Einführung in Web- und Data-Science

Grundlagen der Stochastik

Prof. Dr. Ralf Möller

Universität zu Lübeck Institut für Informationssysteme

Erster Wahrscheinlichkeitsbegriff

- Grenzwert der relativen Häufigkeit des Auftreten eines Ereignisses
 - Beispiel: Würfeln einer geraden Zahl
- "Elementar-Ereignisse" besitzen gleiche Eintreffensw'keiten
 - Laplace'sches Prinzip
- Was sind Elementarereignisse eigentlich genau?
 - Elemente ω einer Grundgesamtheit Ω
 - Elementarereignisse sind abstrakt: $\Omega = \{\omega_1, \omega_2, ..., \omega_6\}$
 - Beispiel: ω_i steht für <u>einen</u> Würfelwurf
 - Abbildung von Ereignissen auf Merkmalswerte durch Zufallsvariablen
 - Zufallsvariable X für Ergebnis des Würfelwurfs ist eine Funktion
 - Ziel: Ereignis ω_i auf obenliegende Zahl i des geworfenen Würfels abbilden
 - $X : \Omega \rightarrow \{1, 2, 3, 4, 5, 6\}$

Ereignisse

- (Komplexe) Ereignisse sind Teilmengen von Ω
 - Beispiel: Würfelereignisse mit gerader Zahl
 - Definition der Zufallsvariablen entsprechend erweitert
 - $X: \mathcal{P}(\Omega) \longrightarrow \mathcal{P}(M)$
 - Beispiel: $X(\{\omega_2, \omega_4, \omega_6\}) = \{2, 4, 6\}$

Laplace-Wahrscheinlichkeiten

- Betrachte die endliche Grundgesamtheit von Elementarereignissen $\Omega = \{\omega_1, \omega_2, ..., \omega_n\}$
- Für ein Ereignis $A \subseteq \Omega$ definiert man die Laplace-Wahrscheinlichkeit als die Zahl
 - $P(A) := |A| / |\Omega| = |A| / n$ wobei |A| die Anzahl der Elemente in A ist.
- Jedes Elementarereignis ω_i , $i=1,\ldots,n$ hat also die Wahrscheinlichkeit $P(\{\omega_i\})=1/n$
- Wir sagen X hat Verteilung gekennzeichnet durch $P(\{\omega_i\}) = 1/n$
- Die Wahrscheinlichkeit von Ω ist $P(\Omega) = 1$

Bayessche Wahrscheinlichkeitstheorie

- Laplace-Verteilungen sind zu speziell!
- Beispiele:
 - Unfairer Würfel
 - Wahrscheinlichkeit für Knabengeburt
 - Auftreten von Kopf oder Zahl bei Euro Münzen
- Elementarereignisse nicht immer gleichwahrscheinlich!
- Konzept der A-priori-Wahrscheinlichkeit
 - Vorwissen und Grundannahmen des Beobachters in einer Wahrscheinlichkeitsverteilung zusammengefasst
 - … und explizit im Modell ausgedrückt

Wahrscheinlichkeitsräume

Ein (diskreter) Wahrscheinlichkeitsraum ist definiert als ein Paar (Ω, P) wobei

- Ω eine (abzählbare) Grundgesamtheit ist und
- P ein Wahrscheinlichkeitsmaß, das jeder Teilmenge $A \subseteq \Omega$ eine Wahrscheinlichkeit P(A) zuordnet.

P definiert man wieder über die Wahrscheinlichkeiten $P(\{\omega\})$ der Elementarereignisse $\omega \in A$:

wobei für
$$P(\{\omega\})$$
 gelten muss: $P(A) = \sum_{\omega \in A} P(\{\omega\})$
 $0 \le P(\{\omega\}) \le 1$ für alle ω und

$$\sum_{\omega \in \Omega} P(\{\omega\}) = 1$$

Axiome von Kolmogorov [1903-1987]

