Intelligent Agents LaMDA, KGs, GNNs

Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme

IM FOCUS DAS LEBEN

LaMDA

- "LaMDA: Language Models for Dialog Applications"
- <u>LaMDA</u> is built by fine-tuning a family of <u>Transformer</u>based neural language models specialized for dialog, with up to 137B model parameters
- Teaching the models to leverage external knowledge sources
- Defining objectives and metrics is critical to guide training dialog models
 - Quality
 - Safety
 - Groundedness

LaMDA: Language Models for Dialog Applications

- Pre-training: multiple public dialogue data (1.56T words)
- Fine-tuning: **Quality** and **Safety** scores
 - Using one model for both *generation* and *discrimination* enables an efficient combined *generate-and-discriminate* procedure.
 - "<context><sentinel><response><attributename><rating>"
 - "What's up? RESPONSE not much. SENSIBLE 1"
 - "What's up? RESPONSE not much. INTERESTING 0"
 - "What's up? RESPONSE not much. UNSAFE 0"

https://arxiv.org/pdf/2201.08239.pdf

LaMDA: Language Models for Dialog Applications

- Fine-tuning for external knowledge via a tool set (TS)
 - Calculator: "135+7721"→ "7856"
 - Translator: "hello in French" \rightarrow "Bonjour"
 - IR system: "How old is Rafael Nadal?" → "Rafael Nadal / Age / 35"
 - context + base → "TS, Rafael Nadal's age"
 - snippet: "He is 31 years old right now" + "Rafael Nadal / Age / 35"
 - context + base + query + snippet → "User, He is 35 years old right now"
 - context + base + query + snippet → "TS, Rafael Nadal's favorite song"
- 40K dialog turns (generative data) are labeled 'correct' or 'incorrect' for the ranking task (discriminative data)

LaMDA Goundedness

IM FOCUS DAS LEBEN

Enhanced Representation through Knowledge Integration (ERNIE)

- Incorporation of knowledge graphs
- Designed for Chinese (ERNIE-baidu)

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang, Maosong Sun, Qun Liu. ERNIE: Enhanced Language Representation with Informative Entities. In: Proc. ACL-19, 1441–1451. **2019**. https://arxiv.org/abs/1904.09223

Knowledge-aware Pretrained Language Models

Bert	Bert-wwm	ERNIE-baid	du Spai	nBert		
	ERNIE-thu	KnowBert	K-Bert	KEPLER	GLM	
Knowledge-aware PLMs guided by KG						
Knowledge-aware KG-enhanced QA						
	KagNet	CSQA	PC	5 N	MHGRN	
BERT: Pre-training of deep bidirectional transformers for language understanding (NAACL 19) Bert-wwm: Pre-Training with Whole Word Masking for Chinese BERT (Arxiv 19) SpanBERT: Improving Pre-training by Representing and Predicting Spans (TACL 20) ERNIE-baidu: Enhanced representation through knowledge integration (Arxiv 19) ERNIE 2.0: A Continual Pre-Training Framework for Language Understanding (AAAI 20) ERNIE-thu: Enhanced Language Representation with Informative Entities (ACL 19) K-BERT: Enabling Language Representation with Knowledge Graph (AAAI 20) KnowBert: Knowledge enhanced contextual word representations (EMNLP 19) KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation (Arxiv 19) GLM: Exploiting Structured Knowledge in Text via Graph-Guided Representation Learning (Arxiv 20) KagNet: Knowledge-Aware Graph Networks for Commonsense Reasoning (EMNLP 19) CSQA: Graph-Based Reasoning over Heterogeneous External Knowledge for Common sense Question Answering (AAAI 20) PG: Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering (EMNLP 2020 finding) MHGRN: Scalable Multi-Hop Relational Reasoning for Knowledge-Aware Question Answering (EMNLP 2020)						

Unified Architecture in KG-enhanced QA

Graph Encoder: GNN, Relational Network...

Text Encoder: Bert, XLNet...

