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Literature
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Causal inference in statistics – A primer, Wiley, 2016. 

(Main Reference)
• J. Pearl: Causality, CUP, 2000. 
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Intervention

• Important aim of SCMs for given data:  Where to 
intervene in order to achieve desired effects.

• How to model “intervention” and associated effects 
within SCMs and their graphs?
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Examples
• Data on wildfires: How to intervene in order to 

decrease wildfires? 

• Data on TV and aggression: How to intervene in order 
to lower aggression of children?



Randomized Controlled Experiment

• Randomized controlled experiment gold standard
– Aim: Answer question whether a change in RV X 

has indeed an effect on some target RV Y

– If outcome of experiment is yes, 
X is a RV to intervene upon

– Test condition: all variables different from X are static 
(fixed) or vary fully randomly.

• Problem: Cannot always set up such an experiment
– Example: cannot control weather in order to test 

variables influencing wildfire

• Instead: use observational data & causal model
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Intervention

Example (SCM 5; Intervention)
( X = Temperature, Y = Ice cream sale, Z = Crime)

• Would intervention on ice cream sales (Y) lead to 
decrease of crime (Z)?  

• What does it mean to intervene on Y?
– Fix value of Y in the sense of 

inhibiting the natural influences on Y  
according to SCM  (here of UY and X)

– Leads to change of the SCM
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UX

UZUY

X

ZY = y



Intervention vs. Conditioning

• Intervention denoted by do(Y = y)

P(Z = z | do(Y = y)) = 
probability of event Z = z on intervening 
upon Y by setting Y = y  

Intervention changes the data generation mechanism

• In contrast

P(Z = z | Y = y) = 

probability of event Z = z when knowing that Y = y
Conditioning only filters on the data 

7



Average Causal Effect (ACE)

• Would an intervention on ice cream sales (Y) 
by increasing Y lead to a decrease of crime (Z)? 

• Causal Effect Difference/Average Causal Effect (ACE) 
P(Z = low| do(Y = high)) – P(Z = low| do(Y = low))

• Here ACE(Y = low->high) = 0 
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Z
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General Causal Effect

• How effective is drug usage for recovery?
ACE =  P(Y = 1 | do(X = 1)) – P(Y = 1 | do(X = 0))

• Need to compute general causal effect 
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Definition 
The general causal effect (GCE) of X on Y is given by 

P(Y = y | do(X = x))  =  Pm(Y = y | X = x)
= probability in modified graph



General Causal Effect

Example (drug-recovery effect)
• How effective is drug usage for recovery?

ACE =  P(Y = 1 | do(X = 1)) – P(Y = 1 | do(X = 0))
• P(Y = y | do(X = x)) 
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Z = Gender

X = Drug usage Y = Recovery

UZ

UX

UY

= Pm(Y = y | X = x)

X = x



Intervention (alternatively)

• There are different ways to define intervention 
(other than by manipulated graph)

• Model intervention do(X=x) with force variable F
– F is parent of X, 
– Dom(F) = {do(X=x‘) | x in dom(X)} ⋃ {idle}
– pa‘(X) = pa(X) ⋃ {F}
– New ``CPT‘‘ for X

P(X=x | pa(X))     if F = idle
0 if F = do(X=x‘) and x ≠x‘
1   if F = do(X=x‘) and x = x‘
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P(X =x | pa‘(X)) = 



Example (drug-recovery effect) 
– Pm(Y = y | X = x) = ? 
– Need to reduce to probabilities w.r.t. original graph
1. Pm(Z = z) = P(Z = z) 
2. Pm(Y = y | Z = z, X = x) = P(Y = y | Z = z, X = x)
3. Summing out 
P(Y = y | do(X = x)) = Pm(Y = y | X = x) 
= ∑z Pm(Y = y | X = x, Z = z) Pm(Z = z |X = x) 
= ∑z Pm(Y = y | X = x, Z = z) Pm(Z = z)
=∑z P(Y = y | X = x, Z = z) P(Z = z) 
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Z = Gender

X = Drug usage Y = Recovery

UZ

UY

X = x

Z value not effected by 
intervention on x:  fZ: Z = f(UZ) 