- Wir betrachten eine beliebige (abzählbare) Grundgesamtheit Ω und eine Funktion P, die jedem Ereignis $A \subseteq \Omega$ eine Wahrscheinlichkeit zuordnet.
- Wir nennen P eine Wahrscheinlichkeitsverteilung auf Ω , wenn sie folgende Eigenschaften erfüllt:
 - Ax_1 : P(A) ≥ 0 für beliebige A ⊆ Ω
 - Ax_2 : $P(\Omega) = 1$
 - Ax_3 : $P(A \cup B) = P(A) + P(B)$ für disjunkte Ereignisse A, $B \subseteq \Omega$

Folgerungen

- $P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i)$ für **paarweise disjunkte** Ereignisse $A_1, A_2, \dots, A_n \subset \Omega$
- $P(A) \leq P(B)$ falls $A \subseteq B$
- Definiere das **Komplement** von A: $\bar{A} = \Omega \setminus A$. Dann gilt $P(\bar{A}) = 1 P(A)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$ für beliebige $A, B \subset \Omega$
- \sim Darstellung im Venn-Diagramm (John Venn [1834-1923])

Verbundwahrscheinlichkeit

- Betrachten wir zwei aufeinanderfolgende Würfelwurfe
- Der Ereignisraum (Ω, P) ist dann wie folgt definiert
 - $\Omega = \{\omega_1, \omega_2, ..., \omega_6\} \times \{\omega_1, \omega_2, ..., \omega_6\}$
 - P(A × B) mit A, B \subseteq { $\omega_1, \omega_2, ..., \omega_6$ } ist diskretes Wahrscheinlichkeitsmaß
- Wir sprechen von einer Verbundwahrscheinlichkeit und schreiben abkürzend
 - P(A, B) für P(A × B) mit A, B ⊆ Ω
- In einem Verbund können beliebige Grundgesamtheiten verknüpft werden
 - Beispiel: (Ω', P) mit $\Omega' = \{\omega_1, \omega_2, ..., \omega_6\} \times \{\text{ kreuz, pik, herz, karo }\}$

Bedingte Wahrscheinlichkeiten

• Für Ereignisse A, B $\subseteq \Omega$ mit P(B) > 0 definiert man die bedingte Wahrscheinlichkeit von A gegeben B als die Zahl $P(A|B) = \frac{P(A \cap B)}{P(B)}$

Beispiel: Würfelspiel

- "Es wird eine gerade Zahl gewürfelt" A := { ω_2 , ω_4 , ω_6 } "Es wird eine Zahl > 4 gewürfelt" B := { ω_5 , ω_6 }
- Dann:
 - P(A|B) = 1/2
 - P(A|B) = 2/4 = 1/2

Der Satz von Bayes

- Thomas Bayes [1701-1761]
- Dieser Satz beruht auf der Asymmetrie der Definition von bedingten Wahrscheinlichkeiten:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
 \Rightarrow $P(A \cap B) = P(A|B)P(B)$
 $P(B|A) = \frac{P(A \cap B)}{P(A)}$ \Rightarrow $P(A \cap B) = P(B|A)P(A)$

Analog für Verbundwahrscheinlichkeiten

$$P(A|B) = \frac{P(A , B)}{P(B)} \Rightarrow P(A , B) = P(A|B)P(B)$$

$$P(B|A) = \frac{P(A , B)}{P(A)} \Rightarrow P(A , B) = P(B|A)P(A)$$

Stochastische Unabhängigkeit

- Wann sind 2 Ereignisse A, B unabhängig?
- Motivation über bedingte Wahrscheinlichkeiten:
- Zwei Ereignisse A, B sind unabhängig, wenn

$$\underbrace{P(A|B)}_{P(A\cap B)} = P(A) \qquad P(B) > 0$$

$$\underbrace{\frac{P(A\cap B)}{P(B)}}_{P(B)}$$
bzw.
$$\underbrace{P(B|A)}_{P(A\cap B)} = P(B) \qquad P(A) > 0$$

bzw. $P(A, B) = P(A) \cdot P(B)$ gilt.

