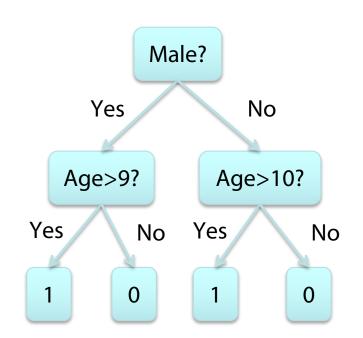
Einführung in Web- und Data-Science Ensemble Learning

Prof. Dr. Ralf Möller

Universität zu Lübeck Institut für Informationssysteme

Recap: Decision Trees



Person	Age	Male?	Height > 55"	
Alice	14	0	1	\
Bob	10	1	1	/
Carol	13	0	1	\
Dave	8	1	0	/
Erin	11	0	0	×
Frank	9	1	1	X
Gena	8	0	0	\

$$x = \begin{bmatrix} age \\ 1_{[gender=male]} \end{bmatrix}$$

$$y = \begin{cases} 1 & height > 55" \\ 0 & height \le 55" \end{cases}$$

Ensembles of Classifiers

- None of the classifiers is perfect
- Idea
 - Combine the classifiers to improve performance
- Ensembles of classifiers
 - Combine the classification results from different classifiers to produce the final output
 - Unweighted voting
 - Weighted voting

Example: Weather Forecast

Reality		••	••			•••	···
1		X	•••	X		•••	X
2	X			X		•••	X
3			X		X	X	
4		•••	X		X	···	•••
5		X	•••			X	•••
Combine			•••			•••	•••

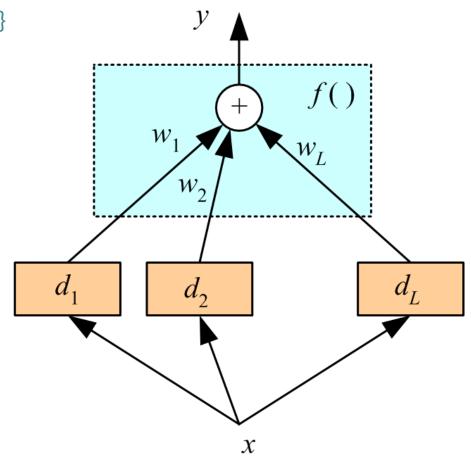
Voting

Linear combination of d_i ∈ {-1, 1}

$$y = \sum_{j=1}^{L} w_j d_j$$

$$w_j \ge 0$$
 and $\sum_{j=1}^L w_j = 1$

- Unweighted voting: $w_i = 1/L$
- Also possible $d_i \in \mathbb{Z}$
- High values for |y| means high "confidence"
- Possibly use sign(y) ∈ {-1, 1}



Outline

- Bias/Variance Tradeoff
- Ensemble methods that minimize variance
 - Bagging [Breiman 94]
 - Random Forests [Breiman 97]
- Ensemble methods that minimize bias
 - Functional Gradient Descent
 - Boosting [Freund&Schapire 95, Friedman 98]
 - Ensemble Selection

Generalization Error

- "True" distribution: P(x,y)
 - Unknown to us
- Train: h(x) = y
 - Using training data $S = \{(x_1, y_1), \dots, (x_n, y_n)\}$
 - Sampled from P(x,y)
- Generalization Error:
 - $\mathcal{L}(h) = E_{(x,y)\sim P(x,y)}[f(h(x),y)]$
 - $E.g., f(a,b) = (a-b)^2$

Person	Age	Male?	Height > 55"
James	11	1	1
Jessica	14	0	1
Alice	14	0	1
Amy	12	0	1
Bob	10	1	1
Xavier	9	1	0
Cathy	9	0	1
Carol	13	0	1
Eugene	13	1	0
Rafael	12	1	1
Dave	8	1	0
Peter	9	1	0
Henry	13	1	0
Erin	11	0	0
Rose	7	0	0
lain	8	1	1
Paulo	12	1	0
Margare t	10	0	1
Frank	9	1	1
Jill	13	0	0
Leon	10	1	0
Sarah	12	0	0
Gena	8	0	0
Patrick	5	1	1

Perso n	Age	Male?	Height > 55"	
Alice	14	0	1	-
Bob	10	1	1	/
Carol	13	0	1	/
Dave	8	1	0	/
Erin	11	0	0	×
Frank	9	1	1	×
Gena	8	0	0	/
			y	'ب' ا h(x

