
Intelligent Agents

1d-CNNs LSTMs ELMo Transformers BERT GPT

Ralf Möller
Universität zu Lübeck

Institut für Informationssysteme

Acknowledgements

• Some slides are based on
– CS546: Machine Learning in NLP (Spring 2020)

• http://courses.engr.illinois.edu/cs546/

• Julia Hockenmaier http://juliahmr.cs.illinois.edu

• RNNs, LSTMs, ELMo, Transformers

– Machine Learning (Spring 2020)
• http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

• 李宏毅 (Hung-yi Lee) http://speech.ee.ntu.edu.tw/~tlkagk/

• ELMo, BERT: http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2019/Lecture/BERT%20(v3).pdf

• Respective sources are indicated in the gray line at the
bottom

• Slides have been modified
– All errors are mine

2

http://courses.engr.illinois.edu/cs546/
http://juliahmr.cs.illinois.edu/
http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html
http://speech.ee.ntu.edu.tw/~tlkagk/
http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2019/Lecture/BERT%20(v3).pdf

Recap: Convolution

3

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

Recap: Convolutional Neural Networks (CNNs)

Main CNN idea for text:
Compute vectors for n-grams and group them afterwards

Example: “this takes too long” compute vectors for:
This takes, takes too, too long, this takes too, takes too long, this takes too long

Input matrix
Convolutional

3x3 filter

4

Recap: ConvNets (CNNs)

Main CNN idea for text:
Compute vectors for n-grams and group them afterwards

https://shafeentejani.github.io/assets/images/pooling.gif

max pool
2x2 filters
and stride 2

Dimension reduction

5

1d-CNNs for text

Text is a (variable-length) sequence of words (word vectors)

We can use a 1d-CNN to slide a window of n tokens across:
— filter size n = 3, stride = 1, no padding
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog

— filter size n = 2, stride = 2, no padding:
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog

CNNs (w/ ReLU and maxpool) can be used for classifying (parts of) the text

CS546 Machine Learning in NLP
6

Severyn, Aliaksei, and Alessandro Moschitti. "UNITN: Training Deep Convolutional Neural Network for Twitter Sentiment
Classification." SemEval@ NAACL-HLT. 2015.

CNNs for sentiment analysis

Entities and relations
not really

considered…

7

CNNs for sentence/text classification

Kim, Y. “Convolutional Neural Networks for Sentence Classification”, EMNLP (2014)

sliding over 3, 4 or 5 words at a time

8

Pretrained and task-specific
embeddings: Multiple Channels

Static = pre-trained, non-static = task-specific

Fasttext (https://fasttext.cc)

• Library for word embeddings and text classification
o static word embeddings and ngram features
o that get averaged together in one hidden layer
o hierarchical softmax output over class labels

• Enriching word vectors with subword information
o Skipgram model where each word is a sum of character ngram

embeddings and its own embedding
o Each word is deterministically mapped to ngrams

Armand Joulin, Edouard Grave, Piotr Bojanowski, Tomas Mikolov, Bag of
Tricks for Efficient Text Classification. Proceedings of the 15th Conference
of the European Chapter of the Association for Computational Linguistics:
Volume 2, Short Papers. 427-431. 2017.

Piotr Bojanowski, Edouard Grave, Armand Joulin, Tomas Mikolov. Enriching
Word Vectors with Subword Information. Transactions of the Association
for Computational Linguistics, Volume 5. 135-146. 2017.

Alon Jacovi, Oren Sar Shalom, Yoav Goldberg. Understanding
Convolutional Neural Networks for Text Classification. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP. 2018.

CS546 Machine Learning in NLP
9

https://fasttext.cc/

Recursive Networks – Or: Copying the Pattern

output

hidden

input

• Basic computational network copied per time slice
• Input: previous hidden state, output: next hidden state

• Compare with HMM:

Raint-1

Umbrellat-1

Raint

Umbrellat

Raint+1

Umbrellat+1

Rt-1 P(Rt|Rt-1)

T
F

0.7
0.3

Rt P(Ut|Rt)

T
F

0.9
0.2

Computational
model

Declarative
model

(generative)

10

CS546 Machine Learning in NLP

• RNN

• HMM Filtering

11

t

Computing the hidden state at time t: h(t) = g(Uh(t−1) + Wx(t))
(t)
iThe i-the element of h : h = g(∑

j
j ∑

k

Ujih(t−1) + Wkix(t)
k)

Computing the Hidden State

What about hindsight queries
(aka smoothing)?
CS546 Machine Learning in NLP

Recap: Activation Functions

Sigmoid (logistic function):
σ(x) = 1/(1 + e−x)

in the 0,1 range

Hyperbolic tangent:
tanh(x) = (e2x −1)/(e2x+1)
Returns values bound above and below
in the −1, +1 range

Rectified Linear Unit:
ReLU(x) = max(0, x)
Returns values bound below
in the 0, +∞ range

-0.5

0

0.5

1

Returns values bound above and below 1.5

2

2.5

3

-1
-3 -2 -1 0 1 2 3

1/(1+exp(-x))
tanh(x)

max(0,x)

CS546 Machine Learning in NLP
12

RNN Variants: LSTMs, GRUs

• Long Short Term Memory networks (LSTMs) are RNNs with a
more complex architecture to combine the last hidden state
with the current input.

• Gated Recurrent Units (GRUs) are a simplification of LSTMs
• Both contain “gates” to control how much of the input or past

hidden state to forget or remember

CS546 Machine Learning in NLP

ℎ!ℎ!"#
𝐶!"#

ℎ!"#

13

Gates

• A gate performs element-wise multiplication of
– the output of a d-dimensional sigmoid layer

(all elements between 0 and 1), and
– a d-dimensional input vector

• Result: a d-dimensional output vector which is like the input,
except some dimensions have been (partially) “forgotten”

14

CS546 Machine Learning in NLP

RNNs for Language Modeling

• If our vocabulary consists of 𝑉 words, the output layer
(at each time step) has 𝑉 units, one for each word
(one-hot encoding)

• The softmax gives a distribution over the 𝑉 words for
the next word

• To compute the probability of a string w0w1…wn wn+1

(where 𝑤0 = <s>, and 𝑤n+1 = </s>), feed in wi as input
at time step 𝑖 and compute

∏ P(wi|w0 . . . wi−1)
i=1..n+1

CS546 Machine Learning in NLP
15

RNNs for Sequence Labeling

• In sequence labeling, we want to assign a label or
tag 𝑡𝑖 to each word𝑤𝑖

• Now the output layer gives a distribution over the
T possible tags.