» Voraussetzung P(B) > 0 und P(A) > 0 ist hier nicht nötig

Beispiel: Zweimaliges Würfeln

- Ein fairer Würfel wird zweimal hintereinander geworfen.
 - A stehe für "Beim 1. Würfelwurf eine Sechs"
 - B stehe für "Beim 2. Würfelwurf eine Sechs"
- Bei jeden Würfelwurf ist die Grundgesamtheit

$$\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4, \omega_5, \omega_6\}$$

mit $\omega_i =$ "Gewürfelte Zahl ist i"

- Nach Laplace gilt P(A) = P(B) = 1/6.
- Bei "unabhängigem" Werfen gilt somit $P(A, B) = P(A) \cdot P(B) = 1/36$

Bedingte Unabhängigkeit

 Sei C ein beliebiges Ereignis mit P(C) > 0.
 Zwei Ereignisse A und B nennt man bedingt unabhängig gegeben C, wenn gilt:

$$P(A, B \mid C) = P(A \mid C) \cdot P(B \mid C)$$

Anders geschrieben:

$$P(A \mid B, C) = P(A \mid C)$$

Notation

- Sei $\Omega = \{\omega_1, \omega_2, ..., \omega_6\}, M = \{1, 2, 3, 4, 5, 6\}$
- Sei X eine Zufallsvariable $X : \Omega \rightarrow M$
 - − Beispiel: $X: ω_2 \mapsto 2$
- Notation: dom(X) steht für M
- Notation: X = 2 steht für Elementarereignis $\{\omega_2\}$
 - P(X=2) steht für $P(\{\omega_2\})$
- Notation:
 - $X=2 \text{ v } X=4 \text{ v } X=6 \text{ steht für komplexes Ereignis } \{\omega_2, \omega_4, \omega_6\}$
 - P(X=2 v X=4 v X=6) steht für P($\{\omega_2, \omega_4, \omega_6\}$)
- Notation: X=2 ^ Y=4 steht für Verbundereignis $\{\omega_2\}$ x $\{\omega_4'\}$ (verschiedene Variablen)

Verteilungsnotation

Für eine diskrete Zufallsvariable X schreiben wir die Verteilung als P(X), wobei gilt
 P(X) = (P(x₁), ..., P(xₙ))^T für x₁, x₂, ..., xₙ ∈ dom(X)

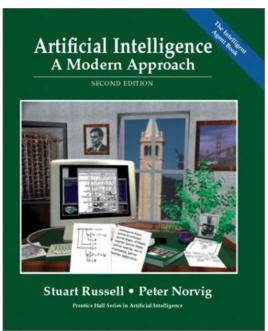
Auch im Verbund verwendet: P(X, Y)

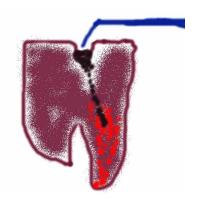
 P(X, Y) = P(X | Y) · P(Y), wobei hier die Multiplikation komponentenweise erfolgt

Beispiel

Zahnarzt-Problem mit vier Variablen:

- Toothache (Sind besagte Schmerzen wirklich Zahnschmerzen?)
- Cavity (Es könnte ein Loch sein?)
- Catch (Stahlinstrument erzeugt Testschmerz?)
- Weather (Wetter: sunny,rainy,cloudy,snow)





Nachfolgende Präsentationen enthalten Material aus Kapitel 14 (Sektion 1 and 2)

Prior probability

Prior or unconditional probabilities of propositions

e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72 correspond to belief prior to arrival of any (new) evidence

 Probability distribution gives values for all possible assignments:

P(Weather) = <0.72, 0.1, 0.08, 0.1>

(normalized, i.e., sums to 1 because one must be the case)

Full joint probability distribution

 Joint probability distribution for a set of random variables gives the probability of every atomic event on those random variables

P(Weather, Cavity) is a 4×2 matrix of values:

Weather =	sunny	rainy	cloudy	snow
Cavity = true	0.144	0.02	0.016	0.02
Cavity = false	0.576	0.08	0.064	0.08

- Full joint probability distribution: all random variables involved
 - P(Toothache, Catch, Cavity, Weather)
- Every query about a domain can be answered by the full joint distribution

Discrete random variables: Notation

- Dom(Weather) = {sunny, rainy, cloudy, snow} and Dom(Weather) disjoint from domain of other random variables:
 - Atomic event Weather=rainy often written as rainy
 - Example: P(rainy), the random variable Weather is implicitly defined by the value rainy
- Boolean variable Cavity
 - Atomic event Cavity=true written as cavity
 - Atomic event Cavity=false written as ¬cavity
 - Examples: P(cavity) or P(¬cavity)

