Einführung in Web und Data Science
Community Analysis

Prof. Dr. Ralf Möller
Universität zu Lübeck
Institut für Informationssysteme
Today’s lecture

• Social Network Analysis
• Anchor text
• Link analysis for ranking
 – PageRank and variants
 – Hyperlink-Induced Topic Search (HITS)
Acknowledgements

• Slides are based on material provided for
 CS276A, Stanford Univ.,
 Text Information Retrieval, Mining, and Exploitation
 Chr. Manning, P. Raghavan, H. Schütze

• Thanks also to other lecturers who provided their teaching material on the web
Social Network Analysis (SNA)

- Mapping and measuring of relationships and flows between people, groups, organizations, computers or other information/knowledge processing entities.

- The nodes in the network are the people and groups while the links show relationships or flows between the nodes.
Kite Network

- Who are **connecters** or **hubs** in the network?
- Who has **control over what flows** in the network?
- Who has best **visibility of what is happening** in the network?
- Who are **peripheral players**? Are they important?
Measures

1. **Degree Centrality:**
 The number of direct connections a node has. What really matters is where those connections lead to and how they connect the otherwise unconnected.
 \[
 C_D(n_i) = d(n_i) \quad \text{and} \quad C'_D(n_i) = \frac{d(n_i)}{g-1}
 \]

2. **Betweenness Centrality:**
 A node with high betweenness has great influence over what flows in the network indicating important links and single points of failure.
 \[
 C_B(n_i) = \sum_{j<k} g_{jk}(n_i) / g_{jk} \quad \text{and} \quad C'_B(n_i) = \frac{C_B(n_i)}{(g-1)(g-2)/2}
 \]

3. **Closeness Centrality:**
 The measure of closeness of a node to everyone else.
 Determined by the sum of the length of the shortest paths between the node and all other nodes in the graph.
 \[
 C_C(n_i) = \left[\sum_{j=1}^{g} d(n_i, n_j) \right]^{-1} \quad \text{and} \quad C'_C(n_i) = \frac{g-1}{\sum_{j=1}^{g} d(n_i, n_j)} = (g-1)C_C(n_i)
 \]
Legend

- $g =$ size of graph (number of nodes)
- $d(.) =$ (in)degree
- $g_{jk} =$ number of minimal paths between nodes j and k
- $g_{jk}(n) =$ number of minimal paths between nodes j and k that contain n
- $(g-1)(g-2)/2 =$ number of potential paths
 \[\sum_{x=1}^{u} x = (u+1)u/2 \text{ für } u=(g-2) \]
- $d(.,.) =$ distance between two nodes

- Scaling with $(g-1)(g-2):$ For every node n except n_i pair the node with all other nodes except n and n_i
Example: Kite-Network

\[C_B(n_i) = \sum_{j<k} g_{jk}(n_i)/g_{jk} \]

\[C_C(n_i) = \left[\sum_{j=1}^{g} d(n_i, n_j) \right]^{-1} \]

\[C_D(n_i) = d(n_i) \]

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>A</th>
<th>F</th>
<th>D</th>
<th>B</th>
<th>G</th>
<th>E</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>A</th>
<th>F</th>
<th>D</th>
<th>B</th>
<th>G</th>
<th>E</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>I</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>J</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Example

\[C_B(n_i) = \sum_{j<k} g_{jk}(n_i) \cdot g_{jk} \quad C_C(n_i) = \left[\sum_{j=1}^{g} d(n_i, n_j) \right]^{-1} \quad C_D(n_i) = d(n_i) \]

Adjacency

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Distance

<table>
<thead>
<tr>
<th></th>
<th>C_B</th>
<th>C_C</th>
<th>C_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1/6</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>1/5</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1/6</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>1/5</td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>1/6</td>
<td>2</td>
</tr>
</tbody>
</table>

Paths

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>A</td>
<td>A</td>
<td>BC</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>0</td>
<td>AD</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>AD</td>
<td>0</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>BC</td>
<td>D</td>
<td>D</td>
<td>0</td>
<td>D</td>
</tr>
<tr>
<td>E</td>
<td>B</td>
<td>E</td>
<td>D</td>
<td>E</td>
<td>0</td>
</tr>
</tbody>
</table>
The Web as a Directed Graph

Assumption 1: A hyperlink between pages denotes author perceived relevance (quality signal)

Assumption 2: The anchor of the hyperlink describes the target page (textual context)
For **IBM** how to distinguish between:
- IBM’s home page (mostly graphical)
- IBM’s copyright page (high term freq. for ‘ibm’)
- Rival’s spam page (arbitrarily high term freq.)

