# Intelligent Agents Topic Analysis: LDA

Ralf Möller

Universität zu Lübeck Institut für Informationssysteme



#### Summary and Agenda

- IR Agents
  - Task/goal: Information retrieval
  - Agents visit document repositories and returns doc recommendations
  - Means:
    - Vector space (bag-of-words)
      - Dimension reduction (LSI)

Non-standard Databases and Data Mining

- Probability based retrieval (binary)
  - Formal Foundation of TF.IDF
- Today: Language models with dimension reduction
  - Latent Dirichlet Allocation (LDA): Topic Models
- Soon:
  - What agents can take with them
  - What agents leave at the repository (win-win)



#### Acknowledgments

Ramesh M. Nallapati presentation on Generative Topic Models for Community Analysis

&

Sina Miran presentation on

Probabilistic Latent Semantic Indexing (PLSI)

&

David M. Blei presentation on Probabilistic Topic Models



#### **Topic Models**

- Statistical methods that analyze the words of texts in order to:
  - Discover the themes that run through them (topics)
  - How those themes are connected to each other

How they change over time

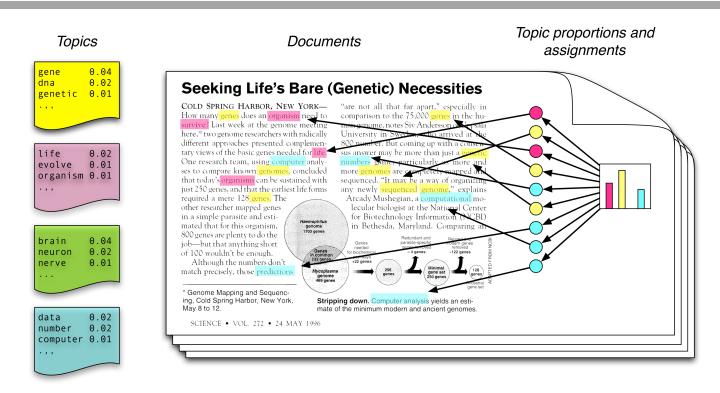
"Neuroscience" "Theoretical Physics" **FORCE OXYGEN** LASER **NERVE** 00000 RELATIVITY **NEURON** 1880 1900 1920 1940 1960 1980 2000 1880 1900 1920 1940 1960 1980

Just for illustration purposes



2000

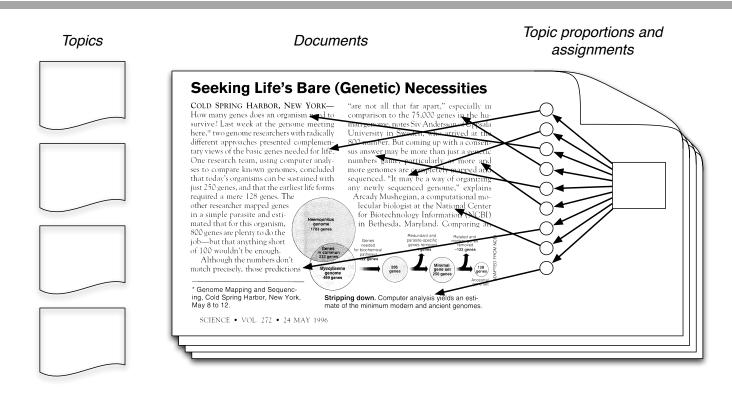
#### **Topic Modeling Scenario**



- Each topic is a distribution over words
- Each document is a mixture of corpus-wide topics
- Each word is drawn from one of those topics



## **Topic Modeling Scenario**

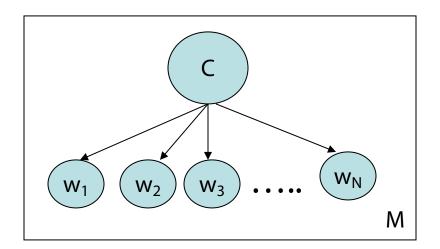


- In reality, we only observe the documents
- The other structures are hidden variables
- Topic modeling algorithms infer these variables from data



#### Plate Notation

- Naïve Bayes Model: Compact representation
  - C = topic/class (name for a word distribution)
  - N = number of words in document
  - W<sub>i</sub> one specific word in corpus
  - M documents, W now words in documents



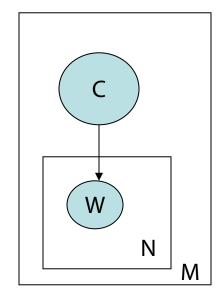
Idea: Generate doc from P(W, C)











#### Generative vs. Descriptive Models

- Generative models: Learn P(x, y)
  - Tasks:
    - Predict (infer) new data
    - Transform P(x,y) into  $P(y \mid x)$  for classification
  - Advantages
    - Assumptions and model are explicit
    - Use well-known algorithms
- Descriptive models: Learn P(y | x)
  - Task: Classify data
  - Advantages
    - Fewer parameters to learn
    - Better performance for classification



#### Forward Sampling No Evidence

Input: Bayesian network

 $X = \{X_1, ..., X_N\}, N- #nodes, T - # samples$ 

**Output: T samples** 

Process nodes in topological order—first process the ancestors of a node, then the node itself:

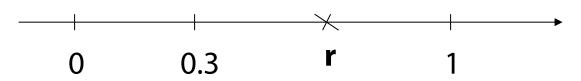
- 1. For t = 0 to T
- 2. For i = 0 to N
- 3.  $X_i \leftarrow \text{sample } x_i^t \text{ from } P(x_i \mid pa_i)$



## Sampling A Value

What does it mean to sample  $x_i^t$  from  $P(X_i \mid pa_i)$ ?

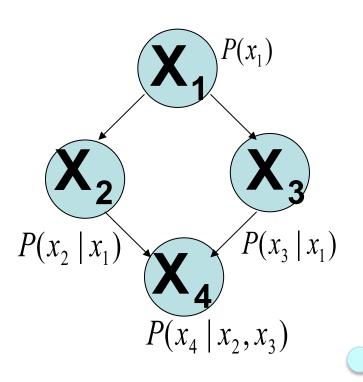
- Assume Dom(X<sub>i</sub>)={0,1}
- Assume  $P(X_i \mid pa_i) = (0.3, 0.7)$



Draw a random number **r** from [0,1]
 If **r** falls into [0,0.3], set X<sub>i</sub> = 0
 If **r** falls into (0.3,1], set X<sub>i</sub>=1



#### Forward Sampling (Example)



Evidence :  $X_3 = 0$ 

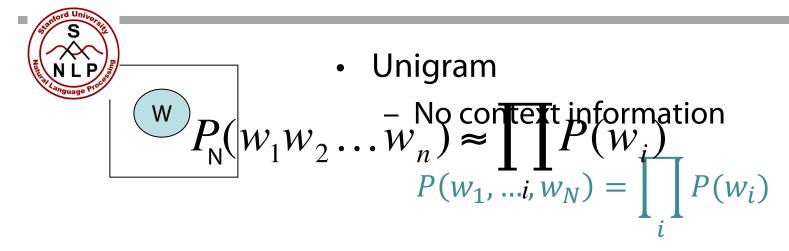
// generate sample k

- 1. Sample  $x_1$  from  $P(x_1)$
- 2. Sample  $x_2$  from  $P(x_2 \mid x_1)$
- 3. Sample  $x_3$  from  $P(x_3 \mid x_1)$
- 4. If  $x_3 \neq 0$ , reject sample and start from 1, otherwise
- 5. sample  $x_4$  from  $P(x_4 | x_{2,}x_3)$

Rejection sampling (rather inefficient)



#### Earlier Topic Models: Topics Known



fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most, dollars, quarter, in, is, mass

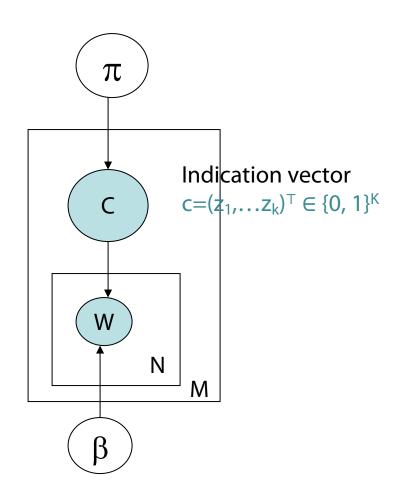
thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the

Automatically generated sentences from a unigram model



#### Multinomial Naïve Bayes



- How to specify Domain(C)?
  - Domain(C) =  $\{1, 2, ..., k\}$  or
  - Domain(C) =  $\{0, 1\}^k$
- How to specify  $P(c_d)$ ?
  - Define a table

|     | P(C)  |
|-----|-------|
| 1   | $p_1$ |
| ••• | •••   |
| K   | $p_K$ |

- or use parameterized distribution  $\pi = (p_1, ..., p_K)$ 

• 
$$P(C=c|\pi)=\prod_{k=1}^K \pi_k^{z_k}$$

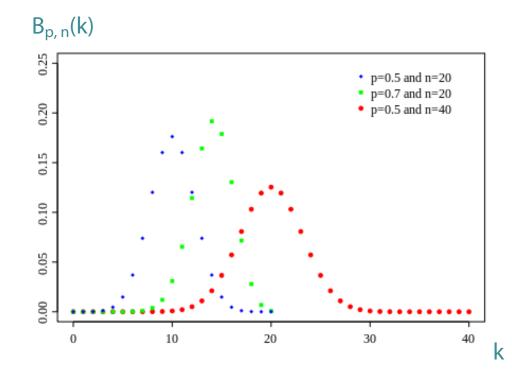


#### Recap: Binomial Distribution

- Describes the number of successes in a series of independent trials with two possible outcomes "success" or "no success"
- n = #trialsp = #successful trials / n
- Description of frequency of having exactly k successful trials as a function

$$\mathsf{B}_{\mathsf{p,\,n}}(\mathsf{k}) = \binom{n}{k} p^k (1-p)^{n-k}$$

- It holds:  $\sum_{i=0}^{n} B_{p,n}(i) = 1$
- If n=1: Bernoulli distribution





$${n \choose k} = rac{n!}{k!(n-k)!}$$

## Multinomial Distribution Mult(n | $\pi$ )

- Generalization of binomial distribution
  - K possible outcomes instead of 2 (success or no success)
  - Probability mass function
    - n = number of trials
    - $x_j \in \{0, 1\}$  a count for how often class j occurs  $\sum_{i=1}^k x_i = n$
    - $p_i = probability of class j occurring$

$$Mult(x_1, ..., x_K; p_1, ..., p_K) = \frac{\Gamma(\sum_i x_i + 1)}{\prod_i \Gamma(x_i + 1)} \prod_{i=1}^K p_i^{x_i}$$

- Here, the input to  $\Gamma(\cdot)$  is a positive integer,  $\Gamma(n) = (n-1)!$
- If n=1: called categorial distribution ("multinoulli")
  - Often written  $Mult(.; p_1, ..., p_K)$  or  $Mult(.|p_1, ..., p_K)$
  - Generates a one-hot vector

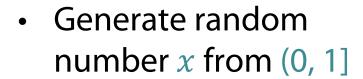


## Sampling

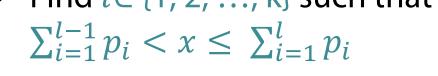
 A variable value a can be sampled from a discrete distribution



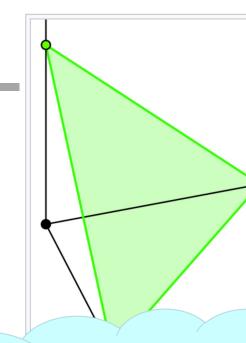




• Find  $l \in \{1, 2, ..., k\}$  such that



• Return  $(z_1, ..., z_K)$  such that  $z_l = 1$  and  $z_i = 0$  für  $i \neq l$ 

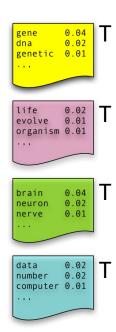


One-hot vector to be generated with position probability of indicator controlled by  $\pi$ 



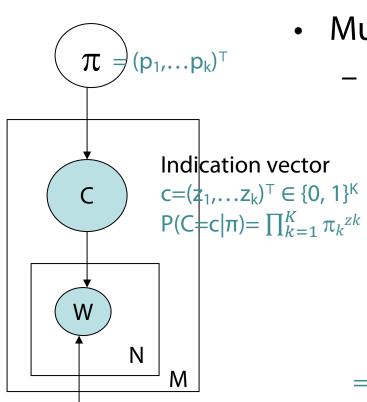
#### Multinomial with Matrices

- Let  $\beta$  be a  $K \times V$  matrix (V vocabulary size), each row denotes a word distribution of a topic
- Select row k before applying multinomial:
  - Notation: Mult(.  $|\beta_k|$ ) or Mult(.  $|\beta, k|$ ) or Mult(.  $|k, \beta|$ )





#### Mixture of Unigrams: Known Topics



- Multinomial Naïve Bayes
  - For each document d = 1, ..., M
    - Generate  $c_d \sim Mult(. | \pi)$
    - For each position  $i = 1, ..., N_d$ 
      - Generate  $w_i \sim Mult(.|\beta, c_d)$

$$\prod_{d=1}^{M} P(w_1, \dots, w_{N_d}, c_d \mid \beta, \pi)$$

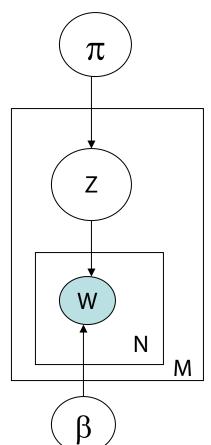
$$= \prod_{d=1}^{M} P(c_d|\pi) \prod_{i=1}^{N_d} P(w_i|\beta, c_d) = \prod_{d=1}^{M} \pi_{c_d} \prod_{i=1}^{N_d} \beta_{c_d, w_i}$$

$$\pi_{c_d} \coloneqq P(c_d | \pi)$$
$$\beta_{c_d, w_i} \coloneqq P(w_i | \beta, c_d)$$

multinomial



#### Mixture of Unigrams: Unknown Topics



- Topics/classes are hidden
  - Joint probability of words and classes

$$\prod_{d=1}^{M} P(w_1, ..., w_{N_d}, z_d \mid \beta, \pi) = \prod_{d=1}^{M} \pi_{z_d} \prod_{i=1}^{N_d} \beta_{z_d, w_i}$$

Sum over topics (K = number of topics)

$$\prod_{d=1}^{M} P(w_1, ..., w_{N_d} | \beta, \pi) = \prod_{d=1}^{M} \sum_{k=1}^{K} \pi_{Z_k} \prod_{i=1}^{N_d} \beta_{Z_k, w_i}$$

$$\pi_{z_k} \coloneqq P(z_k | \pi)$$
$$\beta_{z_k, w_i} \coloneqq P(w_i | \beta, z_k)$$

Kamal Nigam, Andrew Kachites Mccallum, Sebastian Thrun & Tom Mitchell, Learning to Classify Text from Labeled and Unlabeled Documents, Proc. AAAI 98, Pages 792–799, **1998**.



Kamal Nigam, Andrew Kachites Mccallum, Sebastian Thrun & Tom Mitchell Text Classification from Labeled and Unlabeled Documents using EM Journal of Machine Learning volume 39, pages 103–134, **2000**.

#### Mixture of Unigrams: Learning

Learn parameters  $\pi$  and  $\beta$ 

$$argmax_{\beta\pi} \prod_{d=1}^{M} P(w_1, ..., w_{N_d} | \beta, \pi)$$

$$argmax_{\beta\pi} \prod_{d=1}^{M} P(w_1, ..., w_{N_d} | \beta, \pi) \qquad P(w_1, ..., w_{N_d} | \beta, \pi) = \sum_{k=1}^{K} \pi_{Z_k} \prod_{i=1}^{N_d} \beta_{Z_k, w_i}$$

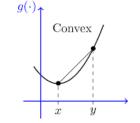
Use likelihood

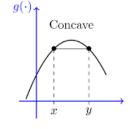
$$\sum_{d=1}^{M} \log P(w_1, ..., w_{N_d} | \beta, \pi) = \sum_{d=1}^{M} \log \sum_{k=1}^{K} \pi_{z_k} \prod_{i=1}^{N_d} \beta_{z_k, w_i}$$

Solve

$$argmax_{\beta\pi} \sum_{d=1}^{M} \log \sum_{k=1}^{K} \pi_{z_k} \prod_{i=1}^{N_d} \beta_{z_k, w_i}$$

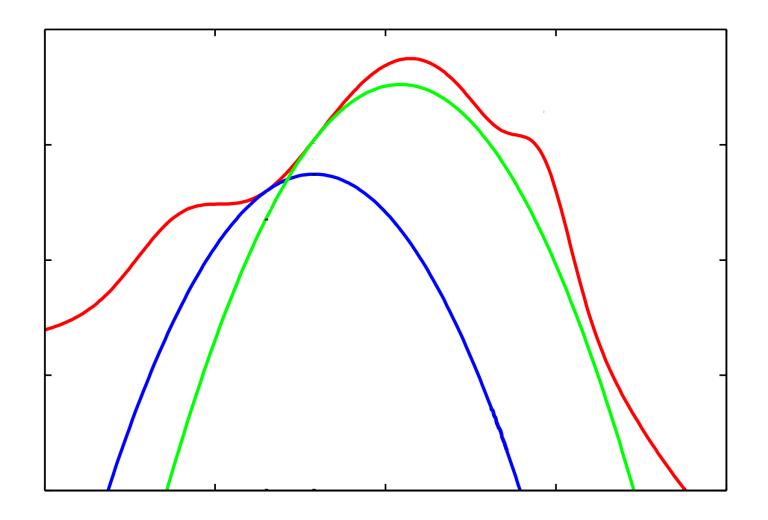
- Not a concave/convex function
- Note: a non-concave/non-convex function is not necessarily convex/concave





 Possibly no unique max, many saddle or turning points No easy way to find roots of derivative

## Trick: Optimize Lower Bound





## Mixture of Unigrams: Learning

$$\pi_{z_k} \coloneqq P(z_k | \pi)$$
$$\beta_{z_k, w_i} \coloneqq P(w_i | \beta, z_k)$$

The problem

$$argmax_{\beta\pi} \sum_{d=1}^{M} \log \sum_{k=1}^{K} \pi_{z_k} \prod_{i=1}^{N_d} \beta_{z_k, w_i}$$

- Optimize w.r.t. each document
- Derive lower bound

**a**, **b** distribution vectors

$$\log \sum_{i} \gamma_{i} x_{i} \geq \sum_{i} \gamma_{i} \log x_{i} \text{ where } \gamma_{i} \geq 0 \land \sum_{i} \gamma_{i} = 1$$

Jensen's inequality  $log(\mathbf{a} \cdot \mathbf{b}) \ge \mathbf{a} \cdot log \mathbf{b}$ 

$$\log \sum_{i} x_{i} = \log \sum_{i} \gamma_{i} \frac{x_{i}}{\gamma_{i}} \geq \sum_{i} (\gamma_{i} \log x_{i} - \gamma_{i} \log \gamma_{i})$$

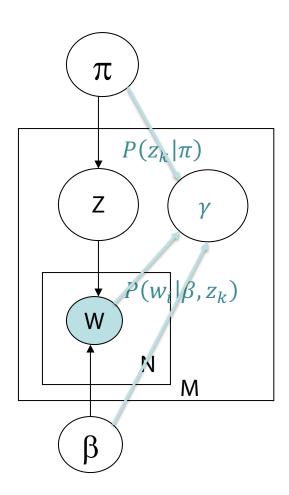
$$H(\gamma)$$

Entropy of  $\gamma$ Sometimes called I(.)

$$\log \sum_{k=1}^{K} \pi_{z_k} \prod_{i=1}^{N_d} \beta_{z_k, w_i} \ge \sum_{k=1}^{K} \left( \gamma_k \log(\pi_{z_k} \prod_{i=1}^{N_d} \beta_{z_k, w_i}) \right) + H(\gamma)$$



#### The model



$$\pi_{z_k} \coloneqq P(z_k | \pi)$$
$$\beta_{z_k, w_i} \coloneqq P(w_i | \beta, z_k)$$

#### Mixture of Unigrams: Learning

Optimization problem for each document

$$argmax_{\beta\pi} \sum_{k=1}^{K} \left( \gamma_k \log(\pi_{z_k} \prod_{i=1}^{N_d} \beta_{z_k, w_i}) \right) + H(\gamma)$$
 Convex? Concave?

- We have introduced a new latent variable  $\gamma$  to approximate the original functional to be optimized
- Each document is assumed to be associated with a latent variable  $\gamma \in [0,1]^K$ ,  $\Sigma_k \gamma_k = 1$  independent of other random variables
- Can be seen as a class in the new space  $\gamma_k$ ,  $\pi_{z_k}$ ,  $\beta_{z_k,w_i}$



#### Mixture of Unigrams: Learning

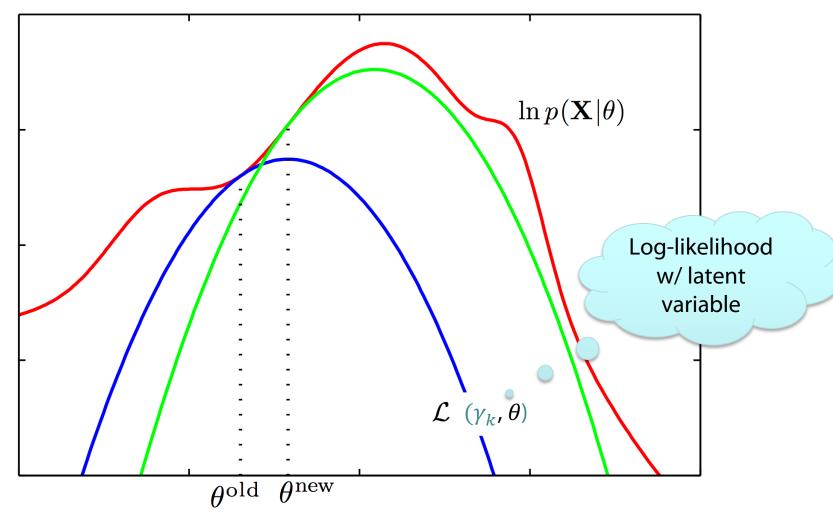
New optimization problem:

$$argmax_{\beta\pi} \sum_{k=1}^{K} \left( \gamma_k \log(\pi_{z_k} \prod_{i=1}^{N_d} \beta_{z_k, w_i}) \right) + H(\gamma)$$

- Solution: Expectation Maximization
  - Iterative algorithm to find local optimum
  - Guess values of  $\gamma_k$ ,  $\pi_{Z_k}$ ,  $\beta_{Z_k,W_i}$
  - Compute  $\gamma_k = P(\gamma_k | \pi_{Z_k}, \beta_{Z_k, W_i})$  according to model
  - Use maximum-likelihood estimation to optimize  $\pi_{z_k}$ ,  $\beta_{z_k,w_i}$  until no further improvement
- Guaranteed to maximize a lower bound on the loglikelihood of the observed data
- Use  $\pi_{z_k}$ ,  $\beta_{z_k,w_i}$  to estimate  $P(z_k|\pi)$ ,  $P(w_i|\beta,z_k)$ , respectively



