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Motivation

. Usual warning:

_Correlation is not causation”

- Bulk of data mining methods is about correlation

- But sometimes (if not very often) one needs causation
to understand statistical data
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A remarkable correlation? A simple causality!
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Simpson’s Paradox

- Record recovery rates of 700 patients given access to a
drug

Recovery rate Recovery rate

with drug without drug
Men 81/87 (93%) 234/270 (87%)
Women 192/263 (73%) 55/80 (69%)
Combined  273/350 (78%) 289/350 (83%)

. Paradox:
— For men, taking the drug has benefit
— For women, taking the drug has benefit, too.
— But: for all persons taking the drug seems to have no benefit
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Resolving the Paradox (Informally)

- We need to understand the causal mechanisms that
lead to the data in order to resolve the paradox

« In
— Why has taking the drug less benefit for women?
Estrogen has negative effect on recovery
Women more likely to take drug than men

Choosing randomly any person will rather give a
woman — and for these, recovery is less beneficial

- Inthis case: Need to consider segregated data
(not aggregated data)




Resolving the Paradox Formally (Look Ahead)

- We need to understand the causal mechanisms that
lead to the data in order to resolve the paradox

Gender

Drug usage Recovery

* Drug usage and recovery have common cause
 Gender is a confounder




Simpson Paradox (Again)

- Record recovery rates of 700 patients given access to a
drug w.r.t. blood pressure (BP) segregation

Recovery rate Recovery rate

with drug without drug
Low BP 234/270 (87%) 81/87 (93%)
High BP 55/80 (69%) 192/263 (73%)
Combined 289/350 (83%) 273/350 (78%)

- BP recorded at end of experiment

- This time segregated data recommends not using drug
whereas aggregated does
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Resolving the Paradox (Informally)

- We need to understand the causal mechanisms that
lead to the data in order to resolve the paradox

« In
lowering blood pressure
(but may have toxic effects)

In aggregated population drug usage
recommended

- In segregated data one sees only toxic effects
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Resolving the Paradox Formally (Look Ahead)

- We need to understand the causal mechanisms that
lead to the data in order to resolve the paradox

Blood pressure

]
Drug usage Recovery
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Ingredients of a Statistical Theory of Causality

Working definition of causation

Method for creating causal models

Method for linking causal models with features of data

Method for reasoning over model and data

aaaa
SRS Y INSTITUT FUR INFORMATIONSSYSTEME

13



Working Definition

A (random) variable X is a cause of a (random) variable Y
if Y -in any way - relies on X for its value

IM FOCUS DAS LEBEN 14




Structural Causal Model: Definition

Definition
A structural causal model (SCM) consists of
— A set U of exogenous variables

— A set V of endogenous variables

— A set F of functions assigning each variable in V a value
based on values of other variables fromV U U

* Only endogenous variables V are those that are descendants of

other variables
* Exogenous variables U are roots of model.

» Value instantiations of exogenous variables completely
determine values of all variables in SCM
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Causality in SCMs

Definition
1. XisadirectcauseofY iff Y=1(...,.X,...) forsomef.

2. XisacauseofY iff itisadirect cause of Y orthereis Z
s.t. X is a direct cause of Zand Z is a cause of Y.
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Graphical Causal Model

. Graphical causal model associated with SCM

— Nodes = variables
— Edges=from AtoBifB="1(....A,...)

- Example SCM . Associated graph
- U={X)Y}
- V={Z} X
- F= {fz}
— f,:Z=2X+3Y

(Z = salary, X = years of experience,
Y = years of profession)
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Graphical Models

« Graphical models capture SCMs only partially

- But they are very intuitive and still allow for conserving
much of the causal information of an SCM

- Convention: Consider only
Directed Acyclic Graphs (DAGs)
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SCMs and Probabilities

« Consider SCMs where all variables are random variables
(RVs)

- Full specification of functions f not always possible

. Instead: Use conditional probabilities as in BNs

~ fy(...Y ...) becomes P(X|...Y...)

