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Causal Inference in Linear SCMs

• All techniques and notions developed so far are
applicable for any SCM

• Of importance are linear SCMs
– Equations of form Y = a0 + a1X1 + a2X2 + … anXn

– In focus of traditional causal analysis (in economics)

• Assumption for the following
– All variables depending linearly on others (if at all)
– Error variables (exogenous variables)  have 

Gaussian/Normal distribution 
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Want to learn something about Gauss?
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Why Gaussian?

• Andrew Moore: “Gaussians are as natural as Orange 
Juice and Sunshine”
(http://www.cs.cmu.edu/~awm/tutorials)
(Used in the following slides on Gaussians)

• Proves useful to model RVs that are combinations of 
many (non)-measured influences

• Makes life easy because
1. Efficient representation
2. Substitute probabilities by expectations
3. Linearity of expectations
4. Invariance of regression coefficients

6

http://www.cs.cmu.edu/~awm/tutorials


General Gaussian
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Shorthand: We say X ~ N(µ,s2) to mean “X is distributed as a Gaussian with 
parameters µ and s2”.

In the above figure, X ~ N(100,152)

Also known as 
the normal 

distribution or 
Bell-shaped 

curve 

(http://www.cs.cmu.edu/~awm/tutorials)

Need only specify µ,s2

http://www.cs.cmu.edu/~awm/tutorials


Bivariate Gaussians
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Then define ),(~ ΣμNX to mean

Where the Gaussian’s parameters are…

Where we require that S is symmetric positive semidefinite

It turns out that E[X] = µ and Cov[X] = S. (Note that this is a resulting property of 
Gaussians, not a definition)*

*This note rates 7.4 on the pedanticness scale

So need only specify 2*N + N(N-1)/2 = 2*2 + 2(2-1)/2 = 5 parameters 

Covariance 
matrix in 2 dimensions
σXY = E[(X-E(X))(Y-E(Y))]

For positive semidefinite 
matrices M, the scalar zTMz is 
positive for every non-zero 
column vector z of real numbers
Non-zero determinant

| |



Multivariate Gaussians
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Then define ),(~ ΣμNX to mean

Gaussian‘s parameters …

So, it is sufficient to consider pairwise correlation
Of Xi, Xj (next to their expectations and variances)
2*N + N(N-1)/2  => efficient representation of joint 
distribution of X1... Xn



Why Gaussian?

• Andrew Moore: “Gaussians are as natural as Orange 
Juice and Sunshine”
(http://www.cs.cmu.edu/~awm/tutorials)
(Used in the following slides on Gaussians)

• Proves useful to model RVs that are combinations of 
many (non)-measured influences

• Makes life easy because
1. Efficient representation
2. Substitute probabilities by expectations
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Substitute Probabilities by Expectations

• P(X) becomes E[X]
• P(Y|X) becomes E[Y|X]
Conditional expectation defined as follows

E[Y|X=x] = ∑y    y P(Y=y|X=x)                       

→ Can use regression to determine causal relations
– E[Y|X] defines a function f(X,Y) 
– By regression we circumvent the problem of calculating 

the probabilities required for E[Y|X]
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So, we will be guessing  the deep/hidden structure (linear SCMs equations)
as far as needed for our tasks – instead of working on level of probabilities 



But remember also other direction

• Use probabilities to infer „crisp 
properties“

• Toy Example: 
– If you know that the expected value 

of a RV is 0.5 (for RV in [0,1])
– then you know (for sure) that there 

must be instances with value  ≥ 0.5.
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Why Gaussian?

• Andrew Moore: “Gaussians are as natural as Orange 
Juice and Sunshine”
(http://www.cs.cmu.edu/~awm/tutorials)
(Used in the following slides on Gaussians)

• Proves useful to model RVs that are combinations of 
many (non)-measured influences

• Makes life easy because
1. Efficient representation
2. Substitute probabilities by expectations
3. Linearity of expectations
4. Invariance of regression coefficients
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Linearity of Expectations

• Expectations are expressed as linear combinations
– E[Y|X1=x1,X2=x2, …, Xn=xn] = r0 + r1x1 + … + rnxn

– Each of the slopes ri are partial regression coefficients
– Example and Notation 

ri =   𝜙Y Xi . X1…Xi-1, Xi+1,…Xn

=   slope of Y on Xi when fixing all other Xj (j ≠ i)
– ri does not depend on the values of the Xi but only on  

which set of Xis (the set of regressors) was chosen
– This independency is also part of a continuous version of 

the Simpson’s paradox (next slides)
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Slope Constancy