• The hidden layer contains information about
the previous words and the previous tags.

• To compute the probability of a tag sequence 𝑡1…𝑡𝑛
for a given string 𝑤1…𝑤𝑛 feed in 𝑤𝑖 (and possibly
𝑡𝑖-1) as input at time step i and compute
P(𝑡𝑖 | 𝑤1…𝑤𝑖-1, 𝑡1…𝑡𝑖-1)

CS546 Machine Learning in NLP
16

Basic RNNs for Sequence Labeling

Each time step has a distribution over output classes

Extension: add a HMM/CRF layer to capture
dependencies among labels of adjacent tokens.

Janet will back the bill

RNN

CS546 Machine Learning in NLP
17

RNNs for Sequence Classification

If we just want to assign a label to the entire
sequence, we don’t need to produce output at each
time step, so we can use a simpler architecture.

We can use the hidden state of the last word in the
sequence as input to a feedforward net:

CS546 Machine Learning in NLP
18

Stacked RNNs

We can create an RNN that has “vertical” depth
(at each time step) by stacking multiple RNNs:

CS546 Machine Learning in NLP
19

Comparison with Dynamic Baysian Networks

20

Bidirectional RNNs

Unless we need to generate a sequence, we can run two RNNs
over the input sequence — one in the forward direction,
and one in the backward direction.
Their hidden states will capture different context information

is typically
concatenation (or element-wise addition, multiplication)
Hidden state of biRNN: h(t) = h(t) ⊕ h(t) wherebi fw bw

Computational
specification of

smoothing?

CS546 Machine Learning in NLP

⊕

21

Bidirectional RNNs for sequence classification

x1 x2 x3 xn

RNN 1 (Left to Right)

RNN 2 (Right to Left)

+

whn_for

h1_back

Combine the hidden state of the last word of the
forward RNN and the hidden state of the first word of
the backward RNN into a single vector

Softmax

CS546 Machine Learning in NLP
22

• Task: Read an input sequence and return an output sequence
• Machine translation: translate source into target language
• Dialog system/chatbot: generate a response

• Reading the input sequence: RNN Encoder

• Generating the output sequence: RNN Decoder

Encoder Decoder

Encoder-Decoder (seq2seq) model

hidden

input

output

CS546 Machine Learning in NLP

<s>

23

Encoder-Decoder (seq2seq) Model

Encoder RNN:
reads in the input sequence
passes its last hidden state to the initial hidden state
of the decoder

Decoder RNN:
generates the output sequence
typically uses different parameters from the encoder
may also use different input embeddings

CS546 Machine Learning in NLP
24

In general, any function over the encoder’s output
can be used as a representation of the context we
want to condition the decoder on.

We can feed the context in at any time step during
decoding (not just at the beginning).

A More General View of seq2seq

CS546 Machine Learning in NLP
25

Attention Mechanisms

s=1..S

Define a distribution α = (α1t, . . . , αSt) over the S
elements of the input sequence that depends on the current
output element t (with ∑ αst = 1; ∀s∈1...S 0 ≤ αst ≤ 1)

Use this distribution to compute a weighted average of the
input: ∑ αstos and feed that into the decoder.

s=1..S

https://www.tensorflow.org/tutorials/text/nmt_with_attention

CS546 Machine Learning in NLP
26

https://www.tensorflow.org/tutorials/text/nmt_with_attention

Remember? Dynamic Context Windows in word2vec

Marco saw a furry little wampimuk hiding in the tree.

Word2vec: !
"

#
"

$
"

"
"

"
"

$
"

#
"

!
"

GloVe: !
"

!
$

!
#

!
!

!
!

!
#

!
$

!
"

Aggressive: !
%

!
"

!
#

!
!

!
!

!
#

!
"

!
%

27

Attention Mechanisms

https://www.tensorflow.org/tutorials/text/nmt_with_attention

ht: current hidden state of decoder (target)
h’s: output of the encoder for word s (source)
Attention weights αts: distribution over h’s

αts depends on score(ht, h’s)
Context vector ct: weighted average of h’s
Attention vector αt: computed by feedforward
layer over ct and ht

CS546 Machine Learning in NLP
28

https://www.tensorflow.org/tutorials/text/nmt_with_attention

From RNNs to LSTMs

• In simple RNNs, hidden state depends
on previous hidden state and on the input:
• ht = g(Wh[ht−1, xt] + bh) with e.g. g=tanh

• Vanishing gradient problem
• RNNs can’t be trained effectively on long sequences

• LSTMs (Long Short-Term Memory networks) to the rescue
• Additional cell state passed through the network and

updated at each time step
• LSTMs define four different layers (gates) that read in

the previous hidden state and current input.

CS546 Machine Learning in NLP
29

Long Short Term Memory Networks (LSTMs)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
CS546 Machine Learning in NLP

30

Long Short Term Memory Networks (LSTMs)

At time , the LSTM cell reads in
— a c-dimensional previous cell state vector c

— a d-dimensional current input vector
At time , the LSTM cell returns
— a c-dimensional previous cell state vector ct

t−1
— an h-dimensional previous hidden state vector ht−1

t

t

— an h-dimensional previous hidden state vector ht
(which may also be passed to an output layer)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
CS546 Machine Learning in NLP

31

Bi-LSTM Encoder w/ HMM/CRF Layer

32

Contextualized
Representations

High
computational

effort

Embeddings from LanguageModels

Replace static embeddings (lexicon lookup) with
context-dependent embeddings (produced by a deep
language model)

=> Each token’s representation is a function of
the entire input sentence, computed by a deep
(multi-layer) bidirectional language model

=> Return for each token a (task-dependent) linear
combination of its representation across layers.