A million pieces of anchor text with “ibm” send a strong signal

Indexing anchor text

- When indexing a document D, include anchor text from links pointing to D.

Armonk, NY-based computer giant IBM announced today

www.ibm.com

Joe’s computer hardware links
- Compaq
- HP
- IBM

Big Blue today announced record profits for the quarter
The Web as a Resource for NLP

[Diagram showing different types of word relations such as homophone, homograph, heterograph, homonym, heteronym, synonym, and words with different spelling, pronunciation, and meaning.]

[Wikipedia]
The Web as a Resource for Ranking

- First generation: using **link counts** as simple measures of **popularity**.

- Two basic suggestions:
 - **Undirected popularity:**
 - Each page gets a score = the number of in-links plus the number of out-links (3+2=5).
 - **Directed popularity:**
 - Score of a page = number of its in-links (3).
Query processing

• First retrieve all pages matching the text query (say *venture capital*).
• Order these by their link popularity (either variant on the previous page).

How to organize for "Search Engine Optimization"?
PageRank scoring

- Imagine a browser doing a random walk on web pages:
 - Start at a random page
 - At each step, go out of the current page along one of the links on that page, equiprobably
- Each page has a long-term visit rate - use this as the page’s score
Not quite enough

- The web is full of dead-ends.
 - Random walk can get stuck in dead-ends.
 - Makes no sense to talk about long-term visit rates.
Teleporting / damping

• At a dead end, jump to a random web page.
• At any non-dead end, with probability 10%, jump to a random web page.
 – With remaining probability (90%), go out on a random link.
 – 10% - a parameter.
• There is a long-term rate at which any page is visited.
 – How do we compute this visit rate?
Markov chains

- A Markov chain consists of n states, plus an $n \times n$ transition matrix P.
- At each step, we are in exactly one of the states.
- For $1 \leq i, j \leq n$, the matrix entry P_{ij} tells us the relative frequency of j being the next state, given we are currently in state i.

$$\sum_{j=1}^{n} P_{ij} = 1.$$
Ergodic Markov chains

- A Markov chain is **ergodic** if
 - you have a path from any state to any other (reducibility)
 - returns to states occur at irregular times (aperiodicity)
 - For any start state, after a finite transient time T_0, the probability of being in any state at a fixed time $T > T_0$ is nonzero. (positive recurrence)
Ergodic Markov chains

- For any ergodic Markov chain, there is a unique long-term visit rate for each state.
 - "Steady-state" distribution.
- Over a long time-period, we visit each state in proportion to this rate.
- It doesn’t matter where we start.
State vectors

- A (row) vector (state vector) $\mathbf{x} = (x_1, \ldots, x_n)$ tells us where the walk is at any point.
- E.g., (000…1…000) means we’re in state i.

1 \hspace{1cm} i \hspace{1cm} n

More generally, the vector $\mathbf{x} = (x_1, \ldots, x_n)$ means the walk is in state i with relative frequency x_i.

$$\sum_{i=1}^{n} x_i = 1.$$
Change in state vector

- If the state vector is $\mathbf{x} = (x_1, \ldots, x_n)$ at this step, what is it at the next step?
- Recall that row i of the transition matrix \mathbf{P} tells us where we go next from state i
- So from \mathbf{x}, our next state is distributed as \mathbf{xP}.
Steady state example

- The steady state looks like a vector of probabilities \(\mathbf{a} = (a_1, \ldots, a_n) \):
 - \(a_i \) is the relative frequency that we are in state \(i \).

For this example, \(a_1 = 1/4 \) and \(a_2 = 3/4 \).
How do we compute this vector?

- Let \(\mathbf{a} = (a_1, \ldots, a_n) \) denote the row vector of steady-state rates.
- If we our current position is described by \(\mathbf{a} \), then the next step is described as \(\mathbf{aP} \).
- But \(\mathbf{a} \) is the steady state, so \(\mathbf{a} = \mathbf{aP} \).
- Solving this matrix equation gives us \(\mathbf{a} \).
 - So \(\mathbf{a} \) is the (left) eigenvector for \(\mathbf{P} \).
 - (Corresponds to the “principal” eigenvector of \(\mathbf{P} \) with the largest eigenvalue)
 - Transition matrices always have largest eigenvalue 1.
Eigenvectors and Eigenvalues $Mx = \lambda x$
One way of computing a

- Recall, regardless of where we start, we eventually reach the steady state a.
- Start with any distribution (say $x=(10\ldots0)$).
- After one step, we’re at xP;
- after two steps at xP^2, then xP^3 and so on.
- “Eventually” means for “large” k, $xP^k = a$.
- Algorithm: multiply x by increasing powers of P until the product looks stable.
PageRank Summary

- **Preprocessing:**
 - Given graph of links, build matrix P
 - From it compute a
 - The entry a_i is a number between 0 and 1: the pagerank of page i.