— Technically: Non-measurable RVs U model
(probabilistic) indeterminism:

PIX|....Y...)=f(...Y ..., U)
I

U not mentioned here

5 QAP = UNIVERSITAT ZU LUBECK
wRSSe ~  INSTITUT FUR INFORMATIONSSYSTEME
o 8



SCMs and Probabilities

 Product rule as in BNs used for full specification of joint
distribution of all RVs X, ..., X,

P(X: =X1, ..., Xy = X,) =TT <icn P(X; | parents(x;) )

- Can make same considerations on (probabilistic)
(in)dependence of RVs

- Will be done in the following systematically
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Bayesian Networks vs. SCMs

- BNs model statistical (in)dependencies
— Directed, but not necessarily cause-relation
— Inherently statistical
— Very often used for RVs with discrete domains

« SCMs model causal relations
— SCMs with random variables (RVs) induce BNs

— Assumption: There is hidden causal (deterministic)
structure behind statistical data

— More expressive than BNs: Every BN can be modeled by
SCMs but not vice versa

— Default application: continuous variables
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. Event A independent of event B iff P(A | B) = P(A)

Reminder: Conditional Independence

- RV Xisindependentof RVY  iff

P(X|Y)=P(X) iff

for every x-value of X and for every y-value Y
event X = x is independent of event Y =y
Notation: (X ILY), oreven shorter: (X 1LY)

- Xis conditionally independent of Y given Z

iff PX|Y,2)=P(X|2)
Notation: (X LY |Z), orevenshorter: (X LY |Z)

uuuuuuuuuuuuuuuuuuuu
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
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Independence in SCM graphs

« Almost all interesting independences of RVs in an SCM
can be identified in its associated graph

- Relevant graph theoretical notion: d-separation

Property
X is independent of Y (conditioned on 7) iff
X is d-separated from Y (by Z)

- D-separation in turn rests on 3 basic graph patterns
— Chains "0 9

We will develop a syntactic
d-separation criterion that can
be checked algorithmically

— Forks
— Colliders
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Independence in SCM graphs

Property
X is independent of Y (conditioned on Z) iff

X is d-separated from Y by Z

There are two conditions here due to “iff":
« Markov condition:

If X is d-separated from Y (by Z)

then X is independent of Y (conditioned on 7)
. Faithfulness:

If X is independent of Y (conditioned on 7)

then X is d-separated from Y (by 2)
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Chains

Example (SCM 1)
( X = school funding of high school, Y = its average
satisfaction score, Z = average college acceptance)
- V={X)Y,Z} U ={Uy,Uy,U,} F = {fy,f,f;}
- fi: X =Uy fi:Y=x/3+Uy f.Z=y/16 + U,
Ux
o \o X
U, \x Y
.\X )

S A

2 ddh . @
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Chains

Example (SCM 2)

( X =switch, Y = circuit, Z = light bulb)
- V={XY,Z} U = {Uy, Uy, U} F ={f,f.f)
- fi: X =Uy

— closed if X=up&Uy=0)or(X=down & U,=1)
fyY = open  otherwise

fZ:Z:

off otherwise

— { on if (Y=closed & U,=0) or (Y=0pen & U,=1)




Chains

Example (S5CM 3)

( X =work hours, Y = training, Z = race time)
- V={XY,Z} U={UU,U;} F={ff.f}
— fy i X =Uy
- f:Y=84-x+Uy

-~ f;Z=100/y + U, Ux \.
X

Uy \x
U, Y
.\X Z

S

S & universiTaT zu LoBECK
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(In)Dependences in Chains

- ZandY are likely dependent
(Forsomezy:P(Z=z|Y=y)#=P(Z=2))

- Y and X are|likely dependent

(...)
- Zand X are likely dependent

- Z and X are independent, conditioned on Y
(Forall x,zy:P(Z=z | X=x,Y =y)=P(Z=z|Y=Yy))

uuuuuuuuuuuuuuuuuuuu \x
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Dependence not Transitive

Example (SCM 4)
V={X)Y,2} U = {Uy,Uy,Uz} F={fxfv.fz}
— fX: X — UX
T a ifX=1&Uy=1 Ux\.
~f:Y= — b ifX=2&Uy=1 X

_c ifu,=2 UY\X
Y
.7 _ i ifY=c or U,=1
S eTT j ifYzc & Uy,=2 \
* Y dependson X, Zdepends on Y but \

Z dOeS Not depend on X Typo in book of Pearl et al.
s =.."Mariable level” graph hides independence . rocus o o 29