=> Different layers capture different information

CS546 Machine Learning in NLP
33

Embeddings from Language Model (ELMO)

• RNN-based language models (trained from lots of
sentences)

https://arxiv.org/abs/1802.05365

e.g., given “潮水退了就知道誰沒穿褲子”

RNN

RNN

<BOS> 潮水 退了

RNN

RNN

RNN

RNN

潮水 退了 就

…

…

RNN

RNN

退了 就 知道

RNN

RNN

RNN

RNN

潮水 退了 就

…

…

…

…

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

潮水 退了 就 知道 誰 沒穿 褲子 = When the tide goes out, you know who's not wearing pants.
34

https://arxiv.org/abs/1802.05365
http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

ELMO

RNN

RNN

<BOS> 潮水 退了

RNN

RNN

RNN

RNN

…

…

RNN

RNN

退了 就 知道

RNN

RNN

RNN

RNN

…

…

…

…

RNN RNN RNN … RNN RNN RNN ……

Each layer in deep LSTM can generate a
latent representation.

Which one should we use???

ℎ!

ℎ"

… … … … … …

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

35

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

ELMO

潮水 退了 就 知道 ……

ELMO
Learned with the
down stream tasks

= 𝛼! + 𝛼"

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

36

High
computational

effort,
word2vec to
the rescue?

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

Transformers

Sequence transduction model
(no convolutions or recurrence)
— Attention not only during decoding but also

during encoding
— Self-attention

— Captures more long-range dependencies than CNNs
with fewer parameters

— Easier to parallelize than recurrent nets
— Faster to train than recurrent nets

37

Sequence

Hard to parallelize !

𝑎#𝑎$𝑎"𝑎!

𝑏#𝑏$𝑏"𝑏!

Previous layer

Next layer

𝑎#𝑎$𝑎"𝑎!

Using CNN to replace RNN

Transformer by 李宏毅 Hung-yi Lee

………………

Sequence

Hard to parallelize !

𝑎#𝑎$𝑎"𝑎!

𝑏#𝑏$𝑏"𝑏!

Previous layer

Next layer

𝑎#𝑎$𝑎"𝑎!

(CNNs can be parallelized)

……

𝑏! 𝑏" 𝑏$ 𝑏#

Filters in higher layer can
consider longer sequence

Using CNNs to replace RNN

Transformer by 李宏毅 Hung-yi Lee

Self-Attention

𝑎#𝑎$𝑎"𝑎!

𝑏#𝑏$𝑏"𝑏!

𝑎#𝑎$𝑎"𝑎!

𝑏#𝑏$𝑏"𝑏!

Self-Attention Layer

𝑏!, 𝑏", 𝑏$, 𝑏# can be computed
in a parallel way

𝑏% is obtained based on the
whole input sequence.

You can try to replace anything that has been done by RNN
with self-attention.

Transformer by 李宏毅 Hung-yi Lee

Intelligent Agents

1d-CNNs LSTMs ELMo Transformers BERT GPT

Ralf Möller
Universität zu Lübeck

Institut für Informationssysteme

Recap: Embeddings from Language MOdel (ELMO)

潮水 退了 就 知道 ……

ELMO
Learned with the
downstream tasks

= 𝛼! + 𝛼"

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

42

Sequence-based word
embeddings

(rather than bag-of-
words based)

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

Pre-Training & Fine Tuning

Pretrained
Model

ELMo
pre-trained on large corpus
(in self-supervised fashion)

Embedding

2) Feature-based training ("fine-tuning")
on target/“downstream“ task

(supervised learning)

One or more layers

𝛼!
𝛼"

Integrate ELMos into other embeddings

44

https://www.slideshare.net/shuntaroy/a-review-of-deep-contextualized-word-representations-peters-2018

Recap: Attention in Recurrent Encoding/Decoding

45

CS546 Machine Learning in NLP

Recap: Transformers

Sequence transduction model
(no convolutions or recurrence)
— Attention not only during decoding but also

during encoding
— Self-attention

— Captures more long-range dependencies than
recurrent architectures (and CNNs) with fewer
parameters

— Easier to parallelize than recurrent nets
— Faster to train than recurrent nets

46

𝑥! 𝑥" 𝑥$ 𝑥#

𝑣!𝑘!𝑞! 𝑣"𝑘"𝑞" 𝑣$𝑘$𝑞$ 𝑣#𝑘#𝑞#

𝑎#𝑎$𝑎"𝑎!

Self-attention 𝑞: query (to match others)

𝑘: key (to be matched)

𝑣: information to be extracted

𝑎% = 𝑊𝑥%

𝑞% = 𝑊&𝑎%

𝑘% = 𝑊'𝑎%

𝑣% = 𝑊(𝑎%

https://arxiv.org/abs/1706.03762

Attention is
all you need.

Transformer by 李宏毅 Hung-yi Lee

𝑥! 𝑥" 𝑥$ 𝑥#

𝑣!𝑘!𝑞! 𝑣"𝑘"𝑞" 𝑣$𝑘$𝑞$ 𝑣#𝑘#𝑞#

𝛼!,! 𝛼!,"

𝛼!,$ = 𝑞! $ 𝑘$/ 𝑑Scaled Dot-Product Attention:

Self-attention

𝛼!,$ 𝛼!,#
dot product

d is the dim of 𝑞 and 𝑘

𝑎#𝑎$𝑎"𝑎!

Take each query q, go to each key k, do attention

Transformer by 李宏毅 Hung-yi Lee

𝑥! 𝑥" 𝑥$ 𝑥#

𝑣!𝑘!𝑞! 𝑣"𝑘"𝑞" 𝑣$𝑘$𝑞$ 𝑣#𝑘#𝑞#

𝛼!,! 𝛼!,"

Self-attention

𝛼!,$ 𝛼!,#

Soft-max

/𝛼!,! /𝛼!," /𝛼!,$ /𝛼!,#

(𝛼!,$ = 𝑒𝑥𝑝 𝛼!,$ /,
%
𝑒𝑥𝑝 𝛼!,%

𝑎#𝑎$𝑎"𝑎!

Transformer by 李宏毅 Hung-yi Lee

𝑥! 𝑥" 𝑥$ 𝑥#

𝑣!𝑘!𝑞! 𝑣"𝑘"𝑞" 𝑣$𝑘$𝑞$ 𝑣#𝑘#𝑞#

Self-attention

/𝛼!,! /𝛼!," /𝛼!,$ /𝛼!,#

𝑎#𝑎$𝑎"𝑎!

𝑏!

