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Literature

• J.Pearl, M. Glymour, N. P. Jewell: Causal inference in 
statistics – A primer, Wiley, 2016. 

(Main Reference)
• J. Pearl: Causality, CUP, 2000. 
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Models with Path Coefficients: SEMs

• Linear SCM
– X = UX

– Z = aX + UZ

– W = bX +cZ + UW

– Y = dZ +eW + UY

• Graph with path coefficients
• Path coefficients model 

Causal Direct Effects (CDEs)
w.r.t. change rates

• Last time: Ui = Gaussian error
• But Ui can also be considered

as a description of objects
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Counterfactuals (Example)

Example (Freeway)

• Came to fork and decided for Sepulveda road (X=0) 
instead of freeway (X=1)

• Effect: long driving time of 1 hour (Y = 1h)

“If I had taken the freeway, 

then I would have driven less than 1 hour”
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Counterfactuals (Informal Definition)

Definition
A counterfactual is an if-then statement where: 

– the if-condition, aka  antecedent, hypothesizes about an 
alternative non-actual situation/condition
(in example: taking freeway) and

– the then-condition, aka succedent, describes some 
consequence of the hypothetical situation
(in example: less than 1h drive)

6



Counterfactuals ≠ truth-conditional if 

• Counterfactuals may be false even if antecedent is false
– “If      Hamburg is capital of Germany,

then  Udo Lindenberg is chancellor” true

– “If      Hamburg had been capital of Germany
then Udo Lindenberg would have been chancellor” false

• Usually, in natural language use, the antecedent in 
counterfactuals is false in actual world

• In natural language distinguished by different modes
– indicative mode for truth-conditional  if-statements vs.  

– conjunctive/subjunctive for counterfactuals
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Counterfactuals Require Minimal Change

• Hypothetical world minimally different from actual world
– If        X=1 was true (instead of X=0),

but everything else the same (as far as possible), 

then   Y < 1h would be the case

• Idea of minimal change is ubiquitous
– See discussion on belief revision

in the course “Information Systems”
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D. Lewis. Counterfactuals. Harvard University Press, Cambridge, MA, 1973.

D. Makinson. Five faces of minimality. Studia Logica, 52:339–379, 1993.

F. Wolter. The algebraic face of minimality. Logic and Logical Philosophy,6:225 – 240, 1998.

Account for consequences
of change (from X= 0 to X = 1). 



Counterfactuals and Rigidity

• Rigidity as a consequence of minimal change of 
worlds/states: 
– Objects stay the same in compared worlds

• In example:  Driver (characteristics) stays the same: 
– If the driver is a moderate driver, then he will be a 

moderate driver in the hypothesized world, too
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Counterfactuals (Example cont’d)

• Try: Formalization with intervention 
– E[driving time |do(freeway), driving time = 1 hour]

doesn‘t work! Why?

– There is a clash for RV „driving  time“ (Y)
• Y = 1 h in actual world   vs.

• Y < 1h (expected)  under hypothesized condition X =1 (freeway)

• Solution: Distinguish Y (driving time) under different 
worlds/conditions X = 0 vs. X = 1

E[YX=1 | X = 0, YX=0 = Y = 1]
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Expected driving time YX=1 if one had chosen freeway (X=1)
knowing that other decision (X=0) lead to driving time Y0 of 1 hour. 

YX=x formalizes  
counterfactual



Counterfactuals (Definition)
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Definition
A counterfactual RV is of the form YX=x and its semantics is 
given w.r.t. an instantiation of exogenous variable u by

YX=x(u) : = YMx(u)

where
• Y, X are (sets of) RVs from an SEM M
• x is an instantiation of X 
• Mx is the SEM resulting from M by substituting the rhs

of equation(s) for (all RVs in) X with value(s) x

Note the rigidity assumption:
Definition talks about the 
same “objects” u in different worlds  



Counterfactuals (Consistency Rule)

• Consequence of the formal definition of counterfactuals
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Consistency rule 
If X = x, then YX=x = Y

• This case (hypothesized = actual) non-typical in natural 
language use        (Merkel: „If I only would be chancellor...)