Conditional probability

Conditional or posterior probabilities

```
e.g., P(cavity | toothache) = 0.8
or: <0.8>
i.e., given that toothache is all I know
```

- (Notation for conditional distributions:
 P(Cavity | Toothache) is a 2-element vector of 2-element vectors
- If we know more, e.g., cavity is also given, then we have
 P(cavity | toothache, cavity) = 1
- New evidence may be irrelevant, allowing simplification, e.g.,
 P(cavity | toothache, sunny) = P(cavity | toothache) = 0.8
- This kind of inference, sanctioned by domain knowledge, is crucial

Conditional probability

A general version holds for whole distributions, e.g.,

```
P(Weather, Cavity) = P(Weather | Cavity) P(Cavity)

P(Cavity, Weather) = P(Cavity) P(Weather | Cavity)
```

View as a set of 4×2 equations, not matrix mult.

```
(1,1) P(Weather=sunny | Cavity=true) P(Cavity=true) (1,2) P(Weather=sunny | Cavity=false) P(Cavity=false), ....
```

Chain rule is derived by successive application of product rule:

$$\begin{aligned} \mathbf{P}(X_{1},...,X_{n}) & = \mathbf{P}(X_{1},...,X_{n-1}) \ \mathbf{P}(X_{n} \mid X_{1},...,X_{n-1}) \\ & = \mathbf{P}(X_{1},...,X_{n-2}) \ \mathbf{P}(X_{n-1} \mid X_{1},...,X_{n-2}) \ \mathbf{P}(X_{n} \mid X_{1},...,X_{n-1}) \\ & = ... \\ & = \prod_{i=1}^{n} \mathbf{P}(X_{i} \mid X_{1},...,X_{i-1}) \end{aligned}$$

Inference by enumeration

Start with the joint probability distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

- For any proposition φ , sum the probability where it is true: $P(\varphi) = \sum_{\omega:\omega} p(\omega)$
- P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2
- Unconditional or marginal probability of toothache
- Process is called marginalization or summing out

Marginalization and conditioning

• Let Y, Z be sequences of random variables s.th. $Y \cup Z$ denotes all random variables describing the world

- Marginalization
 - $\mathbf{P}(\mathbf{Y}) = \Sigma_{\mathbf{z} \in \mathbf{Z}} \mathbf{P}(\mathbf{Y}, \mathbf{z})$
- Conditioning
 - $\mathbf{P}(\mathbf{Y}) = \sum_{\mathbf{z} \in \mathbf{Z}} \mathbf{P}(\mathbf{Y}|\mathbf{z}) \mathbf{P}(\mathbf{z})$

Inference by enumeration

Start with the joint probability distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

For any proposition φ , sum the atomic events where it is true:

$$P(\phi) = \Sigma_{\omega:\omega \models \phi} P(\omega)$$

• $P(cavity \lor toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28$

 $(P(cavity \lor toothache) = P(cavity) + P(toothache) - P(cavity \land toothache))$

Inference by enumeration

Start with the joint probability distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

Can also compute conditional probabilities:

$$P(\neg cavity \mid toothache) = P(\neg cavity \land toothache)$$

$$P(toothache)$$

$$= 0.016+0.064$$

$$0.108 + 0.012 + 0.016 + 0.064$$

$$= 0.08/0.2 = 0.4$$
Product rule

 $P(\text{cavity} \mid \text{toothache}) = (0.108 + 0.012)/0.2 = 0.6$

Normalization

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

 Denominator P(z) (or P(toothache) in the example before) can be viewed as a normalization constant α

```
P(Cavity | toothache) = \alpha P(Cavity,toothache)
= \alpha [P(Cavity,toothache,catch) + P(Cavity,toothache,\neg catch)]
= \alpha [<0.108,0.016> + <0.012,0.064>]
= \alpha <0.12,0.08> = <0.6,0.4>
```

General idea: compute distribution on query variable by fixing evidence variables (Toothache) and summing over hidden variables (Catch)

Inference by enumeration, contd.