Considering the whole sequence
𝑏! =,

$

(𝛼!,$𝑣$

Transformer by 李宏毅 Hung-yi Lee

𝑥! 𝑥" 𝑥$ 𝑥#

𝑣!𝑘!𝑞! 𝑣"𝑘"𝑞" 𝑣$𝑘$𝑞$ 𝑣#𝑘#𝑞#

Self-attention

/𝛼",! /𝛼"," /𝛼",$ /𝛼",#

𝑎#𝑎$𝑎"𝑎!

𝑏"

𝑏" =,
$

(𝛼",$𝑣$

Transformer by 李宏毅 Hung-yi Lee

Take each query q, go to each key k, do attention

𝑥! 𝑥" 𝑥$ 𝑥#

Self-attention

𝑎#𝑎$𝑎"𝑎!

𝑏! 𝑏" 𝑏$ 𝑏#

Self-Attention Layer

𝑏!, 𝑏", 𝑏$, 𝑏# can be computed in parallel

Transformer by 李宏毅 Hung-yi Lee

Self-attention

𝑥! 𝑥" 𝑥$ 𝑥#

𝑣!𝑘!𝑞! 𝑣"𝑘"𝑞" 𝑣$𝑘$𝑞$ 𝑣#𝑘#𝑞#

𝑎#𝑎$𝑎"𝑎!

𝑞% = 𝑊&𝑎%

𝑘% = 𝑊'𝑎%

𝑣% = 𝑊(𝑎%

𝑞!𝑞"𝑞$𝑞# = 𝑊& 𝑎!𝑎"𝑎$𝑎#

= 𝑊'

= 𝑊(

𝑎!𝑎"𝑎$𝑎#

𝑎!𝑎"𝑎$𝑎#𝑣! 𝑣$𝑣#𝑣"

𝑘! 𝑘$𝑘#𝑘"

I

I

I

𝑄

𝐾

𝑉

Transformer by 李宏毅 Hung-yi Lee

𝑣!𝑘!𝑞! 𝑣"𝑘"𝑞" 𝑣$𝑘$𝑞$ 𝑣#𝑘#𝑞#

Self-attention

/𝛼!,! /𝛼!," /𝛼!,$ /𝛼!,#

𝑏!

𝛼!,! = 𝑞!𝑘!

(ignore 𝑑 for simplicity)

𝛼!," = 𝑞!𝑘"

𝛼!,$ = 𝑞!𝑘$ 𝛼!,# = 𝑞!𝑘# 𝑞!
𝑘!

𝑘"

𝑘$

𝑘#
=

𝛼!,!
𝛼!,"
𝛼!,$
𝛼!,#

Transformer by 李宏毅 Hung-yi Lee

Self-attention

/𝛼",! /𝛼"," /𝛼",$ /𝛼",#

𝑏"

𝑏" =,
$

(𝛼",$𝑣$

𝑣!𝑘!𝑞! 𝑣"𝑘"𝑞" 𝑣$𝑘$𝑞$ 𝑣#𝑘#𝑞#

𝑞!
𝑘!

𝑘"

𝑘$

𝑘#
=

𝛼!,!
𝛼!,"
𝛼!,$
𝛼!,#

𝑞"

𝛼",!
𝛼","
𝛼",$
𝛼",#

𝛼$,!
𝛼$,"
𝛼$,$
𝛼$,#

𝛼#,!
𝛼#,"
𝛼#,$
𝛼#,#

𝐾&𝐴
𝑄
𝑞$ 𝑞#

/𝛼!,!
/𝛼!,"
/𝛼!,$
/𝛼!,#

/𝛼",!
/𝛼","
/𝛼",$
/𝛼",#

/𝛼$,!
/𝛼$,"
/𝛼$,$
/𝛼$,#

/𝛼#,!
/𝛼#,"
/𝛼#,$
/𝛼#,#

4𝐴
Transformer by 李宏毅 Hung-yi Lee

softmax

Self-attention

/𝛼",! /𝛼"," /𝛼",$ /𝛼",#

𝑏"

𝑏" =,
$

(𝛼",$𝑣$

𝑣!𝑘!𝑞! 𝑣"𝑘"𝑞" 𝑣$𝑘$𝑞$ 𝑣#𝑘#𝑞#

/𝛼!,!
/𝛼!,"
/𝛼!,$
/𝛼!,#

/𝛼",!
/𝛼","
/𝛼",$
/𝛼",#

/𝛼$,!
/𝛼$,"
/𝛼$,$
/𝛼$,#

/𝛼#,!
/𝛼#,"
/𝛼#,$
/𝛼#,#

4𝐴

𝑣! 𝑣$𝑣#𝑣"

𝑉
=𝑏!𝑏"𝑏$𝑏#

O

Transformer by 李宏毅 Hung-yi Lee

Self-attention

Can be optimized with GPUs

= 𝑊&

= 𝑊'

= 𝑊(

Q

K

V

𝐾& QA:A

:AV=

I

O

=

I

II

O

Transformer by 李宏毅 Hung-yi Lee

softmax

Multi-head Self-attention

𝑘% 𝑣%

𝑎%

𝑞%

(2 heads as example)

𝑞%,"𝑞%,! 𝑘%,"𝑘%,! 𝑣%,"𝑣%,!

𝑘* 𝑣*

𝑎*

𝑞*

𝑞*,"𝑞*,! 𝑘*,"𝑘*,! 𝑣*,"𝑣*,!

𝑏%,!

𝑞% = 𝑊&𝑎%

𝑞%,! = 𝑊&,!𝑞%

𝑞%," = 𝑊&,"𝑞%

Transformer by 李宏毅 Hung-yi Lee

Multi-head Self-attention

𝑘% 𝑣%

𝑎%

𝑞%

(2 heads as example)

𝑞%,"𝑞%,! 𝑘%,"𝑘%,! 𝑣%,"𝑣%,!

𝑘* 𝑣*

𝑎*

𝑞*

𝑞*,"𝑞*,! 𝑘*,"𝑘*,! 𝑣*,"𝑣*,!

𝑏%,!

𝑏%,"

𝑞% = 𝑊&𝑥%

𝑞%,! = 𝑊&,!𝑞%

𝑞%," = 𝑊&,"𝑞%

Transformer by 李宏毅 Hung-yi Lee

Multi-head Self-attention

𝑘% 𝑣%

𝑎%

𝑞%

(2 heads as example)

𝑞%,"𝑞%,! 𝑘%,"𝑘%,! 𝑣%,"𝑣%,!