Independence Rule in Chains

Rule 1 (Conditional Independence in Chains)

Variables X and Z are independent given set of variables Y
iff

there is only one path between X and Z and this path is
unidirectional and Y intercepts that path
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Forks

Example (SCM 5)

( X =Temperature, Y = Ice cream sale, Z = Crime)

- V={X)Y,Z}

— fy i X =Uy

- fy:Y=4x+U,
- f,:Z=x/10+ U,

U= {Ux,Uy,U z} F= {lelefZ}

IM FOCUS DAS LEBEN
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Forks

Example (SCM 5)
(X =switch, Y =light bulb 1, Z =light bulb 2)
- V - {X,Y,Z} U - {Ux,Uy,Uz} F - {fx,fy,fz}
— fX: X = UX
— { on if X=up & Uy =0) or (X=down & Uy=1)
fY: Y == .
off otherwise
- fiZ= { on if (X=up & U,=0) or (X=down & U,=1)
off otherwise

IM FOCUS DAS LEBEN
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(In)Dependences in Forks

- Xand Z are likely dependent
(Ix,z:P(X=x|Z=2)#P(X=x))

- XandY are likely dependent

- Z and Y are likely dependent

- Y and Z are independent, conditional on X
(Vx,y,zzP(Y=y | Z=zX=Xx)=P(Y=y | X=X))

& INSTITUT FUR INFORMATIONSSYSTEME
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Independence Rule in Forks

Rule 2 (Conditional Independence in Forks)

If variable X is a common cause of variables Y and Z
and there is only one path between Y, Z

then Y and Z are independent conditional on X.
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Colliders

Example (S5CM 6)
( X =musical talent, Y = grade point, Z = scholarship)

- V={X\Y,Z} U ={Uy,Uy,Uz} F = {fy.fy.f}

— fX: X= UX

— fy: Y = UY

(.7 yes if X=yes orY >80%
- Tzl= no otherwise
Uy Uy
Uz




(In)dependence in Colliders

« Xand Zarelli
(3zy: P(X=x

- Yand Zareli

kely dependent
/=27)#ZP(X=Xx))

Kely dependent

- X and Y are independent

- XandY are likely dependent, conditional on Z

(3Ix,zy: P(X=

X|Y=y,Z=2z)# PX=x|Z=2))

If scholarship received (Z)

but low grade (Y),

then must be musically talented (X)

X-Y dependence (conditional on Z) Uz

is statistical but not causal
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(In)dependence in Colliders (Extended)

Example (SCM 7)

(X =coin flip, Y = second coin flip,
Z = bell rings, W = bell witness)

- V={X)Y,Z W}
- fx: X — UX
- fY: Y — UY

yes

- fZ:Z: = no

—

yes
_no

- fW:W: =

U — {Ux,UY,UZ, UW} F — {lelel fW}

if X=head orY = head
otherwise

X
if Z=yes or (Z=noand U, =)
otherwise

and on W.

Xand Y are dependent conditional on Z

H U & UNIVERSITAT ZU LUBECK
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Independence Rule in Colliders

Rule 3 (Conditional Independence in Colliders)

If  avariable Z is the collision node between
variables X and Y and there is only one path
between X, Y,

then X and Y are unconditionally independent, but are
dependent conditional on Z and any descendant of Z
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D-separation

Recap: Property

X independent of Y (conditional on Z) w.r.t. a probability
distribution iff

X d-separated from Y (by Z) in graph

Definition (informal)
Xis d-separated fromY by Z  iff
Z blocks every possible path between X and Y

- Z (possibly a set of variables) prohibits the " flow" of
statistical effects/dependence between X and Y

— Must block every path Pipeline metaphor

g, -
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Blocking Conditions

Definition (formal)
A path p in G (between X and Y) is blocked by Z iff

1. pcontainschain A— B — Corfork A« B— Cs.t.
Be Zor

2. p contains colliderA— B+« Cs.t.B & Zand all
descendants of B are & Z

If Z blocks every path between X and Y, then Xand Y are
d-separated conditional on Z, for short: (X 1L Y | Z)

2 WUAYT & UNIVERSITAT ZU LUBECK

In particular: X and Y are unconditionally independent
iff all X-Y paths contain colliders.
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Example 1 (d-separation)

« Unconditional relation between Zand Y ?
— D-separated because of collider on single Z-Y path.
— Hence unconditionally independent

2 e &)
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Example 1 (d-separation)

« Relation between Z and Y conditional on {W}?

