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LaMDA

• “LaMDA: Language Models for Dialog Applications”
• LaMDA is built by fine-tuning a family of Transformer-

based neural language models specialized for dialog, 
with up to 137B model parameters

• Teaching the models to leverage external knowledge 
sources

• Defining objectives and metrics is critical to guide 
training dialog models
– Quality
– Safety
– Groundedness
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https://ai.googleblog.com/2022/01/lamda-towards-safe-grounded-and-high.html

https://arxiv.org/abs/2201.08239
https://blog.google/technology/ai/lamda/
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html


LaMDA: Language Models for Dialog Applications

• Pre-training: multiple public dialogue data (1.56T words)
• Fine-tuning: Quality and Safety scores

• Using one model for both generation and discrimination enables an efficient  
combined generate-and-discriminate procedure.

• “<context><sentinel><response><attribute-
name><rating>”

• “What’s up? RESPONSE not much. SENSIBLE 1”
• “What’s up? RESPONSE not much. INTERESTING 0”
• “What’s up? RESPONSE not much. UNSAFE 0”

https://arxiv.org/pdf/2201.08239.pdf



LaMDA: Language Models for Dialog Applications

• Fine-tuning for external knowledge via a tool set (TS)
• Calculator: “135+7721”→ “7856”
• Translator: “hello in French” → “Bonjour”
• IR system: “How old is Rafael Nadal?” → “Rafael Nadal / Age / 35”

• context + base → “TS, Rafael Nadal’s age”
• snippet: “He is 31 years old right now” + “Rafael Nadal / Age / 35”
• context + base + query + snippet → “User, He is 35 years old right 

now”  
• context + base + query + snippet → “TS, Rafael Nadal’s favorite

song”

• 40K dialog turns (generative data) are labeled ‘correct’ or ‘incorrect’ for  
the ranking task (discriminative data)



LaMDA Goundedness

“When was the Eiffel Tower built?”

LaMDA-Base It was constructed in 1887.
LaMDA to user: Hi, how can I help  
you today? <EOS> […] user to  
LaMDA: When was the Eiffel Tower  
built? <EOS>

LaMDA-Research TS, Eiffel Tower  
construction date TS Eiffel Tower / construction started:

28 January 1887

:
TS to LaMDA-Research: Eiffel Tower
/ construction started: 28January
1887 <EOS>

LaMDA-Research TS, Eiffel Tower complete
when TS Eiffel Tower / date opened: 31  

March 1889

:
TS to LaMDA-Research: Eiffel Tower
/ date opened 31 March 1889 <EOS>

LaMDA-Research User, Work started on it in January  
1887, and it was opened in March 1889.

:
LaMDA-Base to LaMDA-Research: It  
was constructed in 1887. <EOS>



Enhanced Representation through Knowledge Integration (ERNIE)

• Incorporation of knowledge graphs
• Designed for Chinese (ERNIE-baidu)

BERT

ERNIE

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html
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Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang, Maosong Sun, Qun Liu.
ERNIE: Enhanced Language Representation with Informative Entities.
In: Proc. ACL-19, 1441–1451. 2019. https://arxiv.org/abs/1904.09223

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html


Bert SpanBertERNIE-baiduBert-wwm

BERT: Pre-training of deep bidirectional transformers for language understanding (NAACL 19)
Bert-wwm: Pre-Training with Whole Word Masking for Chinese BERT (Arxiv 19)
SpanBERT: Improving Pre-training by Representing and Predicting Spans (TACL 20)
ERNIE-baidu: Enhanced representation through knowledge integration (Arxiv 19)
ERNIE 2.0: A Continual Pre-Training Framework for Language Understanding (AAAI 20)
ERNIE-thu: Enhanced Language Representation with Informative Entities (ACL 19)
K-BERT: Enabling Language Representation with Knowledge Graph (AAAI 20)
KnowBert: Knowledge enhanced contextual word representations (EMNLP 19)
KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation (Arxiv 19)
GLM: Exploiting Structured Knowledge in Text via Graph-Guided Representation Learning (Arxiv 20)
KagNet: Knowledge-Aware Graph Networks for Commonsense Reasoning (EMNLP 19)
CSQA: Graph-Based Reasoning over Heterogeneous External Knowledge for Common sense Question Answering (AAAI 20)
PG: Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering (EMNLP 2020 finding)
MHGRN: Scalable Multi-Hop Relational Reasoning for Knowledge-Aware Question Answering (EMNLP 2020)