Counterfactuals (for Linear SEMs)

• How to formalize semantics of counterfactuals? 
– Use ideas similar to those of intervention

• Consider linear models
– Values of all variables determined by values of exogenous 

variables U = U1, ... ,Un

– So can write X = X(U) for any variable in SEM

– Example
• X: Salary, u = u1, ..., un characterizes individual Joe

• X(u) = Joe‘s salary

– When considering different worlds, the individuals 
(such as Joe = (u1, ...,un)) stay the same. 
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Counterfactuals in linear SEMs (Example)

• Linear model M:     
X = aU ;     Y = bX + U

• Find  YX=x(u) = ? 
(value of Y if it were the case that X = x for individual u) 

• Algorithm
1. Identify u under evidence (here: u just given)

2. Consider modified model Mx

• X = x 

• Y = bX + U

3. Calculate YX=x(u)
YX=x(u) = bx + u 
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Counterfactuals in linear SEMs (Example)

• Linear model M:     
X = aU ;     Y = bX + U

with a = b = 1.   
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U X(u) Y(u) YX=1(u) YX=2(u) YX=3(u) XY=1(u) XY=2(u) Xy=3(u)

1 1 2 2 3 4 1 1 1

2 2 4 3 4 5 2 2 2

3 3 6 4 5 6 3 3 3

Xy(U) = ?
Algorithm
1. U = u;  2. Y = y;  3. X = aU = au = u.

(X unaltered by hypothetical condition Y = y)



Counterfactuals vs. Intervention with do()
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Counterfactual Yx(u) Intervention do(X=x)

Defined locally for each u Defined globally for whole 
population/distribution

Can output individual value Outputs only 
expectation/distribution

Allows cross-world speak Allows single-world speak

Can simulate intervention Cannot simulate counterfactual



Counterfactuals in Linear SEMs (Example)

• Linear model M:  
– X = UX

– H = aX + UH

– Y = bX + cH + UY

– σUiUj = 0 for all i,j ∈ {X,H,Y} (i.e., Ui, Uj are not linearly 

correlated/dependent)

a = 0.5;     b = 0.7;     c = 0.4  
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X = Encouragement H= Homework Y= Exam score

a=0.5 c=0.4

b=0.7



Counterfactuals in Linear SEMs (Example)

• Linear model M:  
– X = UX

– H = aX + UH

– Y = bX + cH + UY
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X =
Encouragement

H=
Homework

Y= 
Exam score

a=0.5 c=0.4

b=0.7

• Consider an individual Joe given by evidence: 
X = 0.5,   H = 1,   Y = 1.5

• Want to answer counterfactual query: 
„What would have been Joe‘s  exam score, if he had doubled 
study time at home?“



Counterfactuals in Linear SEMs (Example)

• Linear model M:  
– X = UX

– H = aX + UH

– Y = bX + cH + UY
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X =
Encouragement

H=
Homework

Y= 
Exam score

a=0.5 c=0.4

b=0.7

• Consider an individual Joe given by evidence:
X = 0.5,   H = 1,   Y = 1.5

• Step 1: Determine  U-characteristics from evidence 
– UX = 0.5

– UH = 1-0.5 * 0.5

– UY = 1.5 -0.7 * 0.5 – 04.4 * 1 = 0.75

The U-characteristics are rigid



Counterfactuals in Linear SEMs (Example)

• Linear model M:  
– X = UX

– H = aX + UH

– Y = bX + cH + UY
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X =
Encouragement

H=
Homework

Y= 
Exam score

a=0.5 c=0.4

b=0.7

• Step 2: Simulate hypothetical change (doubling)
– Set H = 2

• Step 3: Calculate counterfactual YH= 2(u)
– YH= 2(UX = 0.5, Uh = 0.75, UY = 0.75 )

=  0.7 * 0.5  + 0.4 * 2 + 0.75 = 1.90

2

Joe would benefit 
from doubling 
homework 

Y= 1.5 in actual world, 
Y = 1.90 in 
hypothetical world 
when doubling H



Deterministic Counterfactuals Algorithm

Algorithm
– Step 1 (Abduction): Use evidence E = e to determine u

– Step 2 (Action): Modify model M to obtain model Mx

– Step 3 (Prediction): Compute counterfactual YX=x(u) with Mx
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• This algorithm considers single individual 
• And answer query is determined by counterfactual value

• What about classes of individuals and probabilistic 
counterfactuals?