- **Query processing:**
 - Retrieve pages meeting query
 - Rank them by their pagerank
 - Order is query-independent

- A variant of PageRank is used in Google, but also many other clever heuristics
PageRank: Issues and Variants

- How realistic is the random surfer model?
 - What if we modeled the back button?
 - Surfer behavior sharply skewed towards short paths
 - Search engines, bookmarks & directories make jumps non-random

- Biased Surfer Models
 - Weight edge traversal probabilities based on match with topic/query (non-uniform edge selection)
 - Bias jumps to pages on topic (e.g., based on personal bookmarks & categories of interest)
Google PageRank

- Links are also weighted according to the importance of the source node
 - Page C has a higher PageRank than Page E, even though there are fewer links to C; the one link to C comes from an important page and hence is of high value.
Hyperlink-Induced Topic Search (HITS)

• In response to a query, instead of an ordered list of pages each matching the query, find two sets of inter-related pages:
 – **Hub pages** are good lists of links on a subject
 • e.g., “Bob’s list of cancer-related links.”
 – **Authority pages** occur recurrently on good hubs for the subject
• Best suited for “broad topic” queries rather than for page-finding queries

Jon M. Kleinberg, Hubs, Authorities, and Communities, ACM Computing Surveys 31(4), December 1999
Hubs and Authorities

• Thus, a good hub page for a topic points to many authoritative pages for that topic

• A good authority page for a topic is pointed to by many good hubs for that topic

• Circular definition - will turn this into an iterative computation
The hope

Long distance telephone companies
High-level scheme

- Extract from the web a base set of pages that could be good hubs or authorities
- From these, identify a small set of top hub and authority pages;
 → iterative algorithm
Base set

• Given text query (say “browser”), use a text index to get all pages containing “browser”
 – Call this the root set of pages
• Add in any page that either
 – points to a page in the root set, or
 – is pointed to by a page in the root set
• Call this the base set
Visualization

![Diagram](attachment:image.png)
Assembling the base set

- Root set typically 200-1000 nodes
- Base set may have up to 5000 nodes
- How do you find the base set nodes?
 - Follow out-links by parsing root set pages
 - Get in-links (and out-links) from a connectivity server
 - Actually, suffices to text-index strings of the form `href="URL"` to get in-links to URL
Distilling hubs and authorities

Compute, for each page x in the base set, a **hub score** $h(x)$ and an **authority score** $a(x)$

- Initialize: for all x, $h(x) \leftarrow 1$; $a(x) \leftarrow 1$
- Iteratively update all $h(x), a(x)$:

 $$h(x) \leftarrow \sum_{y \rightarrow x} a(y)$$

 $$a(x) \leftarrow \sum_{y \leftarrow x} h(y)$$

- After iterations output pages with
 - highest $h()$ scores as top hubs
 - highest $a()$ scores as top authorities
Scaling

• To prevent the $h()$ and $a()$ values from getting too big, can scale down after each iteration

• Scaling factor doesn’t really matter:
 – we only care about the relative values of the scores
How many iterations?

• Claim: relative values of scores will converge after a few iterations:
 – In fact, suitably scaled, $h()$ and $a()$ scores settle into a steady state!

• We only require the relative orders of the $h()$ and $a()$ scores - not their absolute values

• In practice, ~5 iterations get you close to stability
Tiefes Verstehen

- Bestimmung von bedingten Unabhängigkeiten zwischen Attributwerten von Objekten in einem sozialen Netz
- Bestimmung von Clustern
- ...
Data Models vs. Algorithmic Models

Data Modeling vs. Algorithmic Modeling

Y \leftarrow F(X, random noise, parameters)

Y \leftarrow Black Box \leftarrow X

We understand the world
How well 'my data model' works
- Linear Regression
- Logistic Regression
- Known Distributions
- Confidence Intervals
- Predictor Variables & Goodness of Fit

We don’t understand the world
The world produces data in a black-box
- Machine Learning, AI
- Random Forests, SVM
- Unknown Multivariate Distributions
- Iterative
- Predictive Accuracy