• Measure weekly exercise and cholesterol 
in different age groups
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• Y = r0 + r1X + r2Z
• r1 = RYX . Z < 0
• Z-fixed slope for Y,X

independent of Z
(and negative)

• Ignoring Z (regressing 
Y w.r.t. X only)  leads to 
combined positive 
slope RYX

→ Simpson‘s paradox 



Resolving the Paradox

• Measure weakly exercise and cholesterol 
in different age groups

16

Exercise = X

Y=
 C

ho
le

st
er

ol

Age = Z

10

20

30

40

• Age is a confounder of 
Exercise and 
Cholesterol 

• Need to condition on 
Age=Z  to find correct
P(Y|do(X))

Age

Exercise Cholesterol



Regression coefficients and covariance

• Usually one finds (partial) regression coefficients by 
sampling

• But there exist formulae expressing connections to 
statistical measures such as covariance

• σXY = E[(X-E[Y])(Y-E[Y])]     (Covariance of X and Y) 

• ρXY = σXY/(σXσY) (Correlation)

• Note: σXY = 0 = ρXY iff X and Y are independent

17



18

Theorem
If        Y = r0 + r1X1 + ... + rkXk + ε
then the best (least-square error minimizing) 
coefficients ri (for any distributions Xi) result 
when σεXi = 0 for all 1 ≤ i ≤ k 

Orthogonality principle



Regression coefficients and covariance

• Assume w.l.o.g. E[ε] = 0
• Y = r0 + r1X + ε (*)
• E[Y] = r0 + r1E[X]               (by applying E)
• XY = Xr0 + r1X2 + Xε (by multiplying (*) with X)      
• E[XY] = r0E[X] + r1E[X2] + E[Xε]                   (by applying E)
• E[Xε] = 0 (by orthogonality)
• Solving for r0 and r1

– r0 = E[Y] – E[X](σXY/σXX)
– r1 =  σXY/σXX

19

Similar derivations for multiple regression



Path Coefficients (Example)

Example
• Linear SCM

– X = UX

– Z = aX + UZ

– W = bX +cZ + UW

– Y = dZ +eW + UY

• Graph of SCM as usual 
• But now additional information by edge labels:

Path Coefficients
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Linearity assumption makes association of coefficient to edge a well-
formed operation



Path Coefficients (Example)

Example
• Linear SCM

– X = UX

– Z = aX + UZ

– W = bX +cZ + UW

– Y = dZ +eW + UY

• Graph of SCM as usual 
• But now additional information by edge labels:

Path Coefficients
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Warning from the beginning: 
Path coefficients (causal) ≠ regression coefficients (descriptive) 



Path Coefficients (Semantics)

• Linear SCM
– X = UX

– Z = aX + UZ

– W = bX +cZ + UW

– Y = dZ +eW + UY
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• Q: What is the semantics of the path coefficients on edge 
Z-Y?

• A: Causal Direct Effect (CDE) on Y of change Z=+1
CDE = E[Y|do(Z=z+1), do(W=w)]- E[Y|do(Z = z), do(W=w)]

= d(z+1) +ew +E[UY]– (dz +ew+E[UY]) 
= d = label on Z-Y edge 

Note: CDE does not 
depend on the exact change 
of Z but only its rate Z=+1

We used the linearity of E
E[aX + bY] = aE[X]+bE[Y]



Total Effect in Linear Systems (Example)

• Linear SCM
– X = UX

– Z = aX + UZ

– W = bX +cZ + UW

– Y = dZ +eW + UY
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• Q: What is the total effect of Z on Y?
• A:  Sum of coefficient products over each directed Z-Y 

path
– Directed path 1: Z-d->Y;  product = d
– Directed path 2: Z-c->W-e->Y; product =ec
– Total effect = d + ec

Total effect = general causal effect 



Total Effect in Linear Systems (Intuition)

• Linear SCM
– X = UX

– Z = aX + UZ

– W = bX +cZ + UW

– Y = dZ +eW + UY
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• Q: What is the total effect of Z on Y?
• A:  Sum of coefficient products over each directed  Z-Y

path
– Total effect τ: Intervene on Z and express Y by Z
– Y = dZ +eW + UY = dZ +e(bX +cZ + UW) + UY

= (d+ec)Z + ebX + UY + eUW = τZ+ U Note 1: X, UY, UW

do not depend on Z

Z= z

Note 3: Holds for any linear SCM (Uis may be dependent)

Note 2: Total effect does not 
depend on the exact change 
of Z but only its rate Z=+1



Note 4

• We followed (Bollen 1989)) and summed over directed 
paths

• In book of Pearl, Glymour & Jewell (p.82-83) summation 
over non-backdoor paths
– Seems to be an error (due to wrongly applied Wright‘s 

path rule?)
– Consider SCM 

• W = bY + aX
• Y = cX
• ACE = c ( and not c + b*a )

25
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K. Bollen: Structural Equations with latent variables. New York, 1989. 