Generalization Error:

$$\mathcal{L}(h) = E_{(x,y)\sim P(x,y)}[f(h(x),y)]$$

Bias/Variance Tradeoff

- Treat h (x|S) as a random function
 - Depends on training data S
- $\mathcal{L} = E_S[E_{(x,y)\sim P(x,y)}[f(h(x|S),y)]]$
 - Expected generalization error
 - Over the randomness of S

Bias/Variance Tradeoff

- Squared loss: $f(a,b) = (a-b)^2$
- Consider one data point (x,y)
- Notation:

$$-Z = h(x|S) - y$$

$$-\check{z}=\mathsf{E}_{\mathsf{S}}[\mathsf{Z}]$$

$$- Z-\check{z} = h(x|S) - E_S[h(x|S)]$$

$$E_{S}[(Z-\check{z})^{2}] = E_{S}[Z^{2} - 2Z\check{z} + \check{z}^{2}]$$

$$= E_{S}[Z^{2}] - 2E_{S}[Z]\check{z} + \check{z}^{2}$$

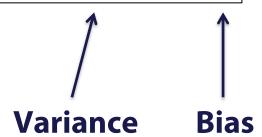
$$= E_{S}[Z^{2}] - \check{z}^{2}$$

Bias = systematic error resulting from the effect that the expected value of estimation results differs from the true underlying quantitative parameter being estimated.

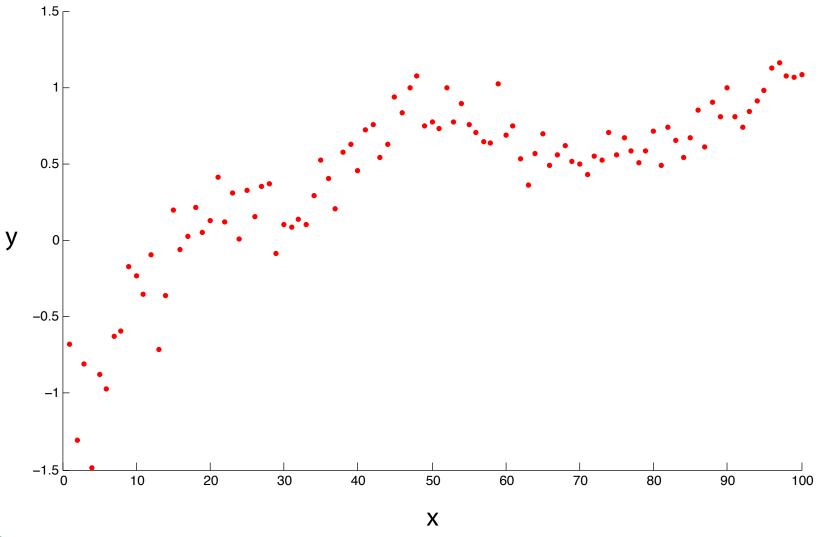
Expected Error

$$E_{S}[f(h(x|S),y)] = E_{S}[Z^{2}]$$

$$= E_{S}[(Z-\check{z})^{2}] + \check{z}^{2}$$



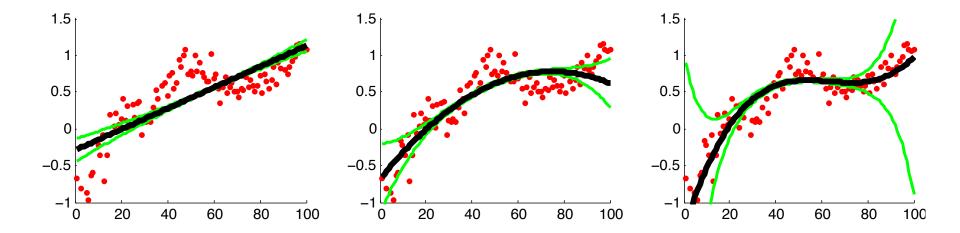
Example



h(x|S)

h(x|S)

h(x|S)



Outline

- Bias/Variance Tradeoff
- Ensemble methods that minimize variance
 - Bagging
 - Random Forests
- Ensemble methods that minimize bias
 - Functional Gradient Descent
 - Boosting
 - Ensemble Selection