Y value not effected by intervention 
on x, fY: Y = f(x,z,uy) 



Digression
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• Conditioning
– P(Y) = Σz ∈ ZP(Y,z) = Σz ∈ ZP(Y|z)P(z)
– P(Y|X) = P(Y,X) / P(X) 

= Σz ∈ ZP(Y,X,z) / P(X) 
= Σz ∈ ZP(Y|X,z) P(X,z) / P(X)
= Σz ∈ ZP(Y|X,z) P(z,X) / P(X)
= Σz ∈ ZP(Y|X,z) P(z|X) P(X) / P(X) 
= Σz ∈ ZP(Y|X,z) P(z|X)

Bayes rule is 
your friend



Adjustment
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Definition
The adjustment formula (for single parent Z of X) for the 
calculation of the GCE is given by  
P(Y = y | do(X = x))  = ∑z P(Y = y | X = x, Z=z) P(Z = z)

Wording:  „Adjusting for Z“ or „controlling Z“



Simpson’s Paradox

• How effective is drug usage for recovery?
ACE = P(Y = 1 | do(X = 1)) – P(Y = 1 | do(X = 0))

• P(Y = y | do(X = x)) 
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Z = Gender

X = Drug usage Y = Recovery

UZ

UX

UY

= Pm(Y = y | X = x)

X = x



Recap: Simpson’s Paradox

• Record recovery rates of 700 patients given access to a 
drug
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• Paradox: 
– For men, taking the drug has benefit
– For women, taking the drug has benefit, too.
– But: for all persons taking the drug seems to have no benefit

Recovery rate 
with drug

Recovery rate
without drug

Men 81/87 (93%) 234/270 (87%)

Women 192/263 (73%) 55/80 (69%)

Combined 273/350 (78%) 289/350 (83%)



Resolving the Paradox (Formally)

• We have to understand the causal mechanisms that 
lead to the data in order to resolve the paradox

• Formally: What is the general causal effect of drug 
usage X on recovery Y? 
– P(Y = y | do(X = x)) = ?
– ACE=  P(Y =1 | do(X =1)) – P(Y=1 |do(X=0)) = ?
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Z = Gender

X = Drug usage Y = Recovery

UZ

UX

UY



Resolving the Paradox (Formally)

• P(Y =1 | do(X =1)) =
• = P(Y=1 | X=1, Z=1)P(Z=1) + P(Y=1 | X=1, Z=0)P(Z=0)

= 0.93(87 +270)/700 + 0.73(263 + 80)/700 = 0.832
• P(Y =1 | do(X =0)) = 0.7818
• ACE = 0.832 – 0.7818 = 0.0502 > 0
• One has to segregate the data w.r.t. Z  (adjust for Z) 
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Z = Gender

X = Drug usage Y = Recovery

UZ

UX

UY

Recovery rate 
with drug

Recovery rate
without drug

Men 81/87 (93%) 234/270 (87%)

Women 192/263 (73%) 55/80 (69%)

Combined 273/350 (78%) 289/350 (83%)

(using adjustment formula)



Simpson Paradox (Again)

• Record recovery rates of 700 patients given access to a 
drug w.r.t. blood pressure (BP) segregation
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• BP recorded at end of experiment
• This time segregated data recommends not using drug 

whereas aggregated does

Recovery rate 
with drug

Recovery rate
without drug

Low BP 234/270 (87%) 81/87 (93%)

High BP 55/80 (69%) 192/263 (73%)

Combined 289/350 (83%) 273/350 (78%)



Resolving the Paradox (Formally)

• We have to understand the causal mechanisms that 
lead to the data in order to resolve the paradox

• Formally: What is the general causal effect of drug 
usage X on recovery Y? 
– P(Y = y | do(X = x)) = ?
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Z = Blood pressure

X = Drug usage Y = Recovery

UZ

UX

UY

X=x

= Pm(Y = y | X = x) = P(Y = y | X = x) 

So: Do not  adjust for/segregate w.r.t. any variable



Causal Effect for Multiple Adjusted Variables
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Rule (Calculation of causal effect)
P(Y = y | do(X = x))  = 