— Not d-separated
« because fork X & {W}
« and collider € {W}

rSI
qqqqq

Hence conditionally dependent on {W} (and {T})

—
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Example 1 (d-separation)

« Relation between Z and Y conditional on {W, X}?

— d-separated
« Because fork X blocks

— Hence conditionally independent on {W,X}

2 e &)

.| W
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Example 2 (d-separation)

« Relation between Z and Y?

— Not d-separated because second path not blocked
(no collider)

— Hence not unconditionally independent
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Example 2 (d-separation)

Relation between Z and Y conditional on {R}?

— d-separated by {R} because
- First path blocked by fork R
 Second path blocked by collider W & {R})

— Hence independent conditional on {R}

uuuuuuuuu
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Example 2 (d-separation)

Relation between Z and Y conditional on {R,W}?

— Not d-separated by {R,W} because W unblocks second
path

— Hence not independent conditional on {R,W}
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Example 2 (d-separation)

Relation between Z and Y conditional on {R,W,X}?
— d-separated by {R,W,X} because
- Now second path blocked by fork X
— Hence independent conditional on {R,W,X}
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Using D-separation

- Verifying/falsifying causal models on observational data
1.
2.

G = SCM to test for

Calculate independencies I entailed by G using d-
separation

Calculate independencies I, from data
(by counting and estimating probabilities)
and compare with |

If I = I SCMis a good solution. Otherwise identify
problematic | € I and change G locally to fit
corresponding I’ € |,

48



Using D-separation

« This approach is local

— If I not equal |, then can manipulate G w.r.t. RVs only
involved in incompatibility

— Usually seen as benefit w.r.t. global approaches via
likelihood with scores, say

- Approach is qualitative and constraint-based
- Known algorithms:

— PC (Peter Spirtes & Clark Glymour)
- IC (Verma & Pearl)
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Equivalent Graphs

One learns graphs that are (observationally) equivalent
w.r.t. entailed independence assumptions

Formalization

— v(G) = v-structure of G = set of colliders in G of form
A—B<«—C where A and C not adjacent

— sk(G) = skeleton of G = undirected graph resulting from G

Definition
G, is equivalent to G, iff v(G;) = v(G,) and sk(G,) = sk(G,)

50



Equivalent Graphs

Theorem
Equivalent graphs entail same set of d-separations

Proof sketch:

. Forks and chains have similar role w.r.t. independence
(Hence forgetting about the direction in skeleton does
not lead to loss of information)

- Collider has different role (hence need v-structure)
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Equivalent Graphs

« Vv(G) = v-structure of G = set of colliders in G of form
A—B<«—C where A and C not adjacent

- sk(G) = skeleton of G = undirected graph resulting from
G

Definition
G, is equivalent to G, iff v(G,) = v(G,) and sk(G,) = sk(G,)

X1 Season X1 Season
V(G) = v(G')
sk(G) = sk(G)
X3 X2 X3 X2
Sprinkler rain Sprinkler Rain * Hence equivalent
X4 Wet X4 Wet

. /
X5 slippery G X5 slippery

52



Equivalent Graphs

« Vv(G) = v-structure of G = set of colliders in G of form

A—B<«—C where A and C not adjacent

- sk(G) = skeleton of G = undirected graph resulting from

G

Definition

G, is equivalent to G, iff v(G,) = v(G,) and sk(G,) = sk(G,)

X1 Season

X1 Season

X3 X2 X3
Sprinkler rain

X2

Sprinkler Rain

X4 Wet X4 Wet

. /
X5 slippery G X5 slippery

Hence not
equivalent
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IC-Algorithm (Verma & Pearl, 1990)

Input Output
P resp. Pattern
P-independencies . (represents compatible class of
Algonthm equivalent DAGS)
CLA|B) é
CLD|B C
|B) Steps 1-3 A i

ELA|B)

(
(
(DLA|B)
(
(ELB|CD)

Definition
Pattern = partially directed DAG
= DAG with directed and non-directed edges