𝑘* 𝑣*

𝑎*

𝑞*

𝑞*,"𝑞*,! 𝑘*,"𝑘*,! 𝑣*,"𝑣*,!

𝑏%,!

𝑏%,"
𝑏%

𝑏% = 𝑊+
𝑏%,!

𝑏%,"

Transformer by 李宏毅 Hung-yi Lee

Positional Encoding

• No position information in self-attention.
• Each position has a unique positional vector
𝑒% (not learned from data)

• Idea: Append each 𝑥% is with a one-hot
vector 𝑝%

𝑥%

𝑣%𝑘%𝑞%

𝑎%𝑒% +

𝑝% =
1
0

0…
…

…

i-th
dim

𝑥%

𝑝%
𝑊

𝑊, 𝑊-

𝑊,

𝑊-+

= 𝑥%

𝑝%

𝑎%

𝑒%

Transformer by 李宏毅 Hung-yi Lee

More clever solution used in
the original paper

Seq2seq with Attention

𝑥#𝑥$𝑥"𝑥!

ℎ#ℎ$ℎ"ℎ!

Encoder

𝑐! 𝑐"

Decoder

𝑐$𝑐"𝑐!

𝑜! 𝑜" 𝑜$

Self-Attention Layer
Self-Attention

Layer

Transformer by 李宏毅 Hung-yi Lee

Transformer

Encoder Decoder

Using Chinese to
English translation as
example

機 器 學 習 <BOS>

machine

machine

learning

Transformer by 李宏毅 Hung-yi Lee

…

Transformer

𝑏.

+

𝑎

𝑏

Masked: attend on
the generated
sequence [MASK]

attend on the
input sequence

https://arxiv.org
/abs/1607.06450

Batch Size

𝜇 = 0, 𝜎 = 1

𝜇 = 0,
𝜎 = 1

https://www.yout
ube.com/watch?v
=BZh1ltr5Rkg

Layer Norm:

Batch Norm:
Layer
Norm

Layer

Batch

Transformer by 李宏毅 Hung-yi Lee

Masked Multihead Attention

• Decoder should work in parallel as well
• During training all output tokens are known
• Copy output #token times
• For each position use [MASK] token in copies
• Attention becomes possible during training also for

decoding
• Train decoder such that [MASK] is replaced correctly

while paying attention to the overall output training
data

65

Attention Visualization

https://arxiv.org/abs/1706.03762
Transformer by 李宏毅 Hung-yi Lee

Attention Visualization

The encoder self-attention distribution for the word “it” from the 5th to the 6th layer of a
Transformer trained on English to French translation (one of eight attention heads).

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Transformer by 李宏毅 Hung-yi Lee

Multi-head
Attention

Transformer by 李宏毅 Hung-yi Lee

Pre-Training & Fine Tuning

Pretrained
Model

1) Download LM
pre-trained on large corpus
(in self-supervised fashion)

Embedding

2) Feature-based training ("fine-tuning")
on target task

(supervised learning)

One or more layers

Usually frozen
after pre-training

! Encoder
○ Bidirectional context
○ Examples: BERT and its variants

! Decoder
○ Language modeling; better for generation
○ Example: GPT-2, GPT-3, LaMDA

! Encoder-Decoder
○ Sequence-to-sequence model
○ Examples: Transformer, BART, T5

2Model Pre-Training

https://arxiv.org/pdf/2201.08239.pdf

! Encoder
○ Bidirectional context
○ Examples: BERT and its variants

◉ Decoder
○ Language modeling; better for generation
○ Example: GPT-2, GPT-3, LaMDA

◉ Encoder-Decoder
○ Sequence-to-sequence model
○ Examples: Transformer, BART, T5

3Model Pre-Training

https://arxiv.org/pdf/2201.08239.pdf

Bidirectional Encoder Representations from Transformers (BERT)

• BERT = Encoder of Transformer

Encoder

BERT

潮水 退了 就 知道 ……

Learned from a large amount of text
without annotation

……

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

72

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

Training of BERT

• Approach 1:
Masked LM

BERT

潮水 退了 就 知道……

……

[MASK]

Linear Multi-class
Classifier

Predicting the
masked word

vocabulary
size

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

73

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

BERT

[CLS] 醒醒 吧 [SEP]

Training of BERT – Approach 2: Next Sentence Prediction

你 沒有 妹妹

Linear Binary
Classifier

yes [CLS]: the position that outputs
classification results
[SEP]: the boundary of two sentences
Approaches 1 and 2 are used at the same time.

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

74Wake up , you have no sister

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

BERT

[CLS] 醒醒 吧 [SEP]

Training of BERT – Approach 2: Next Sentence Prediction

眼睛 業障 重

Linear Binary
Classifier

No [CLS]: the position that outputs
classification results
[SEP]: the boundary of two sentences
Approaches 1 and 2 are used at the same time.

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

75Wake up , eyes have heavy karma

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

How to use BERT – Case 1

BERT

[CLS] w1 w2 w3

Linear
Classifier

class

Input: single sentence,
output: class

sentence

Example:
Sentiment analysis,
Document
Classification

Trained from
Scratch

Fine-tune

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

76

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

How to use BERT – Case 2

BERT

[CLS] w1 w2 w3

Linear
Cls

class

Input: single sentence,
output: class of each word

sentence

Example: Semantic role
labelling

Linear
Cls

class

Linear
Cls

class

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

77

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

Linear
Classifier

w1 w2

How to use BERT – Case 3

BERT

[CLS] [SEP]

Class

Sentence 1 Sentence 2

w3 w4 w5

Input: two sentences, output: class
Example: Natural Language Inference

Given a “premise”, determining
whether a “hypothesis” is T/F/ unknown.

