
Einführung in
Web- und Data-Science

Prof. Dr. Ralf Möller
Universität zu Lübeck

Institut für Informationssysteme

Inductive Learning

Chapter 18/19

Material adopted from
Yun Peng, Chuck Dyer,

Gregory Piatetsky-Shapiro & Gary Parker

2

Chapters 3 and 4

Card Example: Guess a Concept

• Given a set of examples
– Positive: e.g.,
– Negative: e.g.,

• What cards are accepted?
– What concept lays behind it?

3

4§ 7§ 2ª
5© jª

Card Example: Guess a Concept

4

(r=1) v … v (r=10) v (r=J) v (r=Q) v (r=K) Û ANY-RANK(r)
(r=1) v … v (r=10) Û NUM(r)
(r=J) v (r=Q) v (r=K) Û FACE(r)
(s=ª) v (s=§) v (s=¨) v (s=©) Û ANY-SUIT(s)
(s=ª) v (s=§) Û BLACK(s)
(s=¨) v (s=©) Û RED(s)

A hypothesis is any sentence of the form:
R(r) Ù S(s)

where:
• R(r) is ANY-RANK(r), NUM(r), FACE(r), or (r=x)
• S(s) is ANY-SUIT(s), BLACK(s), RED(s), or (s=y)

Simplified Representation

5

For simplicity, we represent a concept by rs, with:
• r Î {a, n, f, 1, …, 10, j, q, k}
• s Î {a, b, r, §, ª, ¨, ©}

For example:
• nª represents:

NUM(r) Ù (s=ª)
• aa represents:

ANY-RANK(r) Ù ANY-SUIT(s)

Extension of a Hypothesis

6

The extension of a hypothesis h is
the set of objects that satisfies h

Examples:
• The extension of fª is: {jª, qª, kª}
• The extension of aa is the set of all cards

More General/Specific Relation

• Let h1 and h2 be two hypotheses in H
• h1 is more general than h2 iff the extension of h1 is a

proper superset of the extension of h2

7

Examples:
• aa is more general than f¨
• f© is more general than q©
• fr and nr are not comparable

More General/Specific Relation

• Let h1 and h2 be two hypotheses in H
• h1 is more general than h2 iff the extension of h1 is a

proper superset of the extension of h2

• The inverse of the “more general” relation is the “more
specific” relation

• The “more general” relation defines a partial ordering
on the hypotheses in H

8

Example: Subset of Partial Order

9

aa

na ab

nb

n§

4§

4b

a§4a

1ª k©… …

G-Boundary / S-Boundary of V

10

• A hypothesis in V is most general
iff no hypothesis in V is more general

• G-boundary G of V: Set of most general
hypotheses in V

G-Boundary / S-Boundary of V

• A hypothesis in V is most general iff no hypothesis in V
is more general

• G-boundary G of V: Set of most general hypotheses in V
• A hypothesis in V is most specific iff no hypothesis in V

is more specific
• S-boundary S of V: Set of most specific hypotheses in V

11

all inconsistent

all inconsistent

G1 G2 G3

S1 S2 S3

Example: G-/S-Boundaries of V

12

aa

na ab

nb

n§

4§

4b

a§4a

aa

4§ k©… …

Now suppose that 4§ is
given as a positive example

S

G We replace every hypothesis in S
whose extension does not

contain 4§
by its generalization set

4ª

Example: G-/S-Boundaries of V

13

aa

na ab

nb

n§

4§

4b

a§4a

aa

S

G

4ª

Generalization
set of 4ª

The generalization set
of an hypothesis h is the
set of the hypotheses
that are immediately more
general than h

nª

4§ k©… …

Example: G-/S-Boundaries of V

14

aa

na ab

nb

n§

4§

4b

a§4a

aa

S

G We remove every hypothesis in S
that is more general

than another hypothesis in G

Example: G-/S-Boundaries of V

15

aa

na ab

nb

n§

4§

4b

a§4a
Here, both G and S have size 1.
This is not the case in general!