Typically, we are interested in

the posterior joint distribution of the query variables **Y** given specific values **e** for the evidence variables **E** (**X** are all variables of the modeled world)

Let the hidden variables be $\mathbf{H} = \mathbf{X} - \mathbf{Y} - \mathbf{E}$ then the required summation of joint entries is done by summing out the hidden variables:

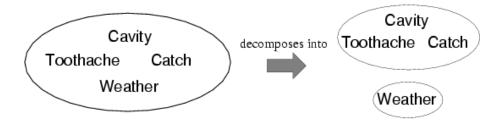
$$P(Y \mid E = e) = \alpha P(Y,E = e) = \alpha \Sigma_h P(Y,E = e, H = h)$$

- The terms in the summation are joint entries because Y, E and H together exhaust the set of random variables (X)
- Obvious problems:
 - 1. Worst-case time complexity $O(d^n)$ where d is the largest arity and n denotes the number of random variables
 - 2. Space complexity $O(d^n)$ to store the joint distribution
 - 3. How to find the numbers for $O(d^n)$ entries?

Independence

A and B are independent iff

$$P(A|B) = P(A)$$
 or $P(B|A) = P(B)$ or $P(A, B) = P(A) P(B)$



P(Toothache, Catch, Cavity, Weather)

- = **P**(Toothache, Catch, Cavity) **P**(Weather)
- 32 entries reduced to 12;
- Absolute independence powerful but rare
- Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

Conditional independence

- P(Toothache, Cavity, Catch) has $2^3 1 = 7$ independent entries
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - (1) P(catch | toothache, cavity) = P(catch | cavity)
- The same independence holds if I haven't got a cavity:
 - (2) $P(\text{catch} \mid \text{toothache}, \neg \text{cavity}) = P(\text{catch} \mid \neg \text{cavity})$
- Catch is conditionally independent of Toothache given Cavity:
 P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Equivalent statements:

```
P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
```

P(Toothache, Catch | Cavity) = **P**(Toothache | Cavity) **P**(Catch | Cavity)

Conditional independence contd.

Write out full joint distribution using chain rule:

```
P(Toothache, Catch, Cavity)
= P(Toothache | Catch, Cavity) P(Catch, Cavity)

= P(Toothache | Catch, Cavity) P(Catch | Cavity) P(Cavity)
conditional independence
= P(Toothache | Cavity) P(Catch | Cavity) P(Cavity)
```

i.e., 2 + 2 + 1 = 5 independent numbers

- In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n.
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.

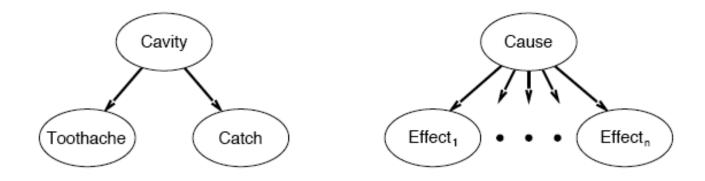
Naïve Bayes Model

 $\mathbf{P}(Cavity|toothache \wedge catch)$

- $= \alpha \mathbf{P}(toothache \wedge catch|Cavity)\mathbf{P}(Cavity)$
- = $\alpha P(toothache|Cavity)P(catch|Cavity)P(Cavity)$

This is an example of a naive Bayes model:

$$\mathbf{P}(Cause, Effect_1, \dots, Effect_n) = \mathbf{P}(Cause)\Pi_i\mathbf{P}(Effect_i|Cause)$$



Total number of parameters is linear in n

Usually, the assumption that effects are independent is wrong, but works well in practice

Bayesian networks

 A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions

Syntax:

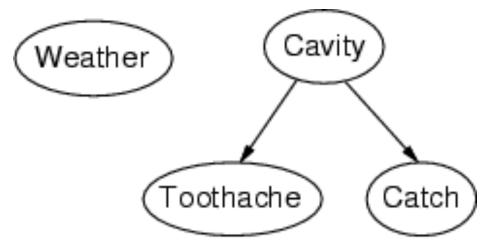
- a set of nodes, one per variable
- a directed, acyclic graph (link ≈ "directly influences")
- a conditional distribution for each node given its parents:

 $\mathbf{P}(X_i | \text{Parents}(X_i))$

 In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_i for each combination of parent values

Example

Topology of network encodes conditional independence assertions:

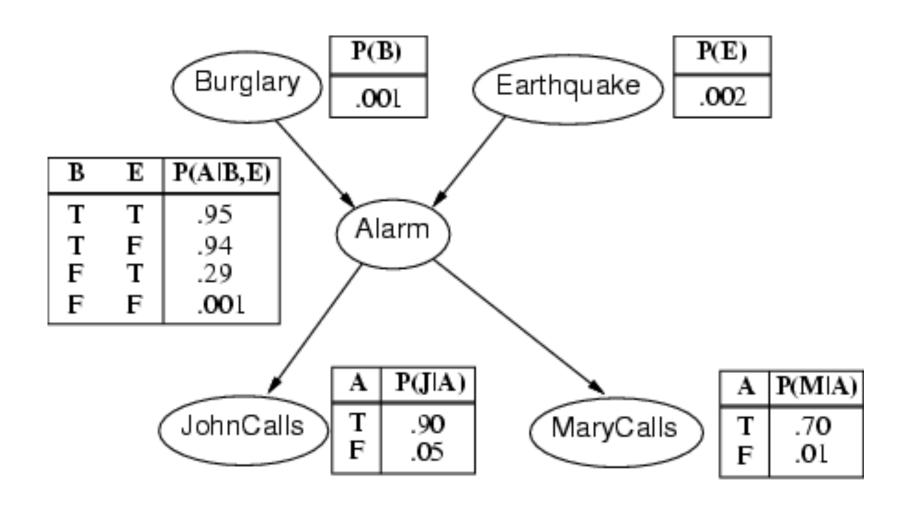


- Weather is independent of the other variables
- Toothache and Catch are conditionally independent given Cavity

Example

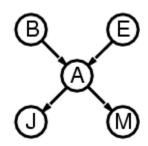
- I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?
- Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology can reflect "causal" knowledge:
 - A burglar can set the alarm off
 - An earthquake can set the alarm off
 - The alarm can cause Mary to call
 - The alarm can cause John to call

Example contd.



Compactness

- A CPT for Boolean X_i with k Boolean parents has 2^k rows for the combinations of parent values
- Each row requires one number p for $X_i = true$ (the number for $X_i = false$ is just 1-p)



- If each variable has no more than k parents, the complete network requires $n \cdot 2^k$ numbers
- i.e., grows linearly with n, vs. 2^n for the full joint distribution
- For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. $2^{5}-1 = 31$)

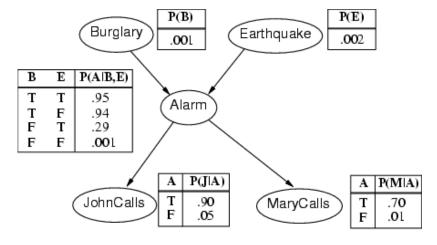
Semantics

The full joint distribution is defined as the product of the local conditional

distributions:

$$\mathbf{P}(X_1, \dots, X_n) = \mathbf{\Pi}_{i=1} \mathbf{P}(X_i | Parents(X_i))$$

e.g.,
$$P(j \land m \land a \land \neg b \land \neg e)$$



$$= P(j \mid a) P(m \mid a) P(a \mid \neg b, \neg e) P(\neg b) P(\neg e)$$

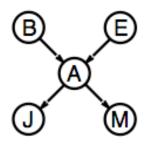
- $= 0.90 \times 0.7 \times 0.001 \times 0.999 \times 0.998$
- ≈ 0.00063

Inference by enumeration

Slightly intelligent way to sum out variables from the joint without actually constructing its explicit representation

Simple query on the burglary network:

$$\begin{aligned} &\mathbf{P}(B|j,m) \\ &= \mathbf{P}(B,j,m)/P(j,m) \\ &= \alpha \mathbf{P}(B,j,m) \\ &= \alpha \ \Sigma_e \ \Sigma_a \ \mathbf{P}(B,e,a,j,m) \end{aligned}$$