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

78

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

How to use BERT – Case 4

• Extraction-based Question
Answering (QA) (E.g. SQuAD)

𝐷 = 𝑑!, 𝑑", ⋯ , 𝑑/
𝑄 = 𝑞!, 𝑞", ⋯ , 𝑞/

QA
Model

output: two integers (𝑠, 𝑒)

𝐴 = 𝑞0, ⋯ , 𝑞1

Document:

Query:

Answer:

𝐷
𝑄

𝑠
𝑒

17

77 79

𝑠 = 17, 𝑒 = 17

𝑠 = 77, 𝑒 = 79

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

79
S=start, e=end

https://rajpurkar.github.io/SQuAD-explorer/

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

q1 q2

How to use BERT – Case 4

BERT

[CLS] [SEP]
question document

d1 d2 d3

dot product

Softmax

0.50.3 0.2

The answer is “d2d3”.
s = 2, e = 3

Learned
from scratch

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

80

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

BERT Pre-Training & Fine Tuning

• Keep BERT frozen after pre-training
• Create BERT embeddings for labeled dataset for "downstream task"

and train new model on these embeddings

BERT
Model

1) Download BERT
pre-trained on large corpus
(in self-supervised fashion)

Embedding

2) Feature-based training ("fine-tuning")
on target task

(supervised learning)

One or more layers

q1 q2

How to use BERT – Case 4

BERT

[CLS] [SEP]
question document

d1 d2 d3

dot product

Softmax

0.20.1 0.7

The answer is “d2d3”.
s = 2, e = 3

Learned
from scratch

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

82

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

Example Application: Summarization

https://arxiv.org/abs/1801.10198

Summarizer

Document Set

Transformer by 李宏毅 Hung-yi Lee

Can BERT be
used to

summarize text?

BERT as a Markov Random Field Language Model

• Wang et al. show that BERT
(as described by Devlin et al., 2018)
is essentially a Markov random field language model

84

Alex Wang, Kyunghyun Cho. BERT has a Mouth, and It Must Speak: BERT as
a Markov Random Field Language Model. Volume:
In Proc. of the Workshop on Methods for Optimizing and Evaluating Neural
Language Generation, June 2019.
https://arxiv.org/abs/1902.04094

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

https://arxiv.org/abs/1902.04094
http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

Recap: From word2vec/ELMo via Transformers to BERT

• Language modeling is the “ultimate” NLP task
– I.e., a perfect language model is also a perfect question

answering/entailment/sentiment analysis model
– Training a massive language model learns millions of

latent features which are useful for these other NLP tasks

• E.g., for natural language inference
– No internal “logical” representation
– Use language directly to infer new propositions

• What kind of a thing is the meaning of a sentence?
• What concrete phenomena do you have to deal with to

understand a sentence?

• BERT was just a start – many extensions in the literature
85https://nlitutorial.github.io

◉ Encoder
○ Bidirectional context
○ Examples: BERT and its variants

! Decoder
○ Language modeling; better for generation
○ Example: GPT-2, GPT-3, LaMDA

◉ Encoder-Decoder
○ Sequence-to-sequence model
○ Examples: Transformer, BART, T5

6 Model Pre-Training

https://arxiv.org/pdf/2201.08239.pdf

GPT (Generative Pre-trained Transformer)

• Developed by OpenAI
• Unidirectional: trained to predict next word in a sentence

GPT (110 million parameters)
Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by
generative pre-training. https://cdn.openai.com/research-covers/language-unsupervised/
language_understanding_paper.pdf

GPT-2 1.5 billion parameters)
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised
multitask learners. OpenAI blog, 1(8), 9.
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

GPT-3 (175 billion parameters)
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). Language
models are few-shot learners. arXiv preprint arXiv:2005.14165. https://arxiv.org/abs/2005.14165

Generative Pre-Training (GPT)

https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

ELMO
(94M)

BERT
(340M)

GPT-2
(1.5B)

Transformer
Decoder

88

https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

Generative Pre-Training (GPT)

𝑣!𝑘!𝑞! 𝑣"𝑘"𝑞" 𝑣$𝑘$𝑞$ 𝑣#𝑘#𝑞#

𝑎#𝑎$𝑎"𝑎!

<BOS> 潮水

/𝛼",! /𝛼","

𝑏"

Many Layers …

退了

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

89退了

Autoregression
AR(1)

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

Generative Pre-Training (GPT)

𝑣!𝑘!𝑞! 𝑣"𝑘"𝑞" 𝑣$𝑘$𝑞$ 𝑣#𝑘#𝑞#

𝑎#𝑎$𝑎"𝑎!

<BOS> 潮水

/𝛼$," /𝛼$,$

𝑏$

Many Layers …

就

退了

/𝛼$,!

就
http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

90

Attention on generated
sequence as a whole

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

Application: Summaries (Open AI)

LLMs of the GPT family

• Generate term papers
• Generate code
• Generate Powerpoint presentations
• Generate useful completions of texts in Word?
• …

• The successor to GPT-3, most likely called GPT-4,
is expected to be unveiled in the near future,
perhaps as soon as 2023

• Interim versions: GPT-3.5, GPT-3.6
95

Compatibility vs. Alignment in LLMs

96

A model's capability is typically
evaluated by how well it is able to
optimize its objective function, the
mathematical expression that defines
the goal of the model

Alignment, on the other hand, is
concerned with what we actually
want the model to do versus what it
is being trained to do

Models like the original GPT-3 are misaligned

Assessment GPT-3

• Capable of generating human-like text, but they may not always produce
output that is consistent with human expectations or desirable values

• In practical applications, however, these models are intended to perform
some form of valuable cognitive work,

– and there is a clear divergence between the way these models are trained and
the way we would like to use them

• Humans generate language by choosing text sequences that are best for
the given situation,

– using our background knowledge and common sense to guide this process

• Language model training strategies can produce misalignment
(e.g., using [MASK])

– Model which is only trained to predict the next word (or a masked
word) in a text sequence, may not necessarily be learning some
higher-level representations of its meaning

– Model struggles to generalize for tasks or contexts that require a
deeper understanding of language

97

Train on Curated Dataset

99

InstructGPT: Reinforcement Learning from Human Feedback (RLHF)

1. Pretraining a language model (LM),
– OpenAI used a smaller version of GPT-3 for its first popular RLHF model, InstructGPT

2. Gathering data and training a reward model (RM, aka preference model), and
– Get a model that takes in a sequence of text, and returns a scalar reward

which should numerically represent the human preference
– The training dataset of prompt-generation pairs for the RM is generated by

sampling a set of prompts from a predefined dataset
3. Fine-tuning the LM with reinforcement learning

101

https://huggingface.co/blog/rlhf

Train a Reward (Preference) Model

102ELO rating: https://en.wikipedia.org/wiki/Elo_rating_system

Fine-Tuning

• Human annotators are used to rank the generated text outputs from the LM.
– One may initially think that humans should apply a scalar score directly to each piece

of text in order to generate a reward model, but this is difficult to do in practice.
– The differing values of humans cause these scores to be uncalibrated and noisy.