S

G

Example: G-/S-Boundaries of V

16

aa

na ab

nb

n§

4§

4b

a§4a

Let 7§ be the next
(positive) example

Generalization
set of 4§

Example: G-/S-Boundaries of V

17

aa

na ab

nb

n§

4§

4b

a§4a

Let 7§ be the next
(positive) example

Example: G-/S-Boundaries of V

18

aa

na ab

nb

n§

a§

Let 5© be the next
(negative) example

Specialization
set of aa

Example: G-/S-Boundaries of V

19

ab

nb

n§

a§

G and S, and all hypotheses in between
form exactly the version space

Example: G-/S-Boundaries of V

20

ab

nb

n§

a§

Do 8§, 6¨, jª
satisfy CONCEPT?

Yes

No

Maybe

At this stage …

Example: G-/S-Boundaries of V

21

ab

nb

n§

a§

Let 2ª be the next
(positive) example

Example: G-/S-Boundaries of V

22

ab

nb

Let jª be the next
(negative) example

Example: G-/S-Boundaries of V

23

nb

+ 4§ 7§ 2ª
– 5© jª

NUM(r) Ù BLACK(s)

Example: G-/S-Boundaries of V

24

ab

nb

n§

a§

… and let 8§ be the next
(negative) example

Let us return to the
version space …

The only most specific
hypothesis disagrees with
this example, so no
hypothesis in H agrees with
all examples

Example: G-/S-Boundaries of V

25

ab

nb

n§

a§

… and let j© be the next
(positive) example

Let us return to the
version space …

The only most general
hypothesis disagrees with
this example, so no
hypothesis in H agrees with
all examples

Example-Selection Strategy

• Suppose that at each step the learning procedure
has the possibility to select the object (card) of the
next example

• Let it pick the object such that, whether the
example is positive or not, it will eliminate one-half
of the remaining hypotheses

• Then a single hypothesis will be isolated in
O(log |H|) steps

26

27

aa

na ab

nb

n§

a§

Example

• 9§?
• j©?
• j§?

Example-Selection Strategy

• Suppose that at each step the learning procedure has
the possibility to select the object (card) of the next
example

• Let it pick the object such that, whether the example is
positive or not, it will eliminate one-half of the
remaining hypotheses

• Then a single hypothesis will be isolated in O(log |H|)
steps

• But picking the object that eliminates half the version
space may be expensive

28

Noise

• If some examples are misclassified, the version space
may collapse

• Possible solution:
Maintain several G- and S-boundaries, e.g., consistent
with all examples, all examples but one, etc…

29

Next Topic

Decision Trees

31

Decision Trees

Outlook Temperature Humidity Windy Play?

sunny hot high false No

sunny hot high true No

overcast hot high false Yes

rain mild high false Yes

rain cool normal false Yes

rain cool normal true No

overcast cool normal true Yes

sunny mild high false No

sunny cool normal false Yes

rain mild normal false Yes

sunny mild normal true Yes

overcast mild high true Yes

overcast hot normal false Yes

rain mild high true No

Decision trees

• An internal node is a test on an attribute.
• A branch represents an outcome of the test, e.g.,

Color=red.
• A leaf node represents a class label

• At each node, one attribute is chosen to split training
examples into distinct classes as much as possible

• A new case is classified by following a matching path to
a leaf node.

32

Building Decision Trees

1. Top-down tree construction
– At start, all training examples are at the root.
– Partition the examples recursively by choosing one

attribute each time.

2. Bottom-up tree pruning
– Remove subtrees or branches, in a bottom-up manner, to

improve the estimated accuracy on new cases.

R. Quinlan, Learning efficient classification procedures, Machine Learning:
an artificial intelligence approach, Michalski, Carbonell & Mitchell (eds.),
Morgan Kaufmann, p. 463-482., 1983 33

34

Which attribute to select?

34

35

Choosing the Best Attribute

• The key problem is choosing which attribute to split a
given set of examples.

• Some possibilities are:
– Random: Select any attribute at random
– Least-Values: Choose the attribute with the smallest

number of possible values
– Most-Values: Choose the attribute with the largest

number of possible values
– Information gain: Choose the attribute that has the

largest expected information gain, i.e. select attribute
that will result in the smallest expected size of the
subtrees rooted at its children.

