Intelligent Agents Language-Vision-Models: DALL-E

Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme

Generate Images from Text – Naïve Approach

an armchair in the shape of an avocado [...]

- 1. Concatenate the set of text tokens with the unrolled set of pixel values in a corresponding image (typically unrolled top left to bottom right).
- 2. Given this sequence of text and pixel values, we can factor the distribution p(x|y) autoregressively:

 $p(x|y) = p(x1, x2, x3, \dots|y) = p(x1|y)p(x2|x1, y)p(x3|x1, x2, y)\dots$

Here *xi* is the *i*th pixel value in the unrolled image.

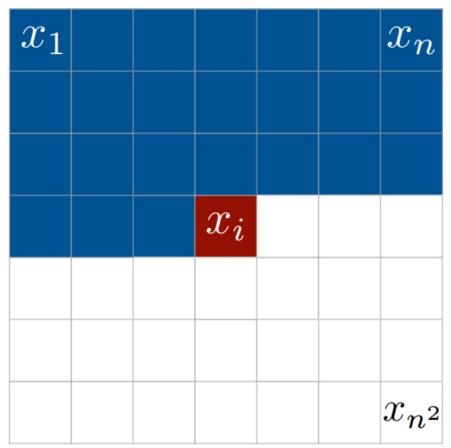
3. We now estimate p(x|y) by running maximum likelihood estimation on any autoregressive sequence model (e.g. LSTM or Transformer) over each of these p(xi|xi-1, xi-2, ..., x2, x1, y) factors.

That is to say, we want to train a model to predict the next pixel value in an image, given some text and all previous pixel values.

TEXT PROMPT

Use RNN decoder to generate images??

An armchair in the shape of [...]



How is it so good ? (DALL-E Explained Pt. 2). Charlie Snell

Generate Images from Text – Naïve Approach

- 1. Concatenate the set of text tokens with the unrolled set of pixel values in a corresponding image (typically unrolled top left to bottom right).
- 2. Given this sequence of text and pixel values, we can factor the distribution p(x|y) autoregressively:

 $p(x|y) = p(x1, x2, x3, \dots|y) = p(x1|y)p(x2|x1, y)p(x3|x1, x2, y)\dots$

Here *xi* is the *i*th pixel value in the unrolled image.

3. We now estimate p(x|y) by running maximum likelihood estimation on any autoregressive sequence model (e.g. LSTM or Transformer) over each of these p(xi|xi-1, xi-2, ..., x2, x1, y) factors.

That is to say, we want to train a model to predict the next pixel value in an image, given some text and all previous pixel values.

Acknowledgements

Zero-Shot Text-to-Image Generation

Authors: Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever

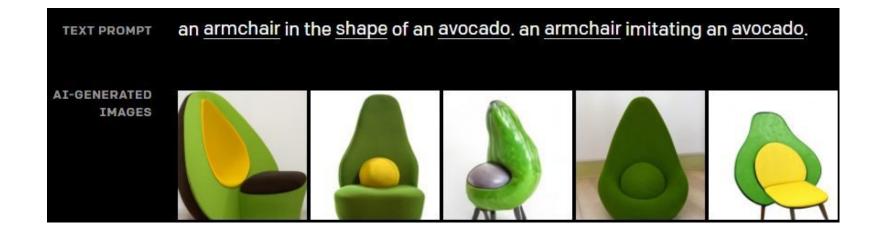
Open AI (ICML2021)

Presentation from: Adam Kutchak, George Lu, Fernando Treviño, and Sarah Wilson

Zero-Shot Text-to-Image Generation. Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, Ilya Sutskever Proceedings of the 38th International Conference on Machine Learning, PMLR 139:8821-8831, **2021**.

