. p contains chain $A \rightarrow B \rightarrow C$ or fork $A \leftarrow B \rightarrow C$ s.t. $B \in Z$ or
- 2. p contains collider $A \rightarrow B \leftarrow C$ s.t. $B \notin Z$ and all descendants of B are $\notin Z$

If Z blocks every path between X and Y, then X and Y are d-separated conditional on Z, for short: $(X \perp\!\!\!\perp Y \mid Z)_G$

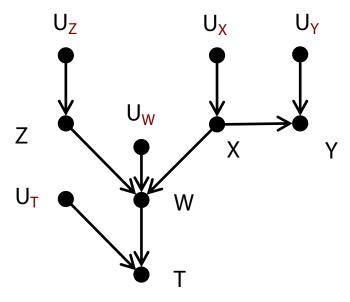
In particular: X and Y are unconditionally independent iff all X-Y paths contain colliders.



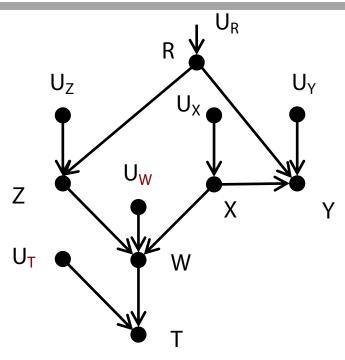
- Unconditional relation between Z and Y?
 - D-separated because of collider on single Z-Y path.
 - Hence unconditionally independent



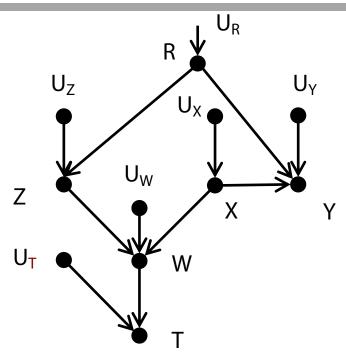
- Relation between Z and Y conditional on {W}?
 - Not d-separated
 - because fork X ∉ {W}
 - and collider ∈ {W}
 - Hence conditionally dependent on {W} (and {T})



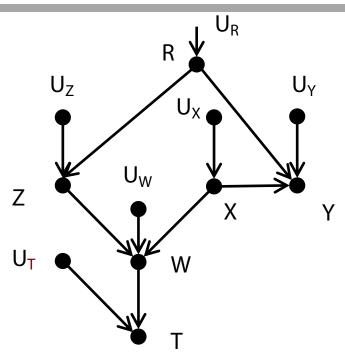
- Relation between Z and Y conditional on {W,X}?
 - d-separated
 - Because fork X blocks
 - Hence conditionally independent on {W,X}



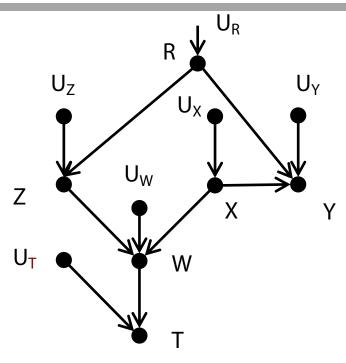
- Relation between Z and Y?
 - Not d-separated because second path not blocked (no collider)
 - Hence not unconditionally independent



- Relation between Z and Y conditional on {R}?
 - d-separated by {R} because
 - First path blocked by fork R
 - Second path blocked by collider W ∉ {R})
 - Hence independent conditional on {R}



- Relation between Z and Y conditional on {R,W}?
 - Not d-separated by {R,W} because W unblocks second path
 - Hence not independent conditional on {R,W}



- Relation between Z and Y conditional on {R,W,X}?
 - d-separated by {R,W,X} because
 - Now second path blocked by fork X
 - Hence independent conditional on {R,W,X}

Using D-separation

- Verifying/falsifying causal models on observational data
 - 1. G = SCM to test for
 - 2. Calculate independencies I_G entailed by G using d-separation
 - Calculate independencies I_D from data (by counting and estimating probabilities) and compare with I_G
 - 4. If $I_G = I_{D_i}$ SCM is a good solution. Otherwise identify problematic $I \in I_G$ and change G locally to fit corresponding $I' \in I_D$