∑z P( Y = y | X = x, Pa(X) =z ) P( Pa(X) = z ) 

• Pa(X) =  parents of X
• z = instantiation of all parent variables of X

Rule (Calculation of causal effect (alternative))
P(Y = y | do(X = x))  = 

∑z P( Y = y ,  X = x, Pa(X) = z ) / P( X = x | Pa(X) = z ) 



Truncated Product Formula

• Handling of multiple interventions straightforward
• Joint prob. distribution on all other variables X1, …, Xn

after intervention on Y1,…,Ym
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X

Z2

Definition (Truncated product formula (g-formula))
P(x1, …, xn | do(Y1=y1, …, Ym=ym)) =∏1≤j≤n P( xi | pa(Xi) ) 

pa(Xi) = sub-vector of (x1, ..xn, y1, ...ym) constrained to parents of Xi

Z1 Z3

W
Y

Example 1 
P(z1,z2,w,y | do(X=x, Z3=z3 )) 
= P(z1)P(z2)P(w|x)P(y|w,z3,z2)

That is, all variables are partitioned in Xis and Yjs



Truncated Product Formula
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X

Z2

Definition (Truncated product formula (g-formula))
P(x1, …, xn | do(Y1=y1, …, Ym=ym)) =∏1≤j≤n P( xi | pa(Xi) ) 

Z1 Z3

W
Y

Example 2 (summing out) 
P(w,y | do(X=x, Z3=z3)) 
= ∑z1,z2P(z1)P(z2)P(w|x)P(y|w,z3,z2)

Can check that this formula is compatible 
with the adjustment formula



Backdoor Criterion (Motivation)

• Intervention on X requires adjusting parents of X
• But sometimes those variables are not measurable 

(though perhaps represented in graph)

• Need more general criterion 
to identify adjustment variables
1. Block all spurious paths between X and Y
2. Leave all directed paths from X to Y unperturbed
3. Do not create new spurious paths
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Backdoor Criterion (Formulation)
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Definition 
Set of variables Z satisfies backdoor criterion relative to a 
pair (X,Y) of variables iff
1. No node in Z is a descendant of X and
2. Z blocks every path between X and Y that contains an 

arrow into X

• Can adjust for Z satisfying backdoor criterion
P(Y = y | do(X = x)) = ∑z P(Y = y | X = x, Z = z)P(Z=z)



Backdoor Criterion (Intuition)
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• Ad 1.: Descendants are effects of X, should not be 
conditioned on 

• Ad 2.: One is interested in effects of X on Y, not vice versa. 
Effects of Y on X should be blocked.  

Definition 
Set of variables Z satisfies backdoor criterion relative to pair 
(X,Y) of variables iff
1. No node in Z is a descendant of X and
2. Z blocks every path between X and Y that contains an 

arrow into X

(compare drug usage X and blood pressure Z)



Backdoor Criterion Generalizes Adjustment
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• Z = Pa(X)
• For any W in Z both conditions fulfilled 

– W is not a descendant (as DAG)
– Z blocks every path as every path into X must go trough a 

parent of X

Definition 
Set of variables Z satisfies backdoor criterion relative to pair 
(X,Y) of variables iff
1. No node in Z is a descendant of X and
2. Z blocks every path between X and Y that contains an 

arrow into X



Backdoor Criterion (Example 1)
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• Causal effect of X on Y?
• S is not recorded in the data
• {W} for Z fulfills backdoor criterion 

– W not descendant of X
– Blocks backdoor path

S= socioeconomic
status

Y= recoveryX = drug
usage

W = weight

Definition 
Set of variables Z satisfies backdoor criterion relative to pair 
(X,Y) of variables iff
1. No node in Z is a descendant of X and
2. Z blocks every path between X and Y that contains an 

arrow into X



Backdoor Criterion (Example 1 (cont’d))
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• Causal effect of X on Y?
P(y | do(x)) = ∑wP(Y=y|X=x, W=w)P(W=w)

S= socioeconomic
status

Y= recoveryX = drug 
usage

W = weight

= ∑sP(Y=y|X=x, S=s)P(S=s)