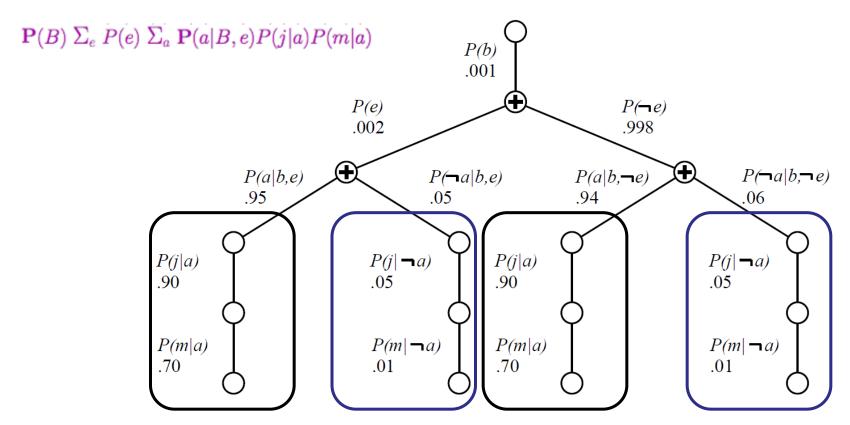
Rewrite full joint entries using product of CPT entries:

$$\mathbf{P}(B|j,m) = \alpha \sum_{e} \sum_{a} \mathbf{P}(B)P(e)\mathbf{P}(a|B,e)P(j|a)P(m|a)$$

$$= \alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} \mathbf{P}(a|B,e)P(j|a)P(m|a)$$

39

Evaluation Tree



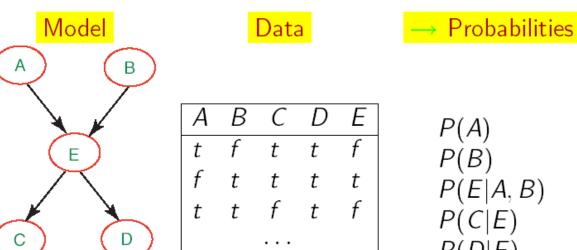
Enumeration is inefficient: repeated computation e.g., computes P(j|a)P(m|a) for each value of e

Learning BNs: Data Science w/ Complete Data

- We will start by applying ML to the simplest type of BNets learning:
 - known structure
 - Data containing observations for all variables
 - ✓ All variables are observable, no missing data

> The only thing that we need to learn are the network's

parameters



Maximum-Likelihood-Parameterschätzung

- Nehme an, die Struktur eines BNs sei bekannt
- Ziel: Schätze BN-Parameter θ
 - Einträge in CPTs, P(X | Parents(X))
- Eine Parametrierung θ ist gut, falls hierdurch die beobachteten Daten wahrscheinlich generiert werden:

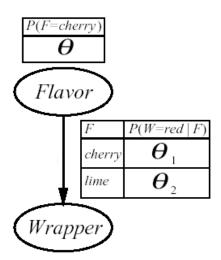
$$P(D \mid \boldsymbol{\theta}) = \prod_{m} P(x[m] \mid \boldsymbol{\theta})$$

• Maximum Likelihood Estimation (MLE) Prinzip: Wähle θ^* so, dass $P(D|\theta^*)$ maximiert wird

Gleichverteilte, unabhängige Stichprobem (i.i.d. samples)

Anwendungsbeispiel Bonbonfabrik

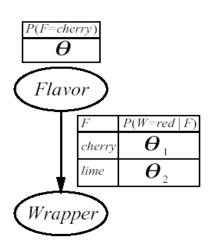
- ➤ Ein Hersteller wählt die Farbe des Bonbonpapiers mit einer bestimmten Wahrscheinlichkeit je nach Geschmack, wobei die entsprechende Verteilung nicht bekannt sei
 - \triangleright Wenn Geschmack=cherry, wähle rotes Papier mit W'keit θ_1
 - \triangleright Wenn Geschmack=lime, wähle rotes Papier mit W'keit θ_2
- > Das Bayessche Netzwerk enthält drei zu lernende Parameter
 - $\theta\theta_1\theta_2$