ERNIE-thu K-BertKnowBert KEPLER GLM

Knowledge-aware KG-enhanced QA

Knowledge-aware PLMs guided by KG

PGCSQAKagNet MHGRN

Knowledge-aware Pretrained Language Models



Unified Architecture in KG-enhanced QA

Graph Encoder: GNN, Relational Network…

Text Encoder: Bert, XLNet…
Next topic:

Graph encoding



Acknowledgements
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• Slides for this presentation are taken from
– Representation Learning on Networks 

snap.stanford.edu/proj/embeddings-www, WWW 2018
– Efficient Probabilistic Logic Reasoning with Graph Neural Networks

Yuyu Zhang, Xinshi Chen, Yuan Yang, Arun Ramamurthy, Bo Li, Yuan Qi 
& Le Song (slides taken from a presentation by Hengda Shi, Gaohong
Liu and Jian Weng)

– Probabilistic Logic Neural Network for Reasoning, Meng Qu, Jian Tang 
(slides taken from a presentation by Zijie Huang, Roshni Iyer, Alex 
Wang)

• Slides have been adapted (all faults are mine)



Embedding Nodes of a Graph

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018
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• Encode nodes so that …
- similarity in the embedding space approximates …
- similarity in the original network



Embedding Nodes of a Graph
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similarity(u, v) ⇡ z>v zu

Need to define!

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

d-dimensional 
embedding



Recap: Dot Product

Wikipedia

(𝜑)

𝜑

||ba||   



Simple (“Shallow”) Embedding Approaches
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Solve optimization problem
• Select embedding vectors for nodes 

such that “similar” nodes have similar vectors

Various ways to specify similarity of nodes
• Adjacency-based embedding
• Multi-hop embedding
• Random walk approaches

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

More or less clever 
approaches, but 

appropriate similarity 
features should 
better be found 

automatically

Hamilton et al. Representation Learning on Graphs: Methods 
and Applications. IEEE Data Engineering Bulletin on Graph 
Systems. 2017.

Vectors with d components 
(with d being a 

hyperparameter)

Probability that u and v co-occur in a 
random walk over the network

z>u zv ⇡



From “Shallow” to “Deep”
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• Shallow: Define features based on selected features

Z =
Dimension/size of 
embeddings d

One column per node 

Embedding 
matrix

Embedding vector for a specific 
node

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

𝑧!



From “Shallow” to “Deep”
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• Limitations of shallow encoding:
– O(|Vd|) parameters needed

• No parameter sharing
• Every node has its own unique embedding vector 

– Inherently “transductive” (not inductive)
• Impossible to generate embeddings for nodes 

that were not seen during training
– Does not incorporate node features

• Many graphs have nodes with features 
that we can and should leverage

• Need to find embeddings based on holistic view on graph

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Scarselli et al. The Graph Neural Network Model. 
IEEE Transactions on Neural Networks. 2005.



Setup

16

• Assume we have a graph G:
– V is the vertex set.
– A is the adjacency matrix (assume binary).
– X	∈ R𝒎×|𝑽| is a matrix of nodes and their features.

• Categorical attributes, text, image data
– E.g., profile information in a social network.

• Node degrees, clustering coefficients, etc.
• Indicator vectors (i.e., one-hot encoding of each node)

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018



Neighborhood Aggregation
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• Key idea
– Generate node embeddings based on local neighborhoods
– Nodes aggregate information from their neighbor
– Computation graph for every node
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Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018



Neighborhood Aggregation
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Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

• Nodes have embeddings at each layer
• Model can be of arbitrary depth
• “layer-0” embedding of node u

is its input features, i.e., 𝒙𝑢

What’s in the 
boxes?