Conditioning on different variables S vs. W
with same effect calculation 

Definition 
Set of variables Z satisfies backdoor criterion relative to pair 
(X,Y) of variables iff 
1. No node in Z is a descendant of X and
2. Z blocks every path between X and Y that contains an 

arrow into X



Backdoor Criterion (Example 2a)
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• Causal effect of X on Y?
• No backdoor paths

– Can use Z = {}
– P(y | do(x)) = P(y | x)

UW

UX

UZ

W
X

Z

UT
Y

UY

T

R UR

Definition 
Set of variables Z satisfies backdoor criterion relative to pair 
(X,Y) of variables iff
1. No node in Z is a descendant of X and
2. Z blocks every path between X and Y that contains an 

arrow into X



Backdoor Criterion (Example 2b)
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• Causal effect of X on Y?
• No backdoor paths
• Can one adjust for W?

– No, then collider W not blocking 
spurious path 

UW

UX

UZ

W
X

Z

UT
Y

UY

T

R
UR

Definition 
Set of variables Z satisfies backdoor criterion relative to pair 
(X,Y) of variables iff
1. No node in Z is a descendant of X and
2. Z blocks every path between X and Y that contains an 

arrow into X



Backdoor Criterion (Example 2c)
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• From 2b we know: effect of X on Y
not via conditioning on W.

• But how  to calculate 
w-specific causal effect: 
P(Y = y | do(X =x), W = w ) = ?

UW

UX

UZ

W
X

Z

UT
Y

UY

T

R
UR

Definition 
Set of variables Z satisfies backdoor criterion relative to pair 
(X,Y) of variables iff
1. No node in Z is a descendant of X and
2. Z blocks every path between X and Y that contains an 

arrow into X



Backdoor Criterion (Example 2c (cont’d))
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• W-specific causal effect P(Y = y | do(X =x), W = w ) = ?
• Use fork R to condition on

P(Y = y | do(X = x), W = w ) = 
∑rP(Y=y|X=x,W=w,R=r)P(R=r|X=x,W=w)

• Degree to which causal effect of X on Y is modified by 
values of W is called
effect modification or moderation

UW

UX

UZ

W
X

Z

UT
Y

UY

T

R
UR



Backdoor Criterion (Example 3)
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• What is effect modification for X on Y by W in drug 
example?

• Compare P(Y = y | do(X = x), W = w) and 
P(Y = y | do(X = x), W = w’)

• Here: As W blocks backdoor
– P(Y = y | do(X = x), W = w) = P(Y = y | X = x, W = w) 
– P(Y = y | do(X = x), W = w’) = P(Y = y | X = x, W = w’) 

S= socioeconomic
status

Y= recoveryX = drug 
usage

W = weight



Backdoor Criterion (Example 4)

• Sometimes also need to condition on colliders
• There are four backdoor paths from X to Y

1. X← E→ R→ Y
2. X← E→ R← A→ Y
3. X← R→ Y
4. X← R← A→ Y

• R needed to block 3. path
• But R collider on 2. path, hence need further blocking 

variable
• Can use as blocking set Z

{E,R}, {R,A} or {E,R,A}
X

AE R

Y
35



Front-door Criterion (Motivating Example)

Example
• Sometimes backdoor criterion not applicable

– P(y | do(x)) = ?
– Genotype U not observed in data
– Hence conditioning on U does not help

X =
Smoking

U = Genotype

Y = 
Lung cancer

36



Front-door Criterion (Motivating Example)

Example
• Sometimes backdoor criterion not applicable

– P(y | do(x)) = ?
– Genotype U not observed in data
– Hence conditioning on U does not help
– But sometimes a mediating variable helps

X =
Smoking

U = Genotype

Y = 
Lung cancer

37

Z = Tar deposit



Front-door Criterion (Motivating Example)

Tar (400) No tar (400) All subjects (800)

Smokers
(380)

Nonsmokers 
(20)

Smokers
(20)

Nonsmokers 
(380)

Smokers
(400)

Nonsmokers (400)

No 
cancer

323
(85%)

1 
(5%)

18
(90%)

38
(10%)

341
(85%)

39
(9.75%)

Cancer 57
(15%)

19
(95%)