Next topic: Graph encoding

IM FOCUS DAS LEBEN

Acknowledgements

- Slides for this presentation are taken from
 - Representation Learning on Networks snap.stanford.edu/proj/embeddings-www, WWW 2018
 - Efficient Probabilistic Logic Reasoning with Graph Neural Networks Yuyu Zhang, Xinshi Chen, Yuan Yang, Arun Ramamurthy, Bo Li, Yuan Qi & Le Song (slides taken from a presentation by Hengda Shi, Gaohong Liu and Jian Weng)
 - Probabilistic Logic Neural Network for Reasoning, Meng Qu, Jian Tang (slides taken from a presentation by Zijie Huang, Roshni Iyer, Alex Wang)
- Slides have been adapted (all faults are mine)

Embedding Nodes of a Graph

- Encode nodes so that ...
 - similarity in the embedding space approximates ...
 - similarity in the original network

IM FOCUS DAS LEBEN 10

Embedding Nodes of a Graph

IM FOCUS DAS LEBEN 11

Recap: Dot Product

$$\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\|$$
$$\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \varphi$$
$$\cos (\varphi) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$$

Orthogonale Projektion $ec{b}_{ec{a}}$ des Vektors \vec{b} auf die durch \vec{a} bestimmte Richtung

ъ

Wikipedia

Simple ("Shallow") Embedding Approaches

Solve optimization problem

Vectors with d components (with d being a hyperparameter)

Select embedding vectors for nodes such that "similar" nodes have similar vectors

Various ways to specify similarity of nodes

- Adjacency-based embedding
- Multi-hop embedding
- Random walk approaches •

 $\mathbf{z}_u^{\top} \mathbf{z}_v \approx \begin{array}{l} \text{Probability that } u \text{ and } v \text{ co-occur in a} \\ \text{random walk over the network} \end{array}$

Hamilton et al. Representation Learning on Graphs: Methods and Applications. IEEE Data Engineering Bulletin on Graph Systems. 2017.

More or less clever approaches, but appropriate similarity features should better be found automatically

IM FOCUS DAS LEBEN

13

From "Shallow" to "Deep"

• Shallow: Define features based on selected features

IM FOCUS DAS LEBEN 14

From "Shallow" to "Deep"

- Limitations of shallow encoding:
 - O(|Vd|) parameters needed
 - No parameter sharing
 - Every node has its own unique embedding vector
 - Inherently "transductive" (not inductive)
 - Impossible to generate embeddings for nodes that were not seen during training
 - Does not incorporate node features
 - Many graphs have nodes with features that we can and should leverage
- Need to find embeddings based on holistic view on graph

Scarselli et al. The Graph Neural Network Model. IEEE Transactions on Neural Networks. **2005.**

Setup

- Assume we have a graph G:
 - V is the vertex set.
 - A is the adjacency matrix (assume binary).
 - $X \in \mathbb{R}^{m \times |V|}$ is a matrix of nodes and their features.
 - Categorical attributes, text, image data
 - E.g., profile information in a social network.
 - Node degrees, clustering coefficients, etc.
 - Indicator vectors (i.e., one-hot encoding of each node)

IM FOCUS DAS LEBEN 16

Neighborhood Aggregation

- Key idea
 - Generate node embeddings based on local neighborhoods
 - Nodes aggregate information from their neighbor
 - Computation graph for every node

Neighborhood Aggregation

- Nodes have embeddings at each layer
- Model can be of arbitrary depth
- "layer-0" embedding of node u
 is its input features, i.e., x_u

Layer-0

Graph Networks (GNNs)

- Basic approach: Average neighbor messages and apply a linear transformation with non-linear normalization
- Define a loss function on the embeddings, $\mathcal{L}(z_u)$

Unsupervised Training

- After K-layers of neighborhood aggregation, we get output embeddings for each node
- Feed these embeddings into any loss function ...
- and run stochastic gradient descent to train the aggregation parameters

Supervised Training

• E.g., based on node classification $y_v \in \{0, 1\}$:

IM FOCUS DAS LEBEN 21

Overview of Model Design

IM FOCUS DAS LEBEN 22

Overview of Model Design

Overview of Model

IM FOCUS DAS LEBEN 24

Inductive Capability

- Same aggregation parameters are shared for all nodes.
- Number of model parameters is sublinear in |V| ...
- ... and we can generalize to unseen nodes!