35

Information Theory

36

Huffman code example

.5.5

1

.125.125

.25

A

C

B

D

.25

0 1

0

0 1

1

M code length prob
A 000 3 0,125 0,375
B 001 3 0,125 0,375
C 01 2 0,250 0,500
D 1 1 0,500 0,500

average message length 1,750

If we need to send many messages
(A,B,C or D) and they have this
probability distribution and we
use this code, then over time, the
average bits/message should
approach 1.75

37

Exp. len

Information Theory Background

• If there are n equally probable possible messages, then the probability p
of each is 1/n

• Information (number of bits) conveyed by a message is log(n) = -log(p)
• Eg, if there are 16 messages, then log(16) = 4 and we need 4 bits to

identify/send each message.
• In general, if we are given a probability distribution

P = (p1, p2, .., pn)
• the information conveyed by distribution (aka entropy of P) is:

I(P) = -(p1*log(p1) + p2*log(p2) + .. + pn*log(pn))
= - ∑i pi*log(pi)

38

Information Theory Background

• Information conveyed by distribution (aka entropy of P) is:
I(P) = -(p1*log(p1) + p2*log(p2) + .. + pn*log(pn))

• Examples:
– if P is (0.5, 0.5) then I(P) is 1
– if P is (0.67, 0.33) then I(P) is 0.92,
– if P is (1, 0) or (0,1) then I(P) is 0.

• The more uniform is the probability distribution, the greater is its
information

• The entropy is the average number of bits/message needed to
represent a stream of messages

39

40

Example: attribute “Outlook”, 1

Outlook Temperature Humidity Windy Play?
sunny hot high false No
sunny hot high true No
overcast hot high false Yes
rain mild high false Yes
rain cool normal false Yes
rain cool normal true No
overcast cool normal true Yes
sunny mild high false No
sunny cool normal false Yes
rain mild normal false Yes
sunny mild normal true Yes
overcast mild high true Yes
overcast hot normal false Yes
rain mild high true No

Example: attribute “Outlook”, 2

• “Outlook” = “Sunny”:

• “Outlook” = “Overcast”:

• “Outlook” = “Rainy”:

• Expected information for attribute:

bits 971.0)5/3log(5/3)5/2log(5/25,3/5)entropy(2/)info([2,3] =--==

bits 0)0log(0)1log(10)entropy(1,)info([4,0] =--==

bits 971.0)5/2log(5/2)5/3log(5/35,2/5)entropy(3/)info([3,2] =--==

Note: log(0) is
not defined, but
we evaluate
0*log(0) as zero

971.0)14/5(0)14/4(971.0)14/5([3,2])[4,0],,info([3,2] ´+´+´=

bits 693.0=

41

Computing the information gain

• Information gain:
(information before split) – (information after split)

0.693-0.940[3,2])[4,0],,info([2,3]-)info([9,5])Outlook"gain(" ==
bits 247.0=

42

Computing the information gain

• Information gain:
(information before split) – (information after split)

• Information gain for attributes from weather data:

0.693-0.940[3,2])[4,0],,info([2,3]-)info([9,5])Outlook"gain(" ==
bits 247.0=

bits 247.0)Outlook"gain(" =
bits 029.0)e"Temperaturgain(" =

bits 152.0)Humidity"gain(" =
bits 048.0)Windy"gain(" =

43

Continuing to split

bits 571.0)e"Temperaturgain(" =
bits 971.0)Humidity"gain(" =

bits 020.0)Windy"gain(" =

44

The final decision tree

• Note: not all leaves need to be pure; sometimes identical
instances have different classes
Þ Splitting stops when data can’t be split any further

45

Univariate Splits

46

Multivariate Splits

47

≥ 0

1R – Simplicity First!

48

Outlook Temp Humidity Windy Play
Sunny Hot High False No
Sunny Hot High True No
Overcast Hot High False Yes
Rainy Mild High False Yes
Rainy Cool Normal False Yes
Rainy Cool Normal True No
Overcast Cool Normal True Yes
Sunny Mild High False No
Sunny Cool Normal False Yes
Rainy Mild Normal False Yes
Sunny Mild Normal True Yes
Overcast Mild High True Yes
Overcast Hot Normal False Yes
Rainy Mild High True No

ClassificationGiven: Table with data
Goal: Learn decision function

• Based on rules that all test
one particular attribute

• One branch for each value
• Each branch assigns most

frequent class
• Error rate: proportion of

instances that don’t belong
to the majority class of their
corresponding branch

• Choose attribute with
lowest error rate

(Assumes nominal attributes)