2
(10%)

342
(90%)

59
(15%)

361
(92.25%)
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Tobacco industry argues: 
• 15% of smoker w/ cancer < 92.25% nonsmoker w/ cancer
• Tar: 15% smoker w/ cancer < 95% nonsmoker w/ cancer   
• Non tar: 10% smoker w/ cancer < 90% nonsmoker w/ cancer



Front-door Criterion (Motivating Example)

Smokers (400) Nonsmokers (400) All subjects (800)

Tar
(380)

No tar 
(20)

Tar
(20)

No tar
(380)

Tar 
(400)

No tar
(400)

No 
cancer

323
(85%)

18 
(90%)

1
(5%)

38
(10%)

324
(81%)

56
(19%)

Cancer 57
(15%)

2
(10%)

19
(95%)

342
(90%)

76
(9%)

344
(81%)

39

Antismoking lobby argues: 
• Choosing to smoke increases chances of tar deposit (95% = 380/400)
• Effect of tar deposit: look separately at smokers vs. Non-smokers

• Smokers: 10 % cancer                   15 % cancer

• Nonsmokers: 90 % cancer             95 % cancer 

+tar

+tar

Who is right? 



Front-door Criterion (Intuition)

• Separate effect of  X on Y:
Effect of X on Y =   effect of X on Z + effect of Z on Y

X =
Smoking

U = Genotype

Y = 
Lung cancerZ = Tar deposit 40



Front-door Criterion (Intuition)

• Effect of X on Z: 
P(Z = z | do(X = x)) = P(Z= z | X = x)

• Effect of Z on Y: 
P(Y = y | do(Z = z )) = ∑x P(Y = y | Z = z, X = x)P(X=x)

• Effect of X on Y:
P(Y = y | do(X=x)) 
= ∑zP(Y=y|do(Z=z))P(Z=z|do(X=x))

= ∑z∑x’P(Y=y|Z=z,X=x’)P(X=x’)P(Z=z|X=x’)

X =
Smoking

U = Genotype

Y = 
Lung cancerZ = Tar deposit 41

(No unblocked 
X-Z backdoor path)

(X blocks Z-Y-backdoorpath)

(Chaining and summing out)

Note: 
Argument in last step rather 
intuitive. See next slide for 
formal derivation



More detailed derivation 

P(y|do(X=x)) 
= ∑uP(Y=y|x,u)P(u)    (adjustment  on U)
= ∑u∑zP(Y=y|z,x,u)P(z|x,u)P(u) (conditioning on Z)
= ∑u∑zP(Y=y|z,x,u)P(z|x)P(u)                                                  (Z independent of U

given X by (d-separation)) 
= ∑zP(z|x)∑uP(Y=y|z,x,u) P(u) (factoring out)
= ∑zP(z|x)∑uP(Y=y|z,u) P(u) (Y independent of X given Z,U) 
= ∑zP(z|x)P(Y|do(z)) (definition of do())
= ∑zP(z|x) ∑x’P(Y|x’,z) P(x’)   (adjustment via X)
= ∑z∑x’P(z|x) P(Y|x’,z) P(x’)    

X =
Smoking

U = Genotype

Y = 
Lung cancerZ = Tar deposit 42



Front-door Criterion (Formulation & Theorem)
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Definition 
Set of variables Z satisfies front-door criterion w.r.t. pair of 
variables (X,Y) iff
1. Z intercepts all directed paths from X to Y
2. Every backdoor path from X to Z is blocked (by collider)
3. All Z-Y backdoor paths are blocked by X

Theorem (Front-door adjustment)
If          Z fulfills front-door criterion w.r.t. (X,Y) and P(x,z) > 0
then   P(y|do(x)) = ∑z P(z|x) ∑x’P(y|z, x’)P(x’)



Conditional Interventions (Example)

Example (conditioned drug administering)
– Administer drug (X = 1) if fever Z > z
– Formally:

P( Y = y | do(X = g(Z)) 
where   g(Z) = 1 if  Z > z and g(Z) = 0 otherwise

• Can be reduced to calculating z-specific effect
P(Y = y | do(X = x), Z = z)