Directed edge A-> B in pattern: In any of the DAGs the edge is A->B
Undirected edge A-B in pattern: There exists (equivalent) DAGs with A->B in one and
B ->Ain the other

Verma, T. & Pearl, J: Equivalence and synthesis of causal models.
Proceedings of the 6. conference on Uncertainty in Al, 220-227, 1990. 54




IC-Algorithm (Informally)
1. Find all pairs of variables that are dependent of each
other (applying standard statistical methods on the

database) and eliminate indirect dependencies

2.+ 3. Determine directions of dependencies
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Note: ,Possible” in step 3 means: if you can find two patterns such that in the first
the edge A-B becomes A->B but in the other A<-B, then do not orient.

IC-Algorithm (schema)

1. Add (undirected) edge A-B iff there is no set of RVs Z
such that (ALLB|Z), Otherwise let Z,; denote some set Z
with (ALB|Z),

2. If A-B—C and not A-C, then A—B«C iff
B & Z)c

3. Orient as many of the undirected edges as possible,
under the following constraints:
«  Orientation should not create a new v-structure and

«  Orientation should not create a directed cycle.

Steps 1 and step 3 leave out details of search
* Hierarchical refinement of step 1 gives PC algorithm (next slide)
=41+ Arefinement of step 3 possible with 4 rules (thereafter)
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PC algorithm (Spirtes & Glymour, 1991)

« Remember Step 1 of IC

1. Add (undirected) edge A-B iff there is no set of RVs Z
such that (ALLB|Z), Otherwise let Z,; denote some set Z
with (ALLB|Z)p

- Have to search all possible sets Z of RVs for given nodes
A,B
— Done systematically by sets of cardinality 0,1,2,3...

— Remove edges from graph as soon as independence
found

— Polynomial time for graphs of finite degree (because can
restricted search for Z to nodes adjacent to A,B)

P.Spirtes, C. Glymour: An algorithm for fast recovery of sparse

JREA 5 unleRsaT sy L0secK  nssvsTewe causal graphs. Social Science Computer Review 9: 62-72, 1991.
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IC-Algorithm (with rule-specified last step)
1. as before
2. as before

3. Orient undirected edges as follows

« B— C into B—C if thereis an arrow A—B s.t. A and C are
not adjacent;

« A—B into A—B if thereis a chain A~C—B;

- A— B into A—B if there are two chains A—C—B and
A—D—DB such that C and D are nonadjacent;

- A— B into A—B if there are two chains A—C—D and
C—D—Bs.t. Cand B are nonadjacent;

58



IC algorithm

Theorem

The 4 rules specified in step 3 of the IC algorithm are necessary
(Verma & Pearl, 1992) and sufficient (Meek, 95) for getting a

maximally oriented DAG compatible with the input-
independencies.

T.Verma and J. Pearl. An algorithm for deciding if a set of observed
independencies has a causal explanation. In D. Dubois and M. P. Wellman,
editors, UAI '92: Proceedings of the Eighth Annual Conference on Uncertainty
in Artificial Intelligence, 1992, pages 323-330. Morgan Kaufmann, 1992.

Christopher Meek: Causal inference and causal explanation
with background knowledge. UAI 1995: 403-410, 1995.
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Stable Distribution

- ThelCalgorithm accepts stable distributions P (over set
of variables) as input, i.e., distribution P s.t. there is DAG
G giving exactly the P-independencies

- Extension IC* works also for sampled distributions
generated by so-called latent structures

— A latent structure (LS) additionally specifies a (subset) of
observation variables for a causal structure

— A LS not determined by independencies

— For IC* please refer to, e.g.,
J. Pearl: Causality, CUP, 2001, reprint, p. 52-54.
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Criticism and further developments

Definition
The problem of ignorance denotes the fact that there are RVs
A, B and sets of RVs Z such that it is not known whether

(ALLB|Z)p or not (ALB|Z)p

- Problem of ignorance ubiquitous in science practice
. ICfaces the problem of ignorance (Leuridan 2009)

 (Leuridan 2009) approaches this with adaptive logic

— An adaptive logic supposes that all formulas behave
normally unless and until proven otherwise

B. Leuridan. Causal discovery and the problem of ignorance:
an adaptive logic approach. Journal of Applied Logic,
‘ 7(2):188-205, 2009. 61
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