Anwendungsbeispiel Bonbonfabrik

- $ightharpoonup P(W=green, F=cherry|h_{\theta\theta_1\theta_2})=(*)$
 - = P(W=green|F = cherry, $h_{\theta\theta_1\theta_2}$) P(F = cherry| $h_{\theta\theta_1\theta_2}$)
 - $=\theta (1-\theta_1)$
- Wir packen N Bonbons aus
 - *c* sind cherry und *l* sind lime
 - r^c cherry mit rotem Papier, g^c cherry mit grünem Papier
 - r^l lime mit rotem Papier, g lime mit grünem Papier
 - Jeder Versuch liefert eine Kombination aus Papier und Geschmack wie bei (*)
- $ightharpoonup P(\mathbf{d}| h_{\theta\theta_1\theta_2})$

$$= \prod_{i} P(d_{i} | h_{\theta\theta_{1}\theta_{2}}) = \theta^{c} (1-\theta)^{\ell} (\theta_{1})^{r^{c}} (1-\theta_{1})^{g^{c}} (\theta_{2})^{r\ell} (1-\theta_{2})^{g\ell}$$



Anwendungsbeispiel Bonbonfabrik

- Maximierung des Logarithmus der Zielfunktion
 - $L = c \log \theta + \ell \log(1 \theta) + r^c \log \theta_1 + g^c \log(1 \theta_1) + r^l \log \theta_2 + g^{\ell} \log(1 \theta_2)$
- \triangleright Bestimmung der Ableitungen bzgl. θ , θ ₁, θ ₂
 - Ausdrücke ohne Term, nach dem abgeleitet wird, verschwinden

$$\frac{\partial L}{\partial \theta} = \frac{c}{\theta} - \frac{\ell}{1 - \theta} = 0 \qquad \Rightarrow \quad \theta = \frac{c}{c + \ell}$$

$$\frac{\partial L}{\partial \theta_1} = \frac{r_c}{\theta_1} - \frac{g_c}{1 - \theta_1} = 0 \qquad \Rightarrow \quad \theta_1 = \frac{r_c}{r_c + g_c}$$

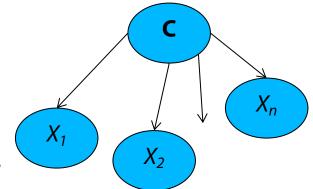
$$\frac{\partial L}{\partial \theta_2} = \frac{r_\ell}{\theta_2} - \frac{g_\ell}{1 - \theta_2} = 0 \qquad \Rightarrow \quad \theta_2 = \frac{r_\ell}{r_\ell + g_\ell}$$

Maximum-Likelihood-Parameterschätzung

- > Schätzung durch Bildung relativer Häufigkeiten
- Dieser Prozess ist auf jedes voll beobachtbare BN anwendbar
- ➤ Mit vollständigen Daten und Maximum-Likelihood-Parameterschätzung:
 - Parameterlernen zerfällt in separate Lernprobleme für jeden Parameter (CPT) durch Logarithmierung
 - Jeder Parameter wird durch die relative Häufigkeit eines Knotenwertes bei gegebenen Werten der Elternknoten bestimmt

Beliebte Anwendung: Naives Bayes-Modell

- Naïve Bayes-Modell: Sehr einfaches Bayessches Netzwerk zur Klassifikation
 - Klassenvariable C (vorherzusagen) bildet Wurzel



Naiv, weil angenommen wird, dass die Attributwerte bedingt unabhängig sind, wenn die Klasse gegeben ist

$$P(C|x_1,x_2,...,x_n) = \frac{P(C,x_1,x_2,...,x_n)}{P(x_1,x_2,...,x_n)} = \alpha P(C) \prod_{i} P(x_i \mid C)$$

- Deterministische Vorhersagen können durch Wahl der wahrscheinlichsten Klasse erreicht werden
- Skalierung auf realen Daten sehr gut:
 - 2n + 1 Parameter benötigt

Anwendung: Diagnose

Useful for assessing diagnostic probability from causal probability:

$$P(Cause|Effect) = \frac{P(Effect|Cause)P(Cause)}{P(Effect)}$$

E.g., let M be meningitis, S be stiff neck:

$$P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008$$

Note: posterior probability of meningitis still very small!