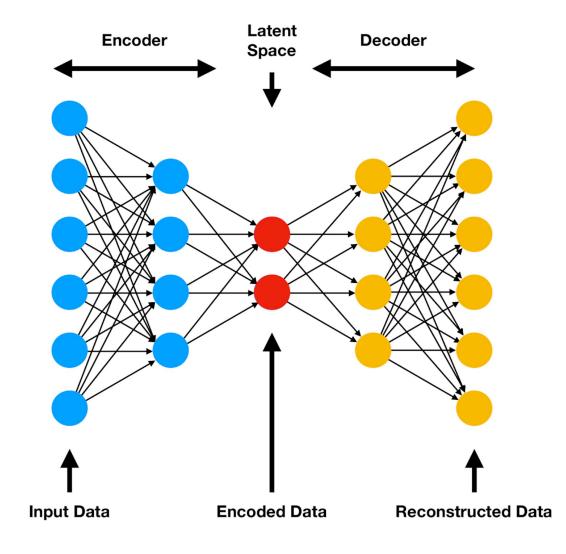
Introduction

- Generate Images from text captions
- 12 billion parameters version of GPT-3
- Dataset comprised of 3.3 million text image pairs
- Combine unrelated concepts



- Autoencoder (encoder decoder)
- Variational Autoencoders (continuous state space)
- Vector Quantized-Variational AutoEncoder VQ-VAE (discrete quantized state space)

Related Work - Autoencoder



IM FOCUS DAS LEBEN

Understanding VQ-VAE (DALL-E Explained Pt. 1)). Charlie Snell

Related Work - Autoencoder

Encoder

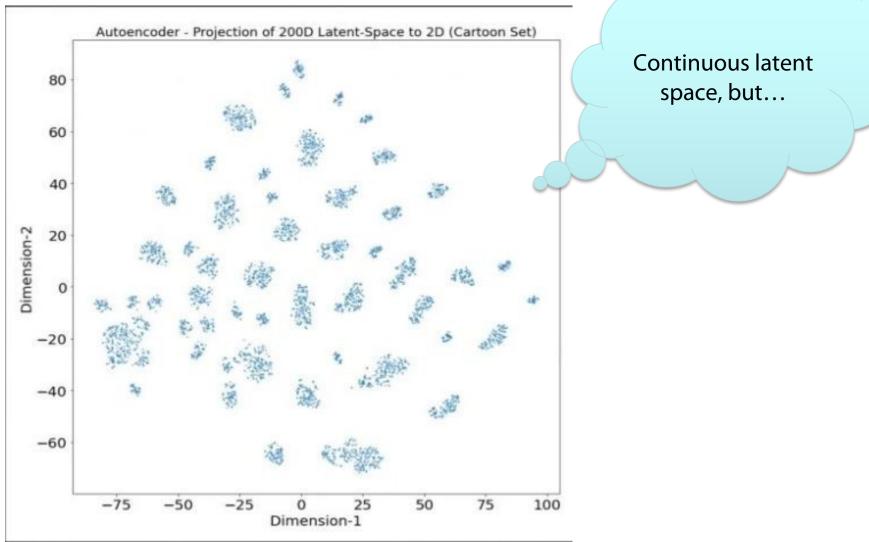
image to discrete codes			¥			
56	73	67	23	81	19	•••

Decoder 56 73 67 23 19 81 . . . discrete codes to image

IM FOCUS DAS LEBEN 9

Understanding VQ-VAE (DALL-E Explained Pt. 1)). Charlie Snell

Related Work - Autoencoder problem



Related Work - Variational Autoencoder

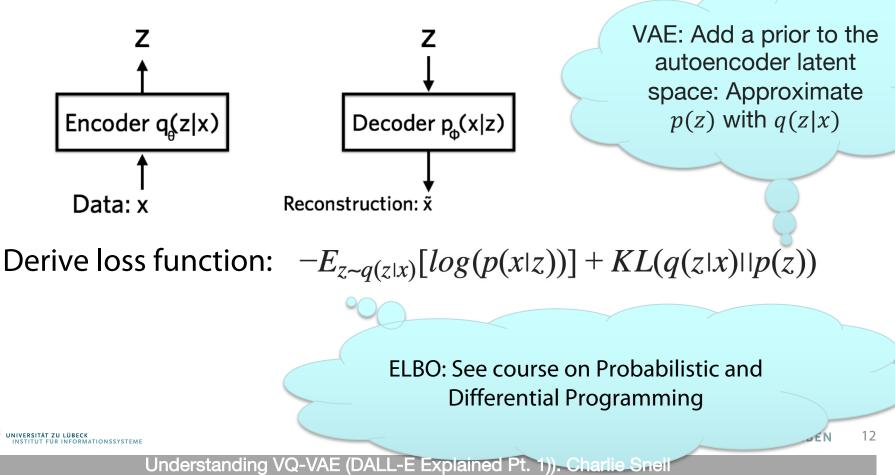
- Consider our latent space *z* as a random variable
- First let's enforce a **prior** p(z) on our latents, in most VAEs this is typically just a standard gaussian distribution $\mathcal{N}(0, 1)$
- Given a raw datapoint x, we also define a **posterior** for the latent space as p(z | x)
- The goal is to compute this posterior for the data, which we can express using Bayes' rule as