Instead, rankings are used to compare the outputs of multiple models and create a
much better regularized dataset.

• There are multiple methods for ranking the text.
– One method that has been successful is to have users compare generated text from

two language models conditioned on the same prompt.
– By comparing model outputs in head-to-head matchups, an Elo system can be used to

generate a ranking of the models and outputs relative to each-other.
– These different methods of ranking are normalized into a scalar reward signal for

training

• At this point in the RLHF system, we have an initial language model that can be
used to generate text and a preference model that takes in any text and assigns it
a score of how well humans perceive it. Next, we use reinforcement learning (RL)
to optimize the original language model with respect to the reward model.

103

https://huggingface.co/blog/rlhf
ELO rating: https://en.wikipedia.org/wiki/Elo_rating_system

Reinforcement Learning

• Policy is a language model that takes in a prompt and returns a sequence of text
(or just probability distributions over text).

• The action space of this policy is all the tokens corresponding to the vocabulary of
the language model (often on the order of 50k tokens) and

• the observation space is the possible input token sequences, which is also quite
large (size of vocabulary ^ number of input tokens).

• The reward function is a combination of the preference model and a constraint on
policy shift.

• Fine-tuning some or all of the parameters of a copy of the initial LM with a policy-
gradient RL algorithm, Proximal Policy Optimization (PPO)

• Parameters of the LM are frozen because fine-tuning an entire 10B or 100B+
parameter model is prohibitively expensive (for more, see Low-Rank Adaptation
(LoRA) for LMs or the Sparrow LM from DeepMind)

104

https://huggingface.co/blog/rlhf

Reinforcement Learning

105

https://huggingface.co/blog/rlhf

Intelligent Agents

1d-CNNs LSTMs ELMo Transformers BERT GPT

Ralf Möller
Universität zu Lübeck

Institut für Informationssysteme

AE and AR

Autoencoding(AE) Language Modeling: The AE language model aims to
reconstruct the original data from
corrupted input.

Corrupted input: The corrupted
input means we use [MASK] to
replace the original token

Example:
BERT

Can be implemented with self-attention

AE and AR

Autoregressive (AR)
language modeling:

An autoregressive model’s
output ht at time t depends on not
just xt, but also all xs from previous
time steps.

given a text sequence x = (x1, · · · , xT),
AR language modeling factorizes the
likelihood into a forward
product. p(x) = ∏p(xt | x<t)

Examples:
GPT , ELMO

Can also be implemented with attention
(GPT, not ELMO)

Summarization

• Extractive Text Summarization
– The traditional method with the main objective to identify the

significant sentences of the text and add them to the summary. Note
that the summary obtained contains exact sentences from the
original text data.

– Can be done with encoder (e.g., BERT)

• Abstractive Text Summarization
– The advanced method, with the approach to identify the important

sections, interpret the context and reproduce the text in a new way.
This ensures that the core information is conveyed through the
shortest text possible. Note that here, the sentences, in summary, are
generated by the model, not just extracted from the original text
data.

– Need Decoder (e.g., GPT-x, PEGASUS)

109

https://medium.com/analytics-vidhya/text-summarization-using-bert-gpt2-xlnet-5ee80608e961
https://ai.googleblog.com/2020/06/pegasus-state-of-art-model-for.html

Summarization with attention-based AE + AR

Summarizer

Document Set

No recurrence in
transformers???

111

Universal Transformer

https://arxiv.org/abs/1807.03819

Universal Transformer

https://ai.googleblog.com/2018/08/moving-beyond-translation-with.html

https://ai.googleblog.com/2018/08/moving-beyond-translation-with.html

Costs: Not for the faint hearted

• $2.5k - $50k (110 million parametermodel)
• $10k - $200k (340 million parameter model)
• $80k - $1.6m (1.5 billion parameter model)

http://arxiv.org/abs/2004.08900

113

http://arxiv.org/abs/2004.08900

Byte Pair Encoding (BPE)
03

Word embedding sometimes is too high level, pure character embedding
too low level. For example, if we have learned

old older oldest
We might also wish the computer to infer

smart smarter smartest

But at the whole word level, this might not be so direct. Thus, the idea is to
break the words up into pieces like er, est, and embed frequent fragments of
words.

GPT adapts this BPE scheme.

Tricks: Subtoken Encoding

CS 886 Deep Learning for Biotechnology, Ming Li

Byte Pair Encoding (BPE)03

GPT uses BPE scheme. The subwords are calculated by:
1. Split word to sequence of characters (add </w> char)
2. Joining the highest frequency pattern.
3. Keep doing step 2, until it hits the pre-defined maximum number of sub-

words or iterations.

Example (5, 2, 6, 3 are number of occurrences)
{‘l o w </w>’: 5, ‘l o w e r </w>’: 2, ‘n e w e s t </w>’: 6, ‘w i d e s t </w>’: 3 }
{‘l o w </w>’: 5, ‘l o w e r </w>’: 2, ‘n e w es t </w>’: 6, ‘w i d es t </w>’: 3 }
{‘l o w </w>’: 5, ‘l o w e r </w>’: 2, ‘n e w est </w>’: 6, ‘w i d est </w>’: 3 } (“est” freq. 9)
{‘lo w </w>’: 5, ‘lo w e r </w>’: 2, ‘n e w est</w>’: 6, ‘w i d est</w>’: 3 } (“lo” freq 7)
…..