Nondeterministic Counterfactuals Algorithm

Algorithm
– Step 1 (Abduction): Calculate P(U|E = e)

– Step 2 (Action): Modify model M to obtain model Mx

– Step 3 (Prediction): Compute expectation E(YX=x|E=e)

using Mx and P(U|E=e)
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1. Calculate the probabilities of obtaining some individual 
2. Same step
3. Calculate conditional expectation: What is the expected 

value of Y if one were to change X to x knowing E = e



Nondeterministic Counterfactuals (Example)

• Model M:  X = aU ;  Y = bX + U    (with a = b = 1)
U = {1,2,3}   represents three types of individuals with prob.

P(U = 1) = 1/2;    P(U = 2) = 1/3;     P(U=3) = 1/6

• Examples:
– P(YX=2 = 3) = ?

– P(Y2 > 3, Y1 < 4) = 

– P(Y1 < Y2) =   1
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U X(u) Y(u) YX=1(u) YX=2(u) YX=3(u) XY=1(u) XY=2(u) Xy=3(u)

1 1 2 2 3 4 1 1 1

2 2 4 3 4 5 2 2 2

3 3 6 4 5 6 3 3 3

= P(U = 1) = 1/2

P(U=2)= 1/3



Counterfactuals More Expressive (Example)

• Counterfactuals more expressive than intervention

• Linear model

X = U1;  Z = aX + U2; Y = bZ

– E[YX=1 | Z = 1] = ?

– Not captured by E[Y|do(X=1), Z=1]. Why?
• Gives only the salary Y of all individuals that went to college and 

since then acquired skill level Z=1.

• E[Y|do(X=1), Z=1] = E[Y|do(X=0), Z=1]

• In contrast: E[YX=1 | Z = 1] captures salary of individuals who in the 
actual world have skill level Z =1 but might get Z > 1

• E[YX=0 | Z = 1] ≠ E[YX=1 | Z = 1]
24

X = College Y = Salary

a b

U1 U2

Z = Skill

Talks about postintervention
for two different groups

Talks about one group acting 
under different antecedents

(= professional
experience)



Counterfactuals More Expressive (Example)

• E[YX=0 | Z = 1] ≠ E[YX=1 | Z = 1]? 
– How is this reflected in numbers?

– Later: How reflected in graph?

25

X = College Y = Salary

a b

U1 U2

Z = Skill

X = U1;  Z = aX + U2; Y = bZ (for a ≠ 1 and a ≠ 0, b≠0)

u1 u2 X(u) Z(u) Y(u) YX=0(u) YX=1(u) ZX=0(u) ZX=1(u)

0 0 0 0 0 0 ab 0 a

0 1 0 1 b b (a+1)b 1 a+1

1 0 1 a ab 0 ab 0 a

1 1 1 a+1 (a+1)b b (a+1)b 1 a+1

• E[Y1|Z=1] = (a+1)b        ;           E[Y|do(X=1),Z=1] = b

• E[Y0|Z=1] = b                  ;           E[Y|do(X=0),Z=1] = b

In particular: E[Y1-Y0|Z=1] = ab ≠ 0



Counterfactuals vs. Intervention with do()
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Counterfactual Yx(u) Intervention do(X=x)

Defined locally for each u Defined globally for whole 
population/distribution

Can output individual value Outputs only 
expectation/distribution

Allows cross-world speak Allows single-world speak

Can simulate intervention Cannot simulate counterfactual

E[Y|do(X=1), Z=1] = ? = E[YX=1| ZX=1 = 1]



Counterfactuals vs. Intervention with do()
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Counterfactual Yx(u) Intervention do(X=x)

Defined locally for each u Defined globally for whole 
population/distribution

Can output individual value Outputs only 
expectation/distribution

Allows cross-world speak Allows single-world speak

Can simulate intervention Cannot simulate counterfactual

• See road example
• But in non-conditional case we have

E[Yx=y] = E[Y=y|do(X=x)]  



Graphical representation of counterfactuals

• Remember definition of counterfactual 
YX=x(u) : = YMx(u)

• Modification as in intervention but with variable change
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X