$$p(z|x) = \frac{p(x|z)p(z)}{p(x)}$$

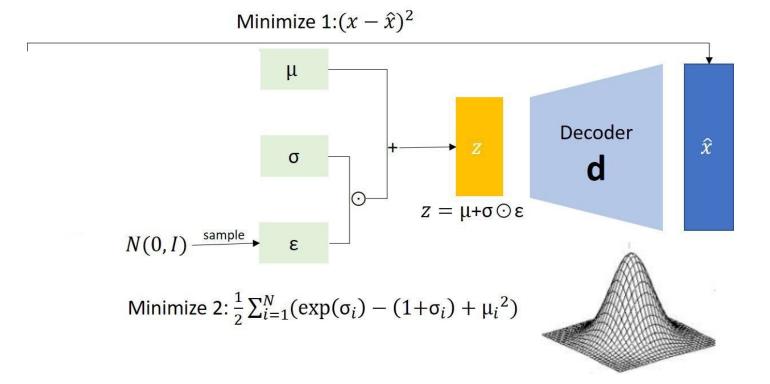
- But... p(x) is intractable
- Need approximation

Related Work - Variational Autoencoder

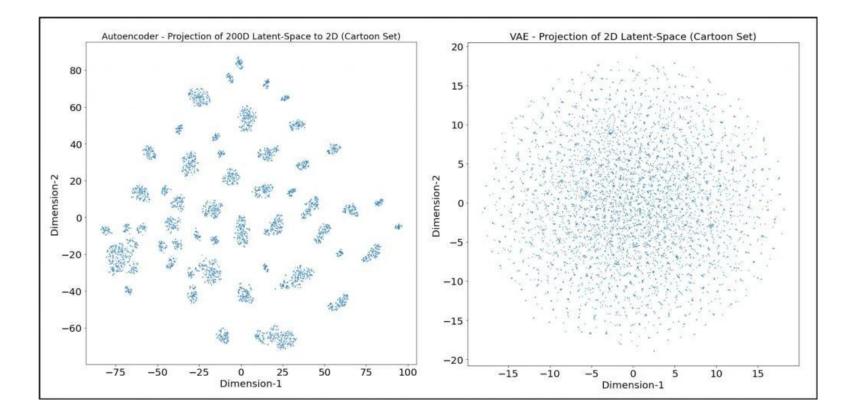
 Restrict approximation of the posterior to a specific family of distributions: independent gaussians. Call this approximated distribution q(z|x)