44



Conditional Interventions (Rule)
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Rule (z-specific effect)
If          there is set S of variables s.t. S ∪ Z satisfies

backdoor criterion 
then   the z-specific effect is given by 

P(y | do(x), z) = ∑s P(y | x,s,z) P(s | z)

Reduction of conditional intervention to z-specific effect: 

P(Y = y | do(X = g(Z))) =  
= ∑z P(Y= y | do(X = g(Z), Z=z) P(Z=z | do(X = g(Z)))        

(conditioning on Z)
= ∑z P(Y= y | do(X = g(Z), Z=z) P(Z=z)                          (Z before  X)
= ∑z P(Y= y | do(X = x), z)|x=g(z) P(Z=z)



Intervention Calculation in Practice?
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(GCE) calculation by intervention useful as 
long as (domains of) conditioned variable set 
Z and values small  (i.e., few summations)



Inverse Probability Weighting

• Inverse probability weighting gives estimation of GCE 
on small sample size << |z|

• Estimation with propensity score P(X=x|Z=z)
– Propensity score can be estimated similarly 

as in linear regression
– Weight small sample set with propensity 
– Estimation of P(y|do(x))

by counting all events for y for each stratum X = x
(No summation over all instances of Z required)
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Inverse Probability Weighting

• Filtering-Case P(Y=y,Z=z|X=x):  Evidence leads to re-
normalization of full joint probability
– P(Y=y,Z=z|X=x) = P(Y=y, Z=z, X=x)/P(X=x)
– Have to weight (Y,Z,X) samples by 1/P(X=x)

• Intervention-Case P(y|do(x)): Weighting by propensity
– P(y |do(x)) 

= ∑z P(Y= y | X=x, Z=z) P(Z=z) 
= ∑z P(Y= y | X=x, Z=z) P(Z=z) P(X=x|Z=z) / P(X=x|Z=z)
= ∑z P(X=x,Y=y, Z=z) / P(X=x|Z=z)

48

Weighting joint distribution by inverse propensity



Inverse Probability Weighting (Example)
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Recovery rate 
with drug

Recovery rate
without drug

Men 81/87 (93%) 234/270 (87%)

Women 192/263 (73%) 55/80 (69%)

Combined 273/350 (78%) 289/350 (83%)

Z = Gender

X= Drug usage Y= Recovery

• Rewrite table to get 
% of population for each
(X,Y,Z) instance

• Example:
%(yes, yes, male) = 81/700 = 0.116



Sample percentages

X Y Z % of population

yes yes male 0.116

yes yes female 0.274

yes no male 0.01

yes no female 0.101

no yes male 0.334

no yes female 0.079

no no male 0.051

no no female 0.036
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Recovery rate 
with drug

Recovery rate
without drug

Men 81/87 (93%) 234/270 (87%)

Women 192/263 (73%) 55/80 (69%)

Combined 273/350 (78%) 289/350 (83%)



Weighting when Filtering for X=yes

X Y Z % of population

yes yes male 0.116

yes yes female 0.274

yes no male 0.01

yes no female 0.101

no yes male 0.334

no yes female 0.079

no no male 0.051

no no female 0.036
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X Y Z % of population

yes yes male 0.232

yes yes female 0.547

yes no male 0.02

yes no female 0.202

Consider X = yes & weight (X,Y,Z) with 1/P(X=yes) =1/( 0.116+0.274+0.01+0.101 )



Weighting when Intervening do(X=yes)

X Y Z % of population

yes yes male 0.116

yes yes female 0.274

yes no male 0.01

yes no female 0.101

no yes male 0.334

no yes female 0.079

no no male 0.051

no no female 0.036
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X Y Z % of population

yes yes male 0.476

yes yes female 0.357

yes no male 0.042

yes no female 0.132

Consider X = yes & weight (X,Y,Z) with 1/P(X=yes|Z=z)
P(X=yes|Z=male) = (0.116 + 0.01)/(0.116+0.01 + 0.334 + 0.051)
P(X=yes|Z=female) = (0.274 + 0.101)/(0.274+0.101 + 0.079 + 0.036)

In this example no real savings!
These come into play when 
dom(Z) >> sample size 