Evaluating the Weather Attributes

Attribute Rules Errors Total
errors

Outlook Sunny ® No 2/5 4/14
Overcast ® Yes 0/4
Rainy ® Yes 2/5

Temp Hot ® No* 2/4 5/14
Mild ® Yes 2/6
Cool ® Yes 1/4

Humidity High ® No 3/7 4/14
Normal ® Yes 1/7

Windy False ® Yes 2/8 5/14
True ® No* 3/6

Outlook Temp Humidity Windy Play
Sunny Hot High False No
Sunny Hot High True No
Overcast Hot High False Yes
Rainy Mild High False Yes
Rainy Cool Normal False Yes
Rainy Cool Normal True No
Overcast Cool Normal True Yes
Sunny Mild High False No
Sunny Cool Normal False Yes
Rainy Mild Normal False Yes
Sunny Mild Normal True Yes
Overcast Mild High True Yes
Overcast Hot Normal False Yes
Rainy Mild High True No * indicates a tie

Classification

49

Assessing Performance of a Learning Algorithm

• Take out some of the training set
– Train on the remaining training set
– Test on the excluded instances
– Cross-validation

Cross-Validation

• Split original set of examples, train

+

+

+

+

+
+

+

-

-

-

-
-

-

+

+

+

+

+

-

-

-

-

-

-
Hypothesis space H

Train

Examples D

Cross-Validation

• Evaluate hypothesis on testing set

+

+

+

+

+
+

+

-

-

-

-
-

-

Hypothesis space H

Testing set

Cross-Validation

• Evaluate hypothesis on testing set

Hypothesis space H

Testing set

++

+
+

+

--

-

-

-

-

+
+

Test

Cross-Validation

• Compare true concept against prediction

+

+

+

+

+
+

+

-

-

-

-
-

-

Hypothesis space H

Testing set

++

+
+

+

--

-

-

-

-

+
+

9/13 correct

Common Splitting Strategies

• k-fold cross-validation: k random partitions

Train Test

Dataset

Common Splitting Strategies

• k-fold cross-validation: k random partitions

• Leave-p-out: all possible combinations of p instances

Train Test

Dataset

Discussion of 1R

• 1R was described in a paper by Holte (1993)
– Contains an experimental evaluation on 16 datasets

(using cross-validation so that results were
representative of performance on future data)

– Minimum number of instances was set to 6 after some
experimentation

– 1R's simple rules performed not much worse
than much more complex classifiers

• Simplicity first pays off!

57

Robert C. Holte, Very Simple Classification Rules Perform Well on
Most Commonly Used Datasets, Journal Machine Learning
Volume 11, Issue 1 , pp 63-90, 1993

From ID3 to C4.5: History

• ID3 (Quinlan) – 1960s
• CHAID (Chi-squared Automatic Interaction Detector) – 1960s
• CART (Classification And Regression Tree)

– Uses another split heuristics (Gini impurity measure)

• C4.5 innovations (Quinlan):
– Permit numeric attributes
– Deal with missing values
– Pruning to deal with noisy data

• C4.5 - one of best-known
and most widely-used learning algorithms

– Last research version: C4.8, implemented in Weka as J4.8 (Java)
– Commercial successor: C5.0 (available from Rulequest)

58

Dealing with Numeric (Metric) Attributes

• Discretize numeric attributes
• Divide each attribute's range into intervals

– Sort instances according to attribute's values
– Place breakpoints where the class changes

This minimizes the total error

64 65 68 69 70 71 72 72 75 75 80 81 83 85
Yes | No | Yes Yes Yes | No No | Yes Yes Yes | No | Yes Yes | No

59

Outlook Temperature Humidity Windy Play
Sunny 85.3 85 False No
Sunny 80.2 90 True No
Overcast 83.8 86 False Yes
Rainy 75.2 80 False Yes
… … … … …

The problem of Overfitting

• This procedure is very sensitive to noise
– One instance with an incorrect class label will probably

produce a separate interval
• Also: time stamp attribute will have zero errors
• Simple solution:

enforce minimum number of instances in majority class
per interval

60

Discretization Example

• Example (with min = 3):

• Final result for temperature attribute

61

64 65 68 69 70 71 72 72 75 75 80 81 83 85
Yes | No | Yes Yes Yes | No No | Yes Yes Yes | No | Yes Yes | No