IM FOCUS DAS LEBEN 25

Inductive Capability

Inductive node embedding --> generalize to entirely unseen graphs

e.g., train on protein interaction graph from model organism A and generate embeddings on newly collected data about organism B

IM FOCUS DAS LEBEN 26

Inductive Capability

Many application settings constantly encounter previously unseen nodes.

e.g., Reddit, YouTube, GoogleScholar,

Need to generate new embeddings "on the fly"

IM FOCUS DAS LEBEN 27

Neighborhood Aggregation

 Key distinctions are in how different approaches aggregate messages

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Graph Convolutional Networks (GCNs)

• Slight variation on the neighborhood aggregation idea:

$$\mathbf{h}_{v}^{k} = \sigma \left(\mathbf{W}_{k} \sum_{\substack{u \in N(v) \cup v \\ \text{embeddings}}} \frac{\mathbf{h}_{u}^{k-1}}{\sqrt{|N(u)||N(v)|}} \right)$$

- Empirically, this configuration to give the best results
 - More parameter sharing
 - Down-weights high degree neighbors

Semi-supervised classification with graph convolutional networks TN Kipf, M Welling. In Proc. 5th International Conference on Learning Representations (ICLR-17), **2017**.

IM FOCUS DAS LEBEN 29

GraphSAGE (SAmple and aggreGatE)

 So far we have aggregated the neighbor messages by taking their (weighted) average. Can we do better?

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

30

GraphSAGE Variants

$$AGG = \sum_{u \in N(v)} \frac{\mathbf{h}_u^{k-1}}{|N(v)|}$$

• Pool:

Mean:

- Transform neighbor vectors and apply symmetric vector function

element-wise mean/max

$$AGG = \bigcap \left(\{ \mathbf{Qh}_u^{k-1}, \forall u \in N(v) \} \right)$$

- LSTM-based RNNs:
 - Apply LSTM to random permutation of neighbors (LSTMs work on sequences)

AGG = LSTM
$$([\mathbf{h}_u^{k-1}, \forall u \in \pi(N(v))])$$

Transformers (attention)?

William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation learning on large graphs. In Proc. NIPS'17. **2017**.

IM FOCUS DAS LEBEN 31

Neighborhood Aggregation

- GCNs and GraphSAGE generally only 2-3 layers deep
- What if we want to go deeper?
 - Overfitting from too many parameters.
 - Vanishing/exploding gradients during backpropagation

Gated Graph Networks

- Use techniques from recurrent networks
- Parameter sharing across layers, recurrent state update

Neighborhood aggregation with RNN state update

1. Get "message" from neighbors at step k:

$$\mathbf{m}_v^k = \mathbf{W} \sum_{u \in N(v)} \mathbf{h}_u^{k-1}$$
 Aggregation function does not depend on k

 Update node "state" using <u>Gated Recurrent Unit (GRU)</u> New node state depends on the old state and the message from neighbors:

$$\mathbf{h}_v^k = \mathrm{GRU}(\mathbf{h}_v^{k-1}, \mathbf{m}_v^k)$$

Yujia Li Richard Zemel Marc Brockschmidt Daniel Tarlow, Gated Graph Sequence Neural Networks Proceedings of ICLR'16. **2016**.

IM FOCUS DAS LEBEN 34

(Sub)graph Embeddings

• So far we have focused on node-level embeddings...

• But what about subgraph embeddings?

IM FOCUS DAS LEBEN 35

Summary so far

- Key idea: Generate node embeddings based on local neighborhoods.
 - GraphSAGE
 - Generalized neighborhood aggregation
 - Gated Graph Networks
 - Neighborhood aggregation + recursion (same mappings for a layer) + GRUs
 - Graph Convolutional Networks
 - Average neighborhood information and stack computational networks

IM FOCUS DAS LEBEN 37

Recent Advances in Graph Networks

- Attention-based neighborhood aggregation (Weightings for neighbors)
 - Graph Attention Networks (Velickovic et al., 2018)
 - GeniePath (apaptive receptive paths) (Liu et al., 2018)
- Generalizations based on spectral convolutions (eigen-decomposition of graph Laplacian *L*)
 - Geometric Deep Learning (Bronstein et al., 2017)
 - Mixture Model CNNs (Monti et al., 2017)
- Speed improvements via subsampling
 - FastGCNs (<u>Chen et al., 2018</u>)

VERSITÄT ZU LÜBECK

Stochastic GCNs (<u>Chen et al., 2017</u>)

L = D - A (degree matrix – adjacency matrix) IM FOCUS DAS LEBEN

38

Graph Networks, Embeddings, and KGs

- Graph networks allow for the computation of embeddings for nodes in a KG
- With embeddings, existence of links between nodes can be estimated (KG completion)
 - See also, e.g., node2vec
- If nodes originate from words ...
- ... we have another way to embed nodes
 - See also, e.g., word2vec
 - KG completion based on word embeddings