Tricks: Subtoken Encoding

CS 886 Deep Learning for Biotechnology, Ming Li

More Powerful Pre-Trained Model – GPT 3

Model
pre-train

task-specific
annotated data

unannotated
data

Model
fine-tune

Model
fine-tune

Pre-Training & Fine-Tuning

Model
pre-train

Model
no learning

Model

Pre-Training & In-Context Learning

no learning

Need to
store new

params

Instruct GPT

Pretraining and Fine-tuning

The Amazing Power of Large Language Models

• Large scale leads to a particularly interesting emergent
behavior called in-context learning

• With in-context learning, the text given to the model is a
written description (optional) plus some examples. The
last example is left unfinished for the model to complete
– Use language models to learn tasks given only a few

examples
– Give the LLM a prompt that consists of a list of input-

output pairs that demonstrate a task
– At the end of the prompt, we append a test input and

allow the LM to make a prediction just by conditioning on
the prompt and predicting the next tokens

117

https://ai.stanford.edu/blog/understanding-incontext/

Example

118

https://ai.stanford.edu/blog/understanding-incontext/

• In-context learning is competitive with models trained with much more
labeled data and is state-of-the-art on LAMBADA (commonsense sentence
completion) and TriviaQA (question answering)

• Other examples: Writing code from natural language descriptions, helping
with app design mockups, and generalizing spreadsheet functions

! Zero-Shot

! One-Shot

! Few-Shot

11 GPT-3 “In-Context” Learning

! Traditional Fine-Tuning

CoQA

𝑑!, 𝑑", ⋯ , 𝑑/,
”Q:”, 𝑞!, 𝑞", ⋯ , 𝑞/,
“A:”

One-shot or Few-shot Learning? GPT-3 175B

• Reading Comprehension

• Summarization 𝑑!, 𝑑", ⋯ , 𝑑/,”TL;DR:”

• Translation
English sentence 1 = French sentence 1

English sentence 2 = French sentence 2

English sentence 3 =

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

120

Tom B. Brown et al.
Language Models are Few-Shot Learners.
https://arxiv.org/abs/2005.14165.
2020.

TL;DR=Too long; didn’t read.

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html
https://arxiv.org/abs/2005.14165

In-context learning: Analysis

• In-context learning describes a different paradigm of
“learning”

• where the model is fed input normally as if it were a
black box,

• and the input to the model describes a new task with
some possible examples

• while the resulting output of the model reflects that new
task as if the model had “learned”

121

Evaluation

122https://blog.inten.to/gpt-3-language-models-are-few-shot-learners-a13d1ae8b1f9

Understanding context learning

• An Explanation of In-context Learning as Implicit
Bayesian Inference
– https://arxiv.org/abs/2111.02080

• Rethinking the Role of Demonstrations: What Makes In-
Context Learning Work?
– https://arxiv.org/abs/2202.12837

• Can in-context learning help us with dialogues?

123

https://arxiv.org/abs/2111.02080
https://arxiv.org/abs/2202.12837

ChatGPT

• Interactive, conversational model
• Part of GPT-3.5 family

– fine-tuned mostly on programming code

• ChatGPT
– is a sibling model to InstructGPT

• ChatGPT is similar but not identical
• slight differences in the data collection setup

– a fine-tuned version of GPT-3.5 that’s essentially
a general-purpose chatbot

• Dialogue format of ChatGPT makes it possible for ChatGPT
to answer followup questions, admit its mistakes, challenge
incorrect premises, and reject inappropriate requests

124

Similar Approaches

• OPT (Meta, LLM)
– https://ai.facebook.com/blog/democratizing-access-to-

large-scale-language-models-with-opt-175b/

• Galactica (Meta, LLM for science)
– https://galactica.org/

• Pegasus (Google, LLM, text summarization)
– https://ai.googleblog.com/2020/06/pegasus-state-of-art-

model-for.html

125

https://ai.facebook.com/blog/democratizing-access-to-large-scale-language-models-with-opt-175b/
https://galactica.org/
https://ai.googleblog.com/2020/06/pegasus-state-of-art-model-for.html

Back to Agents

• Why is few-shot learning important?
• Agents can use pretrained model
• Few-shot learning for specifying dedicated tasks!

• From language models to general intelligence?

• Implementing agents might be difficult
• Is there any hope that ordinary people can get access to

GPT-3 / ChatGPT for fine-tuning?

126

Distillation

• A.k.a., model compression
• Idea has been around for a long time:

• Model Compression (Bucila et al, 2006)
• Distilling the Knowledge in a Neural Network (Hinton et al, 2015)

• Simple technique:
• Train “Teacher”: Use SOTA pre-training + fine-tuning technique to train

model with maximum accuracy

• Label a large amount of unlabeled input examples with Teacher
• Train “Student”: Much smaller model (e.g., 50x smaller) which is

trained to mimic Teacher output
• Student objective is typically Mean Square Error or Cross Entropy

Contextual Word Representations with BERT and Other Pre-trained Language Models

• Example distillation results
• 50k labeled examples, 8M unlabeled examples

• Distillation works much better than pre-training +
fine-tuning with smaller model

Distillation

Well-Read Students Learn
Better: On the Importance of
Pre-training Compact Models
(Turc et al, 2020)

Contextual Word Representations with BERT and Other Pre-trained Language Models

Why does distillation work so well?

Ahypothesis:

• Finetuning mostly just picks up and tweaks existing latent features
• This requires an oversized model, because only a subset of the

features are useful for any given task
• Distillation allows the model to only focus on those features
• Supporting evidence: Simple self-distillation of a small model

(e.g., distilling a smaller BERT model) doesn’t work very well

Contextual Word Representations with BERT and Other Pre-trained Language Models

• GPT-3 was released by OpenAI, has 175 billion parameters
and is not openly available.

• GPT-J is a 6 billion parameter model released by Eleuther AI. The goal of the
group is to democratize huge language models, so they released GPT-J and it
is currently publicly available.

16 GPT-J

https://github.com/TheProtaganist/gpt-j

Summary: Large Language models

• Translating one language into another,
• Summarizing a long document into a brief highlight,
• Answering information-seeking questions
• Open-domain dialog

– converse about any topic
– dialog models should adhere to

Responsible AI practices
– avoid making factual statements that are not

supported by external information sources.

131

https://ai.googleblog.com/2022/01/lamda-towards-safe-grounded-and-high.html

https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
https://ai.googleblog.com/2020/06/pegasus-state-of-art-model-for.html
https://ai.googleblog.com/2021/03/progress-and-challenges-in-long-form.html
https://ai.googleblog.com/2020/01/towards-conversational-agent-that-can.html
https://ai.google/responsibilities/responsible-ai-practices/