Bagging

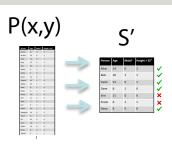
- Goal: reduce variance
- Ideal setting: many training sets S'
 - Train model using each S'
 - Average predictions

$$E_{S}[(h(x|S) - y)^{2}] = E_{S}[(Z-\check{z})^{2}] + \check{z}^{2}$$

$$E_{S}[(h(x|S) - y)^{2}] = E_{S}[(Z-\check{z})^{2}] + \check{z}^{2}$$

$$Variance$$
Expected Error
$$Variance$$
Bias

"Bagging Predictors" [Leo Breiman, 1994]



sampled independently

Variance reduces linearly Bias unchanged

$$Z = h(x|S) - y$$
$$\check{z} = E_S[Z]$$

Bagging = Bootstrap Aggregation

Bagging

Sampling schemes may be without replacement ('WOR'—no element can be selected more than once in the same sample) or with replacement ('WR'—an element may appear multiple times in the one sample). [Wikipedia]

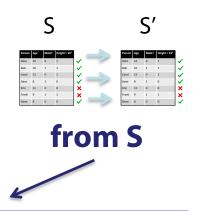
- Goal: reduce variance
- In practice: resample S' with replacement
 - Train model using each S'
 - Average predictions

$$E_{S}[(h(x|S) - y)^{2}] = E_{S}[(Z - \check{z})^{2}] + \check{z}^{2}$$

$$E_{S}[(h(x|S) - y)^{2}] = E_{S}[(Z - \check{z})^{2}] + \check{z}^{2}$$

$$Variance$$
Bias

"Bagging Predictors" [Leo Breiman, 1994]

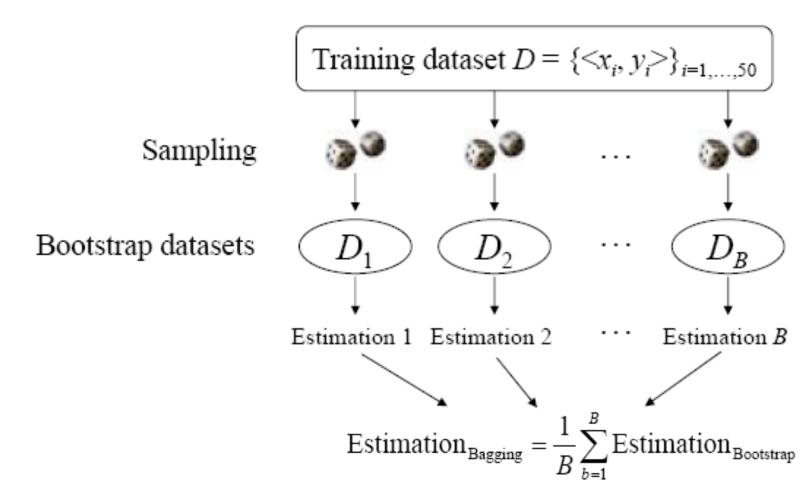


Variance reduces sub-linearly (Because S' are correlated)
Bias often increases slightly

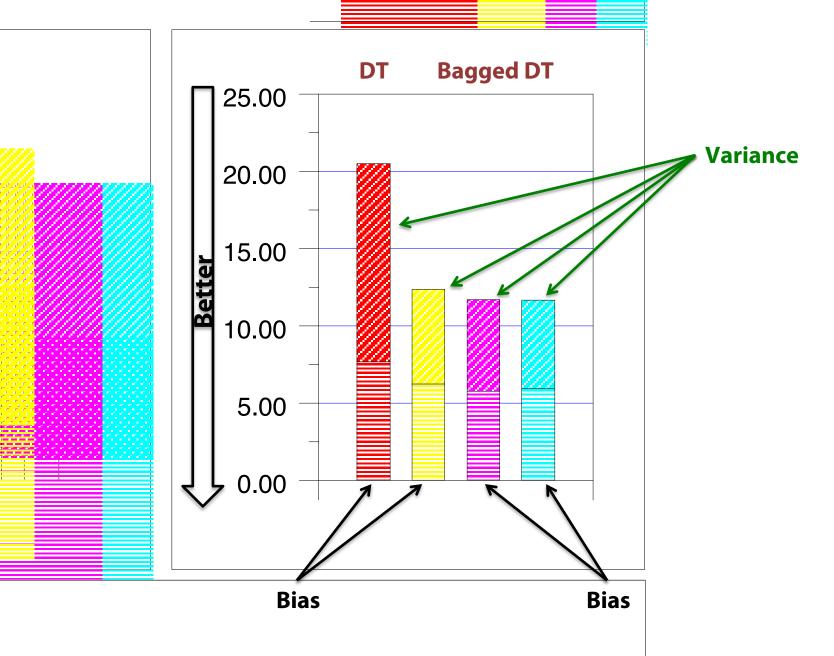
$$Z = h(x|S) - y$$
$$\check{z} = E_S[Z]$$

Bagging = Bootstrap Aggregation

Bagging



Majority voting



"An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants"

Eric Bauer & Ron Kohavi, Machine Learning 36, 105–139, 1999

S DAS LEBEN

Random Forests

- Goal: reduce variance
 - Bagging can only do so much
 - Resampling training data converges asymptotically to minimum reachable error
- Random Forests: sample data & features!
 - Sample S'
 - Train DT
 - At each node, sample feature subset
 - Average predictions

The Random Forest Algorithm

Given a training set S

For i := 1 to k do:

Build subset Si by sampling with replacement from S

Learn tree T_i from S_i

At each node:

Choose best split from random subset of F features

Each tree grows to the largest extent, and no pruning Make predictions according to majority vote of the set of k trees.

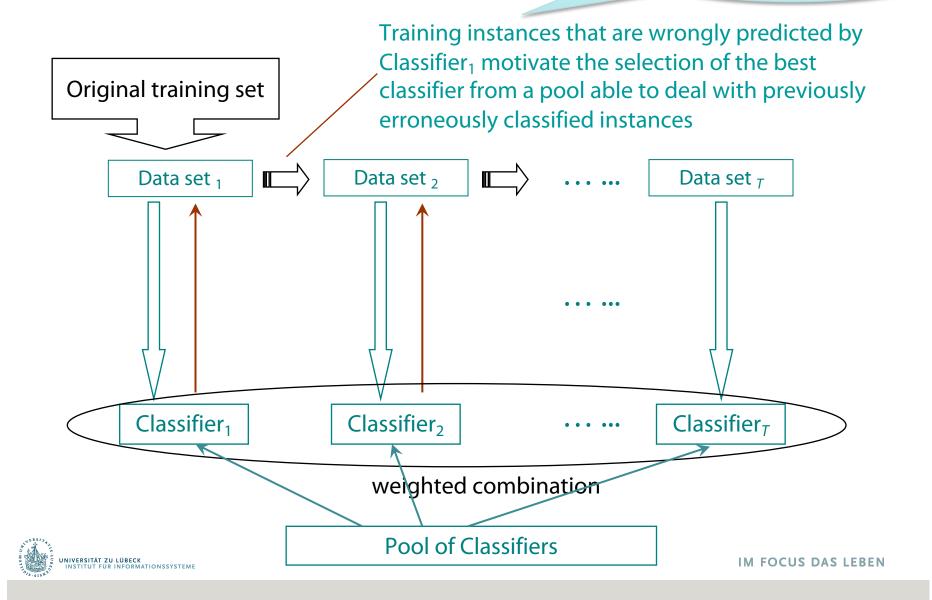
Outline

- Bias/Variance Tradeoff
- Ensemble methods that minimize variance
 - Bagging
 - Random Forests
- Ensemble methods that minimize bias
 - Boosting
 - Ensemble Selection

Yoav Freund and Robert Schapire who won the Gödel Prize in 2003

Selection of a Series of Classifiers

Next set of training instance is determined by weighted sampling

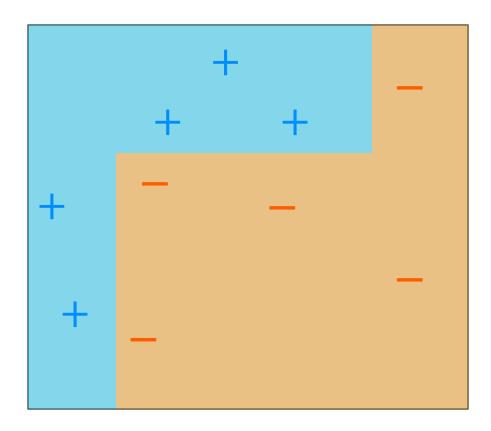


Person	Age	Male?	Height > 55"
James	11	1	1
Jessica	14	0	1
Alice	14	0	1
Amy	12	0	1
Bob	10	1	1
Xavier	9	1	0
Cathy	9	0	1
Carol	13	0	1
Eugene	13	1	0
Rafael	12	1	1
Dave	8	1	0
Peter	9	1	0
Henry	13	1	0
Erin	11	0	0
Rose	7	0	0
lain	8	1	1
Paulo	12	1	0
Margare t	10	0	1
Frank	9	1	1
Jill	13	0	0
Leon	10	1	0
Sarah	12	0	0
Gena	8	0	0
Patrick	5	1	1

Perso n	Age	Male?	Height > 55"
Alice	14	0	1
Bob	10	1	1
Carol	13	0	1
Dave	8	1	0
Erin	11	0	0
Frank	9	1	1
Gena	8	0	0

How to implement weighted sampling?

Example of a Good Classifier: Bias minimal



How can we automatically construct such a classifier?

AdaBoost (Adaptive Boosting)

- Wanted: Two-class classifier for pattern recognition problem
- Given: Pool of 11 classifiers (experts)
- For a given pattern x_i each expert k_j can emit an opinion k_i(x_i) ∈ {-1, 1}
- Final decision: sign(C(x)) where $C(x_i) = \alpha_1 k_1(x_i) + \alpha_2 k_2(x_i) + \cdots + \alpha_{11} k_{11}(x_i)$
- k_1, k_2, \ldots, k_{11} denote the eleven experts
- $\alpha_1, \alpha_2, \dots, \alpha_{11}$ are the weights we assign to the opinion of each expert
- Problem: How to derive α_i (and k_i)?

AdaBoost: Constructing the Ensemble

- Derive expert ensemble iteratively
- Let us assume we have already m-1 experts

$$- C_{m-1}(x_i) = \alpha_1 k_1(x_i) + \alpha_2 k_2(x_i) + \dots + \alpha_{m-1} k_{m-1}(x_i)$$

- For the next one, classifier m, it holds that
 - $C_m(x_i) = C_{m-1}(x_i) + \alpha_m k_m(x_i)$ with $C_{m-1} = 0$ for m = 1
- Let us define an error function for the ensemble
 - If y_i and $C_m(x_i)$ coincide, the error for x_i should be small (in particular when $C_m(x_i)$ is large), if not, error should be large
 - $E(x) = \sum_{i=1}^{N} e^{-y_i(C_{m-1}(x_i) + \alpha_m k_m(x_i))}$ where α_m and k_m are to be determined in an optimal way

AdaBoost (cntd.)

•
$$E(x) = \sum_{i=1}^{N} w_i^{(m)} \cdot e^{-y_i \alpha_m k_m(x_i)}$$

with $w_i^{(m)} = e^{-y_i(C_{m-1}(x_i))}$ for $i \in \{1..N\}$ and $w_i^{(1)} = 1$

constant in each iteration, call it W

- Pick classifier k_m with lowest weighted error to minimize right-hand side of equation
- Select k_m 's weight α_m : Solve $argmin_{\alpha_m} E(x)$

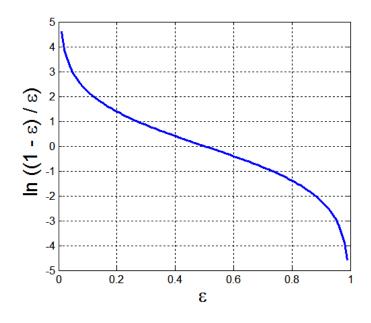
AdaBoost (cntd.)

- $\delta E/\delta \alpha_m = -W_c e^{-\alpha_m} + W_e e^{\alpha_m}$
- Find minimum

•
$$-W_c e^{-\alpha}m + W_e e^{\alpha}m = 0$$

•
$$-W_c + W_e e^{2\alpha_m} = 0$$

- $a_m = \frac{1}{2} \ln (W_c / W_e)$
- $a_m = \frac{1}{2} \ln ((W W_e) / W_e)$
- $\alpha_{\rm m} = \frac{1}{2} \ln \left(\left(1 \varepsilon_{\rm m} \right) / \varepsilon_{\rm m} \right)$ with $\varepsilon_{\rm m} = W_{\rm e} / W$ being the percentage rate of error given the weights of the data points



AdaBoost

For m=1 to M

1. Select and extract from the pool of classifiers the classifier k_m which minimizes

$$W_e = \sum_{y_i \neq k_m(x_i)} w_i^{(m)}$$

2. Set the weight α_m of the classifier to

$$lpha_m = rac{1}{2} \mathrm{ln} \left(rac{1 - arepsilon_{\mathsf{m}}}{arepsilon_{\mathsf{m}}}
ight)$$

where $\varepsilon_{\rm m} = W_e/W$

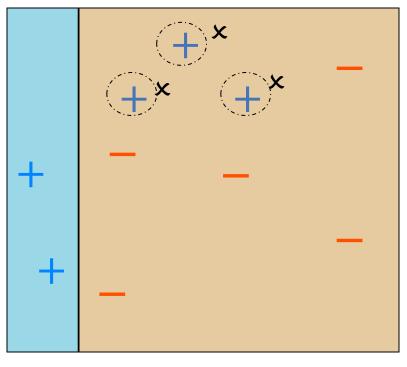
3. Update the weights of the data points for the next iteration. If $k_m(x_i)$ is a miss, set