Using D-separation

- This approach is local
 - If I_G not equal I_D, then can manipulate G w.r.t. RVs only involved in incompatibility
 - Usually seen as benefit w.r.t. global approaches via likelihood with scores, say
- Approach is qualitative and constraint-based
- Known algorithms:
 - PC (Peter Spirtes & Clark Glymour)
 - IC (Verma & Pearl)

- One learns graphs that are (observationally) equivalent w.r.t. entailed independence assumptions
- Formalization
 - v(G) = v-structure of G = set of colliders in G of form
 A→B←C where A and C not adjacent
 - sk(G) = skeleton of G = undirected graph resulting from G

Definition

 G_1 is equivalent to G_2 iff $v(G_1) = v(G_2)$ and $sk(G_1) = sk(G_2)$

Theorem

Equivalent graphs entail same set of d-separations

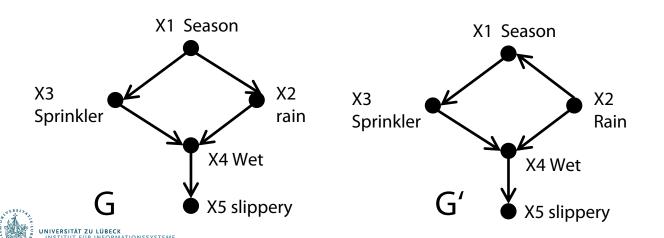
Proof sketch:

- Forks and chains have similar role w.r.t. independence (Hence forgetting about the direction in skeleton does not lead to loss of information)
- Collider has different role (hence need v-structure)

- v(G) = v-structure of G = set of colliders in G of form
 A→B←C where A and C not adjacent
- sk(G) = skeleton of G = undirected graph resulting from

Definition

 G_1 is equivalent to G_2 iff $v(G_1) = v(G_2)$ and $sk(G_1) = sk(G_2)$

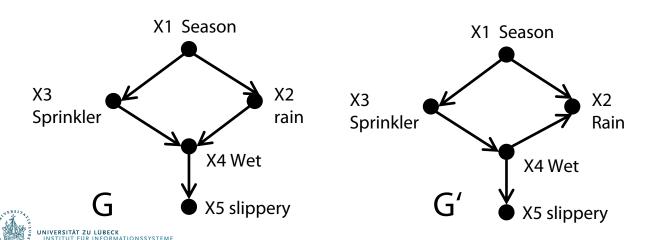


- v(G) = v(G')
- sk(G) = sk(G')
- Hence equivalent

- v(G) = v-structure of G = set of colliders in G of form
 A→B←C where A and C not adjacent
- sk(G) = skeleton of G = undirected graph resulting from

Definition

 G_1 is equivalent to G_2 iff $v(G_1) = v(G_2)$ and $sk(G_1) = sk(G_2)$



- $v(G) \neq v(G')$
- sk(G) = sk(G')
- Hence not equivalent

IC-Algorithm (Verma & Pearl, 1990)

Input

P resp.

P-independencies

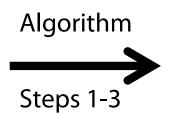
 $(C \perp \!\!\!\perp A \mid B)$

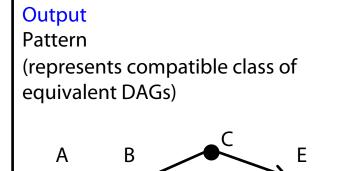
 $(C \perp D \mid B)$

 $(D \perp \!\!\!\perp A \mid B)$

 $(E \perp\!\!\!\perp A \mid B)$

 $(E \perp \!\!\!\perp B \mid C,D)$





Definition

Pattern = partially directed DAG

= DAG with directed and non-directed edges

Directed edge A-> B in pattern: In any of the DAGs the edge is A->B

Undirected edge A-B in pattern: There exists (equivalent) DAGs with A->B in one and

B->A in the other

IC-Algorithm (Informally)

- Find all pairs of variables that are dependent of each other (applying standard statistical methods on the database) and eliminate indirect dependencies
- 2. + 3. Determine directions of dependencies

Note: "Possible" in step 3 means: if you can find two patterns such that in the first the edge A-B becomes A->B but in the other A<-B, then do not orient.