64 65 68 69 70 71 72 72 75 75 80 81 83 85
Yes No Yes Yes Yes | No No Yes Yes Yes | No Yes Yes No

Same decision for both intervals

With Overfitting Avoidance

• Resulting rule set:

62

Attribute Rules Errors Total errors
Outlook Sunny ® No 2/5 4/14

Overcast ® Yes 0/4
Rainy ® Yes 2/5

Temperature £ 77.5 ® Yes 3/10 5/14
> 77.5 ® No* 2/4

Humidity £ 82.5 ® Yes 1/7 3/14
> 82.5 and £ 95.5 ® No 2/6
> 95.5 ® Yes 0/1

Windy False ® Yes 2/8 5/14
True ® No* 3/6

Numeric Attributes – Advanced

• Standard method: binary splits
– E.g. temp < 45

• Unlike nominal attributes,
every attribute has many possible split points

• Solution is straightforward extension:
– Evaluate info gain (or other measure)

for every possible split point of attribute
– Choose “best” split point
– Info gain for best split point is info gain for attribute

• Computationally more demanding

63

Example

• Split on temperature attribute:

– E.g. temperature < 71.5: yes/4, no/2
temperature ³ 71.5: yes/5, no/3

– Info([4,2],[5,3])
= 6/14 info([4,2]) + 8/14 info([5,3])
= 0.939 bits

• Place split points halfway between values
• Can evaluate all split points in one pass!

64

64 65 68 69 70 71 72 72 75 75 80 81 83 85
Yes No Yes Yes Yes No No Yes Yes Yes No Yes Yes No

Missing as a Separate Value

• Missing value denoted “?” in C4.X (Null value)
• Simple idea: treat missing as a separate value
• Q: When is this not appropriate?
• A: When values are missing due to different reasons

– Example 1: blood sugar value could be missing when it is
very high or very low

– Example 2: field IsPregnant missing for a male patient
should be treated differently (no) than for a female
patient of age 25 (unknown)

65

Missing Values – Advanced

Questions:
- How should tests on attributes with different unknown

values be handled?
- How should the partitioning be done in case of examples

with unknown values?
- How should an unseen case with missing values be

handled?

66

Missing Values – Advanced

• Info gain with unknown values during learning
– Let T be the training set and X a test on an attribute with

unknown values and F be the fraction of examples where
the value is known

– Rewrite the gain:
Gain(X) = probability that A is known * (info(T) – infoX(T))+

probability that A is unknown * 0
= F * (info(T) – infoX(T))

• Consider instances w/o missing values
• Split w.r.t. those instances
• Distribute instances with missing values proportionally

67

Pruning

• Goal: Prevent overfitting to noise in the data
• Two strategies for “pruning” the decision tree:

– Postpruning - take a fully-grown decision tree and
discard unreliable parts

– Prepruning - stop growing a branch when information
becomes unreliable

• Postpruning preferred in practice—prepruning can
“stop too early”

68

Post-pruning

• First, build full tree
• Then, prune it

– Fully-grown tree shows all attribute interactions

• Two pruning operations:
1. Subtree replacement
2. Subtree raising

69

70

Subtree replacement

• Bottom-up
• Consider replacing a tree

only after considering all its
subtrees

70

*Subtree raising

• Delete node
• Redistribute instances
• Slower than subtree

replacement
(Worthwhile?)

X

71

Post-pruning

• First, build full tree
• Then, prune it

– Fully-grown tree shows all attribute interactions

→ Expected Error Pruning

72

Estimating Error Rates

• Prune only if it reduces the estimated error
• Error on the training data is NOT a useful estimator

– Q: Why would it result in very little pruning?

• Use hold-out set for pruning
(“reduced-error pruning”)

73

Expected Error Pruning

• Approximate expected error assuming that we prune at
a particular node.

• Approximate backed-up error from children assuming
we did not prune.

• If expected error is less than backed-up error, prune.

74

Static Expected Error

• If we prune a node, it becomes a leaf labeled C
• What will be the expected classification error at this leaf?

S is the set of examples in a node
k is the number of classes
N examples in S
C the majority class in S
n out of N examples in S belong to C

Laplace error estimate – based on the assumption that the distribution of
probabilities that examples will belong to different classes is uniform.

75

kN
knNSE

+
-+-

=
1)(

Backed-up Error

• For a non-leaf node Node
• Let children of Node be Node1, Node2, etc.

– Probabilities can be estimated by relative frequencies of
attribute values in sets of examples that fall into child
nodes

76

)()(ii i NodeErrorPNoderorBackedUpEr ´=å

Error(Node) =min(E(Node),BackedUpError(Node))

Example Calculation

• Static Expected Error of b
𝐸 4,2 =

𝑁 − 𝑛 + 𝑘 − 1
𝑁 + 𝑘

=
6 − 4 + 2 − 1

6 + 2
= 0,375

• Left child of b
𝐸 3,2 =

5 − 3 + 2 − 1
5 + 2

= 0,429

• Right child of b
𝐸 1,0 =

1 − 1 + 2 − 1
1 + 2

= 0,333

• Backed Up Error of b

𝐵𝑎𝑐𝑘𝑒𝑑𝑈𝑝𝐸𝑟𝑟𝑜𝑟 𝑏 =
5
6
𝐸(3,2) +

1
6
𝐸(1,0) = 0,413

• 0,375 < 0,413 → Prune tree.

78

b
[4,2]

[3,2] [1,0]

Example

79

Regression Trees

Build a regression tree:
Divide the predictor space into J distinct not
overlapping regions R1,R2,R3,…,RJ

We make the same prediction for all observations in
the same region; use the mean of responses for all
training observations that are in the region

x1

x2
Region1

Region2

Region3

y=2.2

y=3.2

y=5.6

Finding the sub-regions

The regions could have any shape.

x1

x2
Region1

Region2

Region3

Y=2.5

Y=2.9

Y=5.1

x1

x2
Region1

Region2

Region3

y=2.2

Y=3.2

y=5.6

But we choose just rectangles

Find boxes R1, . . . , RJ that minimize the RSS

where is the mean response value of all training
observations in the Rj region

This computationally very expensive!

Solution: Top down approach, greedy approach

recursive binary splitting

Recursive Binary Splitting

1. Consider all predictor Xp and all the all possible values of the
cutpoints s for each of the predictors. Choose the predictor
and cutpoint s.t. it minimizes the RSS

This can be done quickly, assuming number of predictors is
not very large

2. Repeat #1 but only consider the sub-regions
3. Stop: node contains only one class or node contains less

than n data points or max depth is reached

|

t1

t2

t3

t4

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

X1

X1X1

X2

X
2

X
2

X1 ≤ t1

X2 ≤ t2 X1 ≤ t3

X2 ≤ t4

From Decision Trees To Rules

• Refund = Yes → No
• Refund = No Ù

Marital Status = {Single, Divorced}
Ù Taxable Income < 80k → No

• Refund = No Ù
Marital Status = {Single, Divorced}
Ù Taxable Income > 80k → Yes

• Refund = No Ù
Marital Status = Married → No

86

YESYESNONO

NONO

NONO

Yes No

{Married}
{Single,

Divorced}

< 80K > 80K

Taxable
Income

Marital
Status

Refund

From Decision Trees to Rules

• Derive a rule set from a decision tree:
Write a rule for each path from the root to a leaf.
– The left-hand side is easily built from the label of the

nodes and the labels of the arcs.

• Rules are mutually exclusive and exhaustive.
• Rule set contains as much information as the tree

87

Rules Can Be Simplified

88

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Initial Rule: (Refund=No) Ù (Status=Married) ® No
Simplified Rule: (Status=Married) ® No

YESYESNONO

NONO

NONO

Yes No

{Married}
{Single,

Divorced}

< 80K > 80K

Taxable
Income

Marital
Status

Refund

Rules Can Be Simplified

• The resulting rules set can be simplified:
– Let LHS be the left hand side of a rule.
– Let LHS' be obtained from LHS by eliminating some

conditions.
– We can certainly replace LHS by LHS' in this rule if the

subsets of the training set that satisfy respectively LHS
and LHS' are equal.

– A rule may be eliminated by using meta-conditions such
as "if no other rule applies".

89

VSL vs DTL

• Decision tree learning (DTL) is more efficient if all
examples are given in advance; else, it may produce
successive hypotheses, each poorly related to the
previous one

• Version space learning (VSL) is incremental
• DTL can produce simplified hypotheses that do not

agree with all examples
• DTL has been more widely used in practice

90