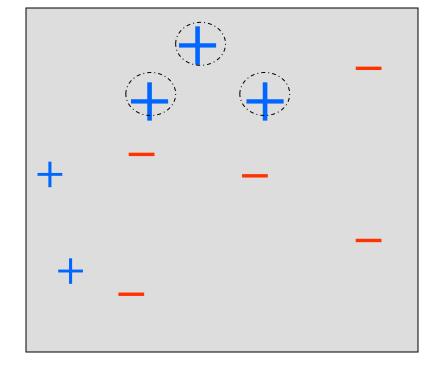
$$w_i^{(m+1)} = w_i^{(m)} \mathrm{e}^{lpha_m} = w_i^{(m)} \sqrt{rac{1-arepsilon_{\mathsf{m}}}{arepsilon_{\mathsf{m}}}}$$

otherwise

$$w_i^{(m+1)} = w_i^{(m)} e^{-\alpha_m} = w_i^{(m)} \sqrt{\frac{\varepsilon_m}{1 - \varepsilon_m}}$$

Round 1 of 3





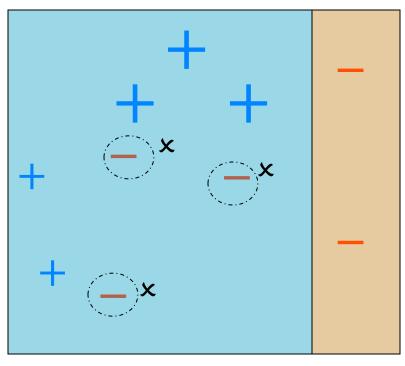
$$h_1$$

$$\varepsilon_1 = 0.300$$

$$\alpha_1$$
=0.424

 D_2

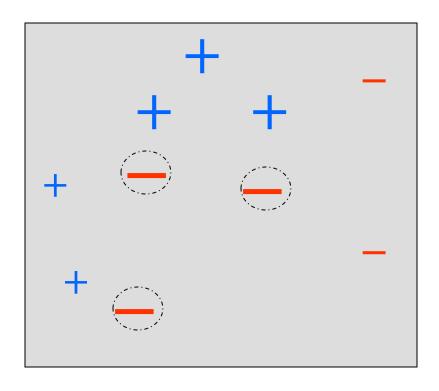
Round 2 of 3



 h_2

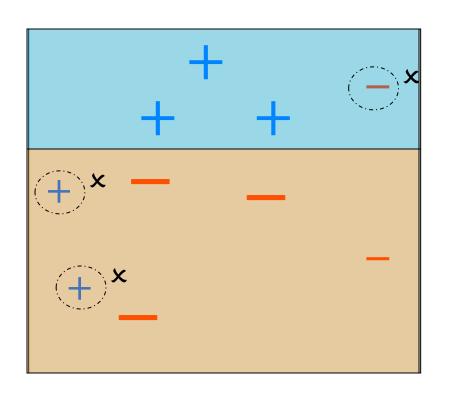
$$\varepsilon_2 = 0.196$$

$$\alpha_2$$
=0.704



 D_2

Round 3 of 3



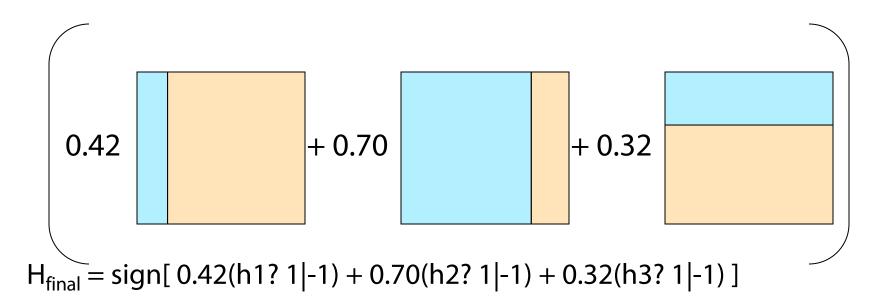
 h_3

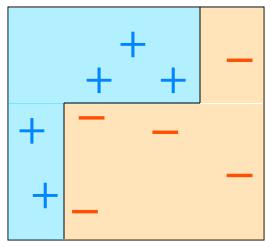
STOP

$$\varepsilon_3 = 0.344$$

$$\alpha_2$$
=0.323

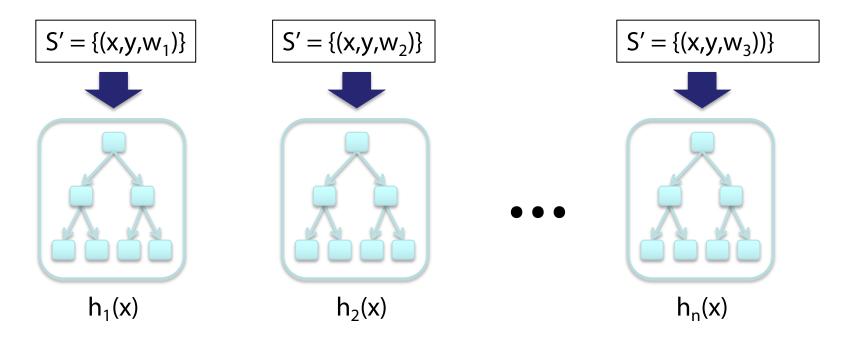
Final Hypothesis





AdaBoost with Decision Trees

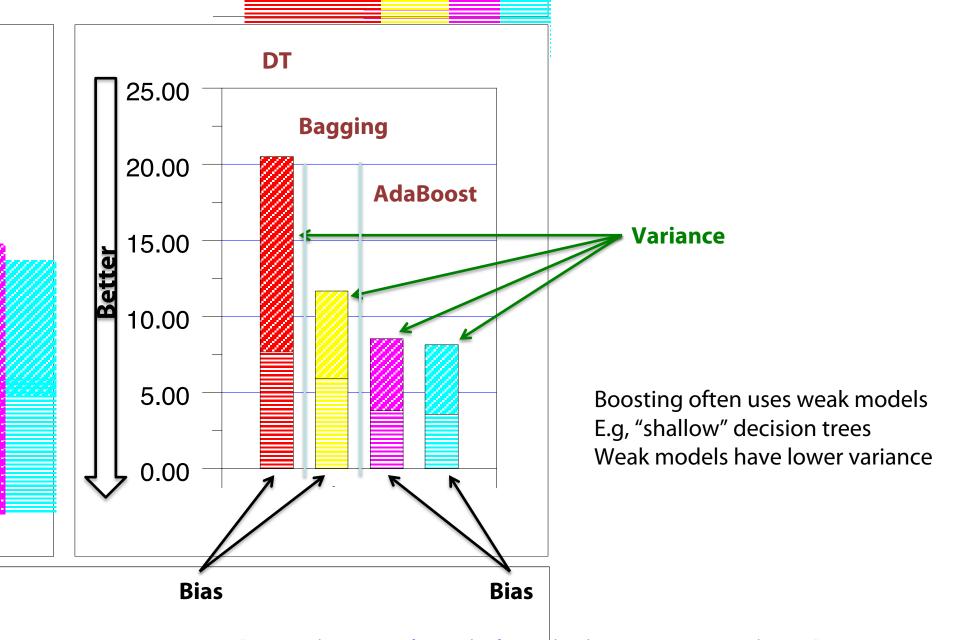