IC-Algorithm (schema)

- 1. Add (undirected) edge A-B iff there is no set of RVs **Z** such that $(A \perp\!\!\!\perp B \mid\!\!\! Z)_{P.}$ Otherwise let Z_{AB} denote some set **Z** with $(A \perp\!\!\!\perp B \mid\!\!\! Z)_{P.}$
- 2. If A–B–C and not A-C, then A \rightarrow B \leftarrow C iff B \notin Z_{AC}
- 3. Orient as many of the undirected edges as possible, under the following constraints:
 - Orientation should not create a new v-structure and
 - Orientation should not create a directed cycle.

Steps 1 and step 3 leave out details of search

- Hierarchical refinement of step 1 gives PC algorithm (next slide)
- A refinement of step 3 possible with 4 rules (thereafter)

PC algorithm (Spirtes & Glymour, 1991)

- Remember Step 1 of IC
 - 1. Add (undirected) edge A-B iff there is no set of RVs **Z** such that $(A \perp\!\!\!\perp B \mid\!\!\! Z)_{P}$. Otherwise let Z_{AB} denote some set **Z** with $(A \perp\!\!\!\perp B \mid\!\!\! Z)_{P}$.
- Have to search all possible sets Z of RVs for given nodes A,B
 - Done systematically by sets of cardinality 0,1,2,3...
 - Remove edges from graph as soon as independence found
 - Polynomial time for graphs of finite degree (because can restricted search for Z to nodes adjacent to A,B)

IC-Algorithm (with rule-specified last step)

- 1. as before
- 2. as before
- 3. Orient undirected edges as follows
 - B C into B→C if there is an arrow A→B s.t. A and C are not adjacent;
 - A B into A \rightarrow B if there is a chain A \rightarrow C \rightarrow B;
 - A B into A→B if there are two chains A—C→B and A—D→B such that C and D are nonadjacent;
 - A B into A→B if there are two chains A—C→D and C→D→B s.t. C and B are nonadjacent;

IC algorithm

Theorem

The 4 rules specified in step 3 of the IC algorithm are necessary (Verma & Pearl, 1992) and sufficient (Meek, 95) for getting a maximally oriented DAG compatible with the input-independencies.

T. Verma and J. Pearl. An algorithm for deciding if a set of observed independencies has a causal explanation. In D. Dubois and M. P. Wellman, editors, UAI '92: Proceedings of the Eighth Annual Conference on Uncertainty in Artificial Intelligence, 1992, pages 323–330. Morgan Kaufmann, 1992.

Stable Distribution

- The IC algorithm accepts stable distributions P (over set of variables) as input, i.e., distribution P s.t. there is DAG G giving exactly the P-independencies
- Extension IC* works also for sampled distributions generated by so-called latent structures
 - A latent structure (LS) additionally specifies a (subset) of observation variables for a causal structure
 - A LS not determined by independencies
 - For IC* please refer to, e.g.,
 J. Pearl: Causality, CUP, 2001, reprint, p. 52-54.

Criticism and further developments

Definition

The problem of ignorance denotes the fact that there are RVs A, B and sets of RVs \mathbf{Z} such that it is not known whether $(A \perp\!\!\perp B \mid\!\!\mathbf{Z})_P$ or not $(A \perp\!\!\perp B \mid\!\!\mathbf{Z})_P$

- Problem of ignorance ubiquitous in science practice
- IC faces the problem of ignorance (Leuridan 2009)
- (Leuridan 2009) approaches this with adaptive logic
 - An adaptive logic supposes that all formulas behave normally unless and until proven otherwise