Z2
Z1 Z3

W3

Y

W1 W2

X=x

Z2
Z1 Z3

(W3)x
Yx

W1 W2Yx

• Can answer (independence) queries regarding 
counterfactuals as for any other variable

• Note: Graphs do not show exogenous influences



Independence criterion for counterfactuals

• Which variables can influence Yx (i.e., Y if X fixed to x)?
– Parents of Y and parents of nodes on pathway between X and Y

(here: {Z3, W2, U3, Uy} )

• So blocking these with a set of RVs Z renders Yx independent 
of X given Z
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X=x

Z2
Z1 Z3

(W3)x
Yx

W1 W2

Theorem (Counterfactual interpretation of backdoor)
If          set of RVs Z satisfies backdoor for (X,Y), 
then     P(Yx | X,Z) = P(Yx |Z)                              (for all x)

UY
U3



Independence criterion for counterfactuals

• Theorem useful for estimating prob. for counterfactuals

• In particular can use adjustment formula
P(Yx = y) =  ∑z P(Yx = y | Z = z)P(z)                (summing out)

=  ∑z P(Yx = y | Z = z, X=x)P(z)        (Thm)

=  ∑z P(Y=y | Z = z, X = x) P(z)       (consistency)

• Clear in light of  P(Yx = y) = P(Y=y | do(X=x))
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Theorem (Counterfactual interpretation of backdoor)
If          set of RVs Z satisfies backdoor for (X,Y), 
then     P(Yx | X,Z) = P(Yx |Z) (for all x)



Independence counterfactuals (example)

• Reconsider linear model

X = U1;  Z = aX + U2; Y = bZ

• Does college education have effect on salary, 
considering a group of fixed skill level?

• Formally: Is Yx independent of X, given Z?
– Is Yx d-separated from X given Z?  

– No: Z a collider between X and U2

– Hence: E[Yx | X, Z] ≠ E[Yx | Z] 
(hence education has effect for students of given skill)

31

X = College Y = Salary

a b

U1 U2

Z = Skill
X=x Zx Yx



Counterfactuals in Linear Models

• In linear models any counterfactual identifiable if linear 
parameters identified
– In this case all functions in SEM fully determined

– Can use Yx(u) = YMx(u) for calculation

• What if some parameters not identified?
– At least can identify statistical features of form E[YX=x|Z=z]

32

Theorem (Counterfactual expectation) 
Let  τ denote slope of total effect of X on Y

τ =  E[Y|do(x+1)]-E[Y|do(x)]          
Then,  for any evidence Z = e

E[YX=x|Z=e] = E[Y|Z=e] + τ (x-E[X|Z=e])



Theorem (Counterfactual expectation) 
Let  τ denote slope of total effect of X on Y

τ =  E[Y|do(x+1)]-E[Y|do(x)]          
Then,  for any evidence Z = e

E[YX=x|Z=e] = E[Y|Z=e] + τ (x-E[X|Z=e])

Counterfactuals in Linear Models

33

Current estimate of Y

Expected effect change 
when x shifted from current 
best estimate E[X|Z=e]



Effect of Treatment on the Treated (ETT)
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ETT =  E[Y1 – Y0|X=1]

=  E[Y1 |X=1]- E[Y0|X=1]

=  E[Y|X=1]- E[Y|X=1] + τ (1-E[X|X=1]) - τ (0-E[X|X=1]) 

(using Thm with (Z = e) ≙ (X = 1))

= τ

Hence, in linear models, effect of treatment on the treated (individual)

is the same as total treatment effect on population

Theorem (Counterfactual expectation) 
Let τ denote slope of total effect of X on Y

τ =  E[Y|do(x+1)]-E[Y|do(x)]          
Then,  for any evidence Z = e

E[YX=x|Z=e] = E[Y|Z=e] + τ (x-E[X|Z=e])



Extended Example for ETT

• Job training program (X) for jobless funded by 
government to increase hiring Y

• Pilot randomized experiment shows: 
Hiring-%(w/ training) > Hiring-%(w/o training) (*)

• Critics
– (*) not relevant as it might falsely measure effect on those 

who chose to enroll for program by themselves (these 
may have gotten job because they are more ambitious)

– Instead, need to consider ETT 
E[Y1 –Y0 |X=1] =   causal effect of training X on hiring Y

for those who took the training
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Extended Example for ETT (cont’d)