Layer-2

Layer-1

Layer-0



average of neighbor’s 
previous layer embeddings

Graph Networks (GNNs)
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• Basic approach: Average neighbor messages and apply a linear 
transformation with non-linear normalization

• Define a loss function on the embeddings, ℒ(𝑧')
Initial “layer 0” embeddings are equal to 

node features

kth layer 
embedding of 𝑣

non-linearity 
(e.g., ReLU or tanh)

previous layer 
embedding of v

h0
v = xv

hk
v = �

0

@Wk

X

u2N(v)

hk�1
u

|N(v)| +Bkh
k�1
v

1

A , 8k > 0

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Graph (Neural) Networks



Unsupervised Training
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• After K-layers of neighborhood aggregation, we get output embeddings 
for each node

• Feed these embeddings into any loss function …
• and run stochastic gradient descent 

to train the aggregation parameters 

trainable matrices 
(i.e., what we learn) h0

v = xv

hk
v = �

0

@Wk

X

u2N(v)

hk�1
u

|N(v)| +Bkh
k�1
v

1

A , 8k 2 {1, ...,K}

zv = hK
v

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018



Supervised Training
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• E.g., based on node classification 𝑦! ∈ {0, 1}:

L =
X

v2V

yv log(�(z
>
v ✓)) + (1� yv) log(1� �(z>v ✓))

output node embedding

classification 
weights

node class label

Human or 
bot?

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018



Overview of Model Design
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1) Define a neighborhood 
aggregation function.

zA

2) Define a loss function on the 
embeddings, ℒ(𝑧")

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018



Overview of Model Design
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3) Train on a set of nodes, i.e., a batch 
of compute graphs

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018



Overview of Model
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4) Generate embeddings for nodes as 
needed

Even for nodes we never 
trained on!!!!

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018



Inductive Capability
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INPUT GRAPH
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Compute graph for node A Compute graph for node B

shared parameters

shared parameters

Wk Bk

• Same aggregation parameters are shared for all nodes.
• Number of model parameters is sublinear in |V| …
• … and we can generalize to unseen nodes!

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018



Inductive Capability
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Inductive node embedding          generalize to entirely unseen graphs

e.g., train on protein interaction graph from model organism A and 
generate embeddings on newly collected data about organism B

train on one graph generalize to new graph

zu

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018



Inductive Capability
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train with snapshot new node arrives
generate embedding 
for new node

Many application settings constantly encounter previously unseen nodes.
e.g., Reddit, YouTube, GoogleScholar, ….

Need to generate new embeddings “on the fly”

zu

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018



Neighborhood Aggregation
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What else can we put 
in the box?

• Key distinctions are in how different approaches 
aggregate messages

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018



Graph Convolutional Networks (GCNs)
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• Slight variation on the neighborhood aggregation idea:

• Empirically, this configuration to give the best results 
– More parameter sharing
– Down-weights high degree neighbors

hk
v = �

0

@Wk

X

u2N(v)[v

hk�1
up

|N(u)||N(v)|

1

A

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Semi-supervised classification with graph convolutional networks
TN Kipf, M Welling. In Proc. 5th International Conference on Learning 
Representations (ICLR-17), 2017.

same matrix for self and neighbor 
embeddings

per-neighbor normalization



GraphSAGE (SAmple and aggreGatE)
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• So far we have aggregated the neighbor messages by 
taking their (weighted) average. Can we do better?