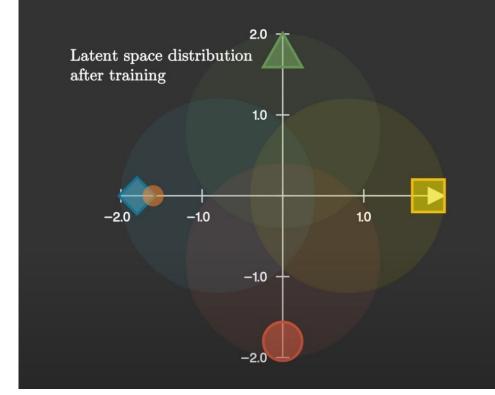
Variational Autoencoder as a Generator



Related Work - Autoencoder vs. VAE

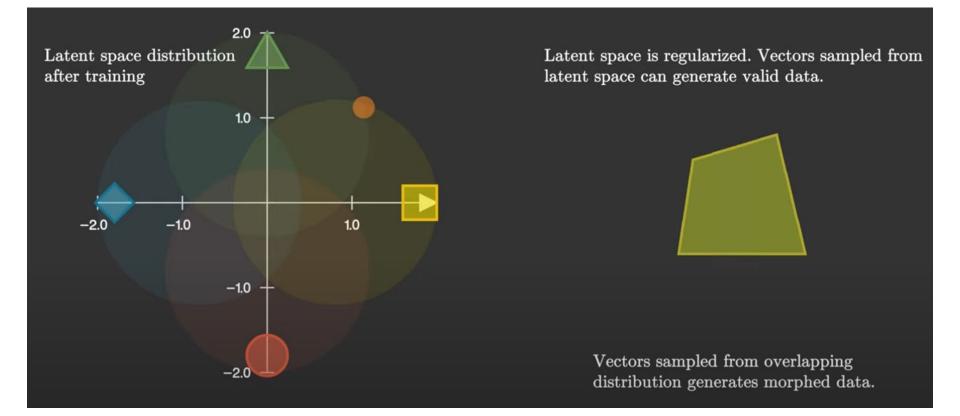


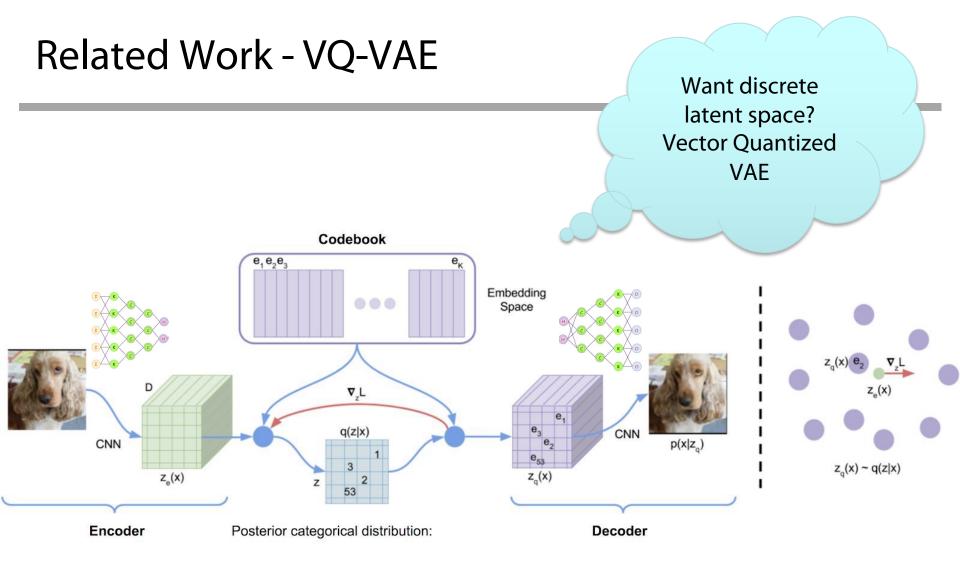
Variational Autoencoder as a Generator



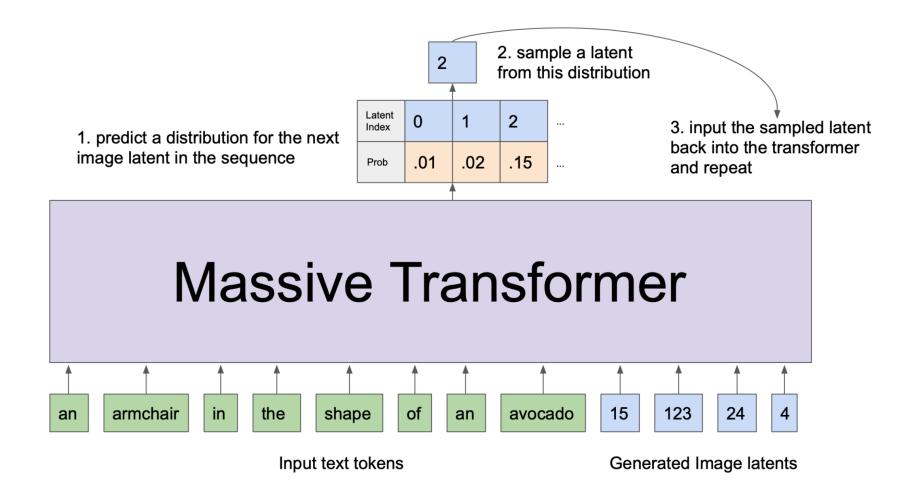
Latent space is regularized. Vectors sampled from latent space can generate valid data.