Addendum and Historical Note to Note 4

• Earliest use of graphs in causal analysis in (Wright 1920)
• Wright path tracing for calculating covariances in linear 

SCMs
σXY = ∑p product(p)     
– where all p are X-Y paths not containing a collider and  
– product(p) = product of all structural coefficients and 

covariances of error terms 

26
S. Wright. Correlation and Causation. 
Journal of Agricultural Research 20, 557-585, 1921. 



Identifying Structural Coefficients 

• What if path coefficients are not known apriori or are 
not testable?

• One has to identify only those relevant for the specific 
task, e.g., total effect of X to Y or direct effect of Z on X

• For those required for the task one can use linear 
regression on the data
1. Identify relevant variables for linear regression
2. Identify within linear equation coefficients for the 

specific task
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Direct Effect in Incomplete Linear Systems

• Q: Direct effect of X on Y? 

• A: Here, direct effect = 0
– There is no edge from X to Y
– Which amounts to path coefficient

for X-Y edge = 0

28
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Total effect in Incomplete Linear Systems

• Q: Total effect (GCE) of X on Y? 
• Now path coefficients not necessarily 

known (Greek letters)
• Recall: With backdoor criterion identify 

Z to adjust for
GCE =   P(y|do(x)) = ∑zP(y | x,z)P(z)
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• Use backdoor to identify variables to regress for
• Here Z = {T}, so do linear regression on X,T:

– Y(X,T) = rXX + rTT + ε
– rX = total effect of X on Y

• linear regression equation ≠ 
structural equation

• Regression coefficients handmade
• Path coefficients nature-made 



Direct Effect in Incomplete Linear Systems

• Q: Direct effect of X on Y? 

• A: In general, find blocking variables Z for 
• X-Y backdoor paths and, more generally, 
• Indirect X-Y paths
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• This can be achieved as follows
– Gα = Graph G without edge X –α->Y
– Z = variables d-separating X and Y

• Y = rXX + rZZ + ε
Direct effect of X on Y= rX =:α

UX

Here: Z = {W} 

Here: Y= rXX + rWW + ε



Direct Effect in Incomplete Linear Systems

• Q: What if there are no d-separating Z?  

• A: 
1. Find instrumental variables Z

1. Z is d-connected to X in Gα and 
2. Z is d-separated from Y in Gα

2. Regress Y = r1Z + ε
3. Regress X = r2Z + ε
4. r1/r2 = α = direct effect of X on Y
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Here: Z = H

This is because
• Z = H emits no backdoors, so r2 = β
• r1 = total effect of Z on Y = βα

=Z

Dashed arrow denotes existence 
of unobserved confounder
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Conditional IVs

• Z no IV anymore for α, because
– Z not d-separated from Y

• But conditioning on W helps
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Definition (Brito & Pearl, 02) A variable Z is a conditional
instrumental variable given set W for coefficient α (from 
X to Y) iff

– Set of descendants of Y not intersecting with W
– W d-separates Z from Y in Gα

– W does not d-separate Z from X in Gα

If conditions fulfilled, then α = βYZ.W / βXZ.W

C. Brito & J.Pearl: Generalized instrumental variables. In Uncertainty in Artificial Intelligence, 
Proceedings of the Eighteenth Conference, 85–93, 2002.  



Conditional IVs (Examples)
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Z instrument for α given W? 

yes no

Definition Z is a conditional IV given set W for α iff
– Set of descendants of Y not intersecting with W
– W d-separates Z from Y in Gα

– W does not d-separate Z from X in Gα



Summary

• Models can be incomplete
– Unknown parameters
– Unknown confounder structures

• Nevertheless, we can analyse
certain direct and total causal effects

– In come cases network
structure and available
parameters allow for conditioning
on certain random variables

– In case this is not possible, one can try to identify so-called
• (Sets of) instrumental variables
• (Sets of) Conditional instrumental variables
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