$$h(x) = \alpha_1 h_1(x) + \alpha_2 h_2(x) + ... + \alpha_n h_n(x)$$



w – weighting on data points

 α – weight of linear combination

Stop when validation performance plateaus



"An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants"

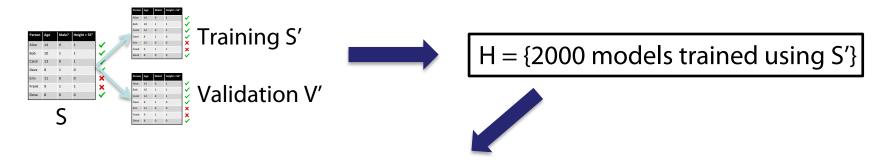
Eric Bauer & Ron Kohavi, Machine Learning 36, 105–139, 1999

IM FOCUS DAS LEBEN

Bagging vs Boosting

- Bagging: the construction of complementary baselearners is left to chance and to the unstability of the learning methods
- Boosting: actively seek to generate complementary base-learners--- training the next base-learner based on the mistakes of the previous learners

Ensemble Selection



Maintain ensemble model as combination of H:

$$h(x) = h_1(x) + h_2(x) + ... + h_n(x) + h_{n+1}(x)$$

Add model from H that maximizes performance on V'