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

hk
v = �

�⇥
Ak · agg({hk�1

u , 8u 2 N(v)}),Bkh
k�1
v

⇤�

Any differentiable function that maps 
set of vectors to a single vector.

concatenate self embedding and neighbor embedding 



GraphSAGE Variants
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• Mean:

• Pool:
– Transform neighbor vectors and apply symmetric vector function

• LSTM-based RNNs:
– Apply LSTM to random permutation of neighbors (LSTMs work on seqences)

• Transformers (attention)?

agg =
X

u2N(v)

hk�1
u

|N(v)|

agg = �
�
{Qhk�1

u , 8u 2 N(v)}
�

agg = LSTM
�
[hk�1

u , 8u 2 ⇡(N(v))]
�

element-wise mean/max

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive 
representation learning on large graphs. In Proc. NIPS’17. 2017.



Neighborhood Aggregation
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Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

• GCNs and GraphSAGE generally only  2-3 layers deep
• What if we want to go deeper?

– Overfitting from too many parameters.
– Vanishing/exploding gradients during backpropagation
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Gated Graph Networks
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• Use techniques from recurrent networks 
• Parameter sharing across layers, recurrent state update

same mappings across layers

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Handle >20 layers:
• Allows for complex information about global 

graph structure to be propagated to all nodes



1. Get “message” from neighbors at step k:

2. Update node “state” using Gated Recurrent Unit (GRU)
New node state depends on the old state and 
the message from neighbors:

Aggregation function does not 
depend on kmk

v = W
X

u2N(v)

hk�1
u

Neighborhood aggregation with RNN state update
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hk
v = GRU(hk�1

v ,mk
v)

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Yujia Li Richard Zemel Marc Brockschmidt Daniel Tarlow, 
Gated Graph Sequence Neural Networks
Proceedings of ICLR’16. 2016.

https://arxiv.org/abs/1406.1078


(Sub)graph Embeddings
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• So far we have focused on node-level embeddings…

• But what about subgraph embeddings?

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018



(Sub)graph Embeddings
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• Use representative as a virtual node

• Sum or average node embeddings:

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

zS =
X

v2S

zv

How to embed 
(sub)graphs 
with millions or 
billions of 
nodes?

How to do the 
analog of CNN 
“pooling” on 
networks?

Duvenaud et al. Convolutional Networks on Graphs for Learning Molecular 
Fingerprints. In Proc. ICML 2016.

Li et al. Gated Graph Sequence Neural Networks. In Proc. ICLR. 2016.



Summary so far
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• Key idea: Generate node embeddings based on local 
neighborhoods. 
– GraphSAGE

• Generalized neighborhood aggregation

– Gated Graph Networks
• Neighborhood aggregation + recursion 

(same mappings for a layer) + GRUs

– Graph Convolutional Networks
• Average neighborhood information 

and stack computational networks

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018



Recent Advances in Graph Networks
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• Attention-based neighborhood aggregation
(Weightings for neighbors)
– Graph Attention Networks (Velickovic et al., 2018)
– GeniePath (apaptive receptive paths) (Liu et al., 2018)

• Generalizations based on spectral convolutions
(eigen-decomposition of graph Laplacian 𝐿)
– Geometric Deep Learning (Bronstein et al., 2017)
– Mixture Model CNNs (Monti et al., 2017)

• Speed improvements via subsampling
– FastGCNs (Chen et al., 2018)
– Stochastic GCNs (Chen et al., 2017)

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018
𝐿 = 𝐷 − 𝐴 (degree matrix – adjacency matrix)

https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1802.00910
https://arxiv.org/abs/1611.08097
https://arxiv.org/pdf/1611.08402.pdf
https://arxiv.org/abs/1801.10247
https://arxiv.org/abs/1710.10568


Graph Networks, Embeddings, and KGs

• Graph networks allow for the computation of 
embeddings for nodes in a KG

• With embeddings, existence of links between nodes can 
be estimated (KG completion)
– See also, e.g., node2vec

• If nodes originate from words … 
• … we have another way to embed nodes

– See also, e.g., word2vec
– KG completion based on word embeddings
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node2vec: Scalable Feature Learning for Networks. A. Grover, J. Leskovec. 
ACM SIGKDD International Conference on Knowledge Discovery and Data 
Mining (KDD), 2016