Variational Autoencoder as a Generator



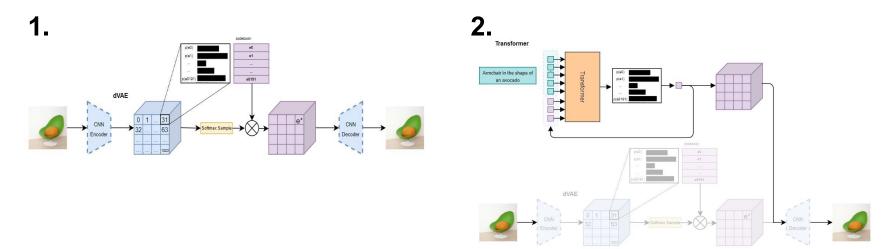


DALL-E – Central Idea

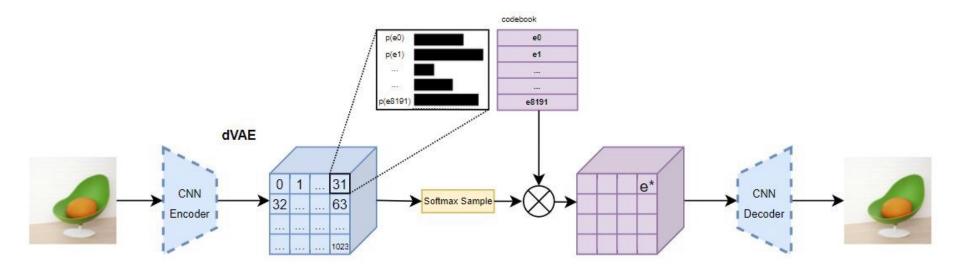


Model

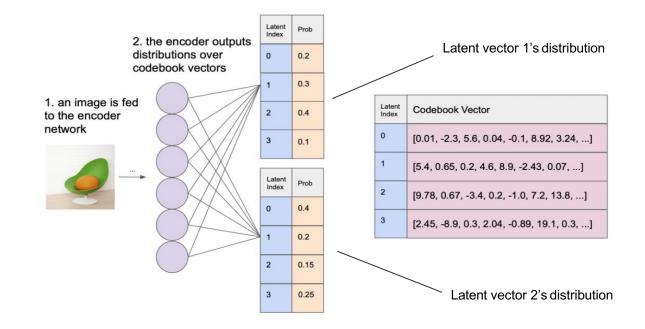
- Transformer to model text and image tokens as single stream of data
 - Pixels as image tokens takes up too much memory
 - Likelihood objectives prioritize short range dependencies between pixels
 - Solution: 2 stage training!



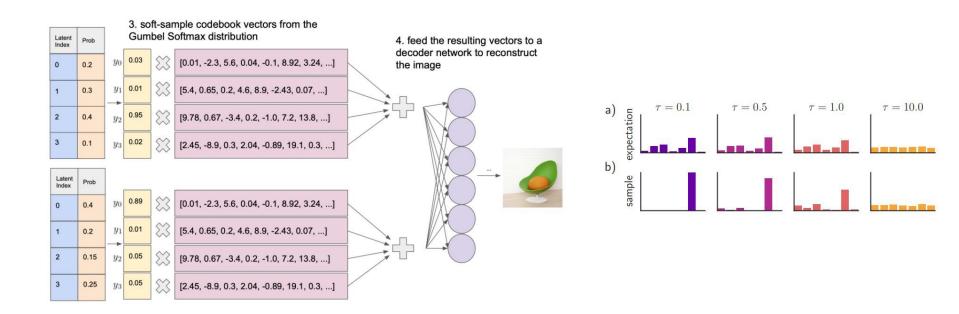
- Discrete Variational Autoencoder (dVAE)
 - Similar to VQ-VAE (in VQ-GAN) but uses distribution instead of nearest neighbor