"Ensemble Selection from Libraries of Models"
Caruana, Niculescu-Mizil, Crew & Ksikes, ICML 2004

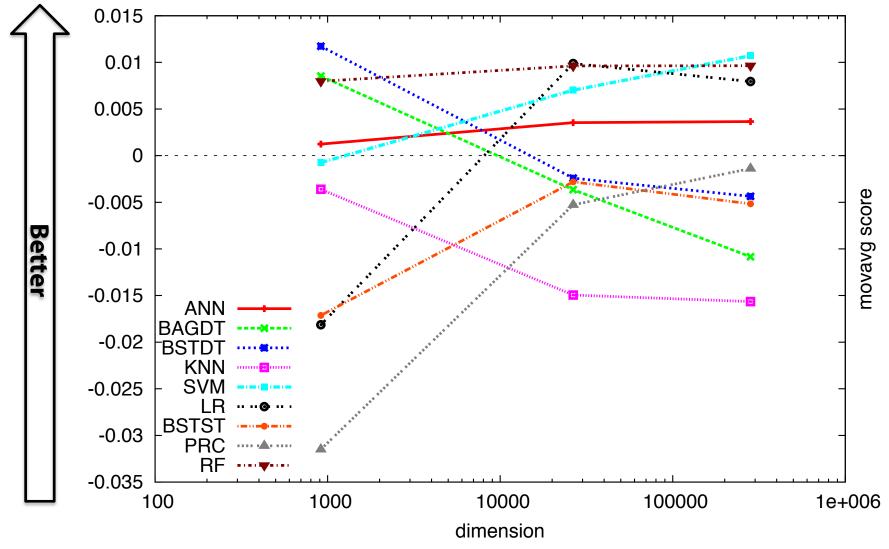
Models are trained on S' Ensemble built to optimize V'

Method	Minimize Bias?	Minimize Variance?	Other Comments
Bagging	Complex model class. (Deep DTs)	Bootstrap aggregation (resampling training data)	Does not work for simple models.
Random Forests	Complex model class. (Deep DTs)	Bootstrap aggregation + bootstrapping features	Only for decision trees.
Gradient Boosting (AdaBoost)	Optimize training performance.	Simple model class. (Shallow DTs)	Determines which model to add at runtime.
Ensemble Selection and many or	Optimize validation performance ther ensemble methods as we	Optimize validation performance	Pre-specified dictionary of models learned on training set.

- State-of-the-art prediction performance
 - Won Netflix Challenge
 - Won numerous KDD Cups
 - Industry standard

The Netflix Prize sought to substantially improve the accuracy of predictions about how much someone is going to enjoy a movie based on their movie preferences. 2009

Although the data sets were constructed to preserve customer privacy, the Prize has been criticized by privacy advocates. In 2007 two researchers from the University of Texas were able to identify individual users by matching the data sets with film ratings on the Internet Movie Database.



Average performance over many datasets Random Forests perform the best

Mixture of Experts: Gating

- Voting where weights are input-dependent (gating)
- Different input regions convered by different learners (Jacobs et al., 1991)

$$y = \sum_{j=1}^{L} w_j d_j$$

- Gating decides which expert to use
- Need to learn the individual experts as well as the gating functions w_i(x):

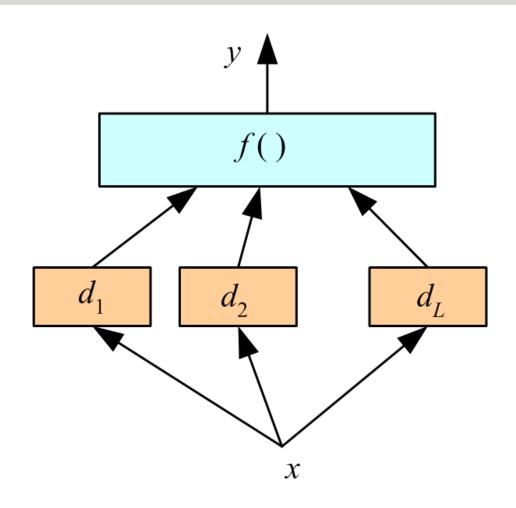
$$\sum w_j(x) = 1$$
, for all x

f()

gating

Mixture of Experts: Stacking

 Combiner f () is another learner (Wolpert, 1992)



Mixture of Experts: Cascading

Use d_j only if preceding ones are not confident

Cascade learners in order of complexity