• Difficult part: E[YX=0 |X=1]
– not given by observational or experimental data
– but can be reduced to these if appropriate covariates Z

(fulfilling backdoor criterion) exist
P(Yx = y | X = x‘)

= ∑z P(Yx = y | Z = z,x‘)P(z|x‘) (by condition on z)

= ∑z P(Yx = y | Z = z,x)P(z|x‘)         (by Thm on    

counterfactual backdoor  P(Yx | X,Z) = P(Yx |Z) )

=  ∑z P(Y = y | Z = z, x)P(z|x‘)            (consistency rule)

• E[Y0|X=1] =  ∑z E(Y | Z = z, X=0)P(z|X=1)  

(after substitution and commuting sums) 36

Contains only observational/testable RVs



Extended Example Additive Intervention

• Scenario
– Add amount q of insulin to group of patients 

(with different insulin levels)
• do(X = X+q) = addX(q)  
• Different from simple intervention

– Calculate effect of additive intervention from data where 
such additions have not been observed

• Formalization with counterfactual
– Y = outcome RV = a RV relevant for measuring effect 
– X = x’ (previous level of insulin)
– Yx‘+q = outcome after additive intervention with q insulin

37



Extended Example Additive Intervention

• E(Yx‘ +q|x‘) = expected output of additive intervention
– Part of ETT expression
– Can be identified with adjustment formula 

(for backdoor Z such as weight, age, etc.)

• E[Y|addX(q)] –E[Y]
= ∑x‘E[Yx‘+q|X=x‘]P(X=x‘) – E[Y]
= ∑x‘∑z E[Y|X=x‘+q,Z=z]P(Z=z|X=x‘)P(X=x‘)-E[Y]

(using already derived formula
E(Yx | X = x‘) =∑z E(Y = y | Z = z, x)P(z|x‘) 

and substituting x = x‘ +q )
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Extended Example Decision Making (cont’d)

• Scenario 1: 
– Hoping for remission of cancer (Y = 1) 

patient Mrs. Jones has to decide between
1. Lumpectomy alone (X = 0)
2. Lumpectomy with irradiation (X = 1)

– She decides for adding irradiation (X=1) 
and later there is a remission of cancer

– Is the remission due to her decision?

• Formally: Determine probability of necessity
PN = P(YX=0= 0 | X = 1, Y = 1)

• If you want remission, you have to go for adding irradiation 
(irradiation necessary for remission)
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Extended Example Decision Making (cont’d)

• Scenario 2
– Cancer patient Mrs. Smith had lumpectomy alone (X=0) 

and her tumor reoccurred (Y=0)
– She regrets not having gone for irradiation

Is she justified? 

• Formally: Determine probability of sufficiency
PS = P(YX=1= 1 | X = 0, Y = 0) 

• If you go for adding irradiation, 
you will achieve cancer remission

41

Note that, formally, PN and PS are the same. 
The distinction comes from interpreting 

value 1 = acting 
value 0 = omitting an action



Extended Example Decision Making (cont’d)

• Scenario 3
– Cancer patient Mrs. Daily faces same decision as Mrs. 

Jones and argues
• If my tumor is of a type that disappears without irradiation, 

why should I take irradiation?
• If my tumor is of a type that does not disappear even with 

irradiation, why even take irradiation?

– So, should she go for irradiation?

• Formally: 
Determine probability of necessity and sufficiency

PNS = P(YX=1= 1, YX=0 = 0)
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Extended Example Decision Making (cont’d)

• Formally: Determine probability of necessity and 
sufficiency

PNS = P(YX=1= 1, YX=0 = 0)

• PN (PS and PNS) can be estimated from data under 
assumption of monotonicity (adding irradiation 
cannot cause recurrence of tumor) 

PNS = P(Y=1|do(X=1)) – P(Y=1|do(X=0))
= total effect on Y of changing X from no

irradiation to irradiation
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Summary

• Counterfactual reasoning is not intervention
– Can simulate intervention

• Counterfactual reasoning required for certain 
applications
– Compute the effect of different options
– Reason about nessecity and sufficiency of diagnoses

• Can do counterfactual reasoning in some cases even if 
models are incomplete
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