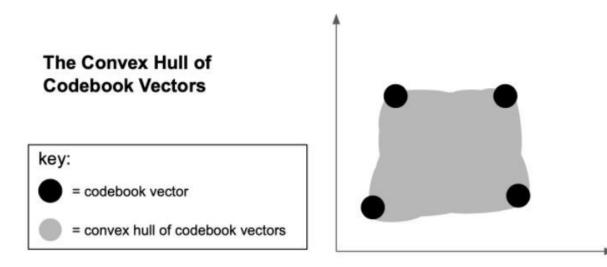
Discrete Variational Autoencoder (dVAE) encoder



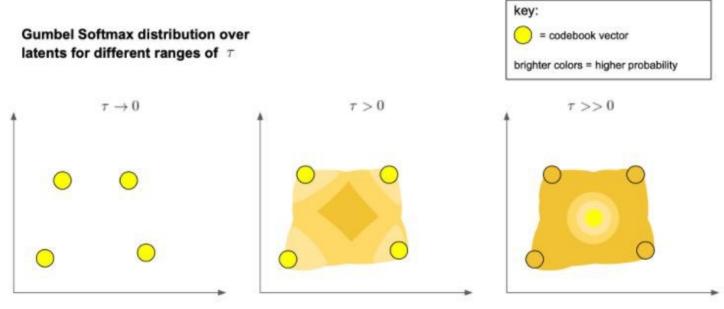
- Discrete Variational Autoencoder (dVAE) decoder
 - Gumbel softmax distribution becomes categorical over training schedule



- Discrete Variational Autoencoder (dVAE) encoder
 - Issue: Can't differentiate backprop through category distribution of the bottleneck
 - Solution: Relax the bottleneck to include vectors from convex hull of set of codebook vectors

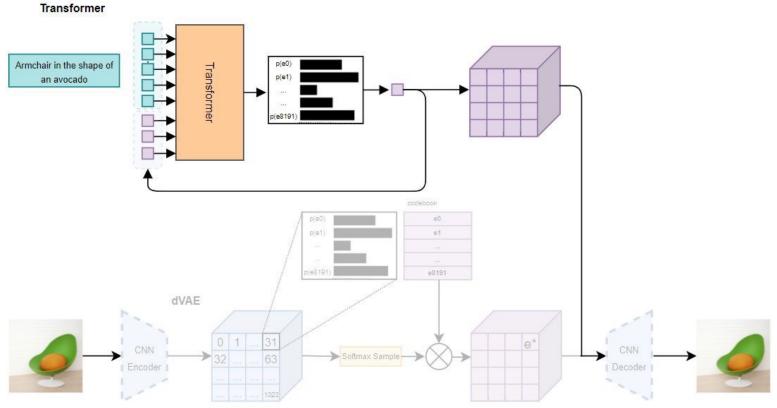


- Gumbel Softmax Relaxation
 - Sample: z = codebook[argmax_i[g_i + log(q(e_i|x))
 - Gives weights y_i
 - Sampled latent vector is the sum of the weighted codebook vectors
 - Differentiable
 - Relaxation temperature annealing schedule for hyperparameter τ



Stage Two: Learning Prior Distribution

- Transformer
 - Predict distribution for next token
 - Sample distribution and repeat until 1024 image tokens



Google's Approaches

- Pegasus (Google, LLM, text summarization)
 - <u>https://ai.googleblog.com/2020/06/pegasus-state-of-art-model-for.html</u>
- Flamingo (Google's GPT-3 and CLIP)
 - <u>https://www.deepmind.com/blog/tackling-multiple-tasks-with-a-single-visual-language-model</u>
- Imagen (Google's DALL-E)
 - https://imagen.research.google
- Bard (Google's answer to ChatGPT, soon)
 - <u>https://blog.google/technology/ai/bard-google-ai-search-updates/</u>

Meta's Approaches

- OPT (Meta, LLM)
 - <u>https://ai.facebook.com/blog/democratizing-access-to-large-scale-language-models-with-opt-175b/</u>
- Galactica (Meta, LLM chatbot for science)
 - <u>https://galactica.org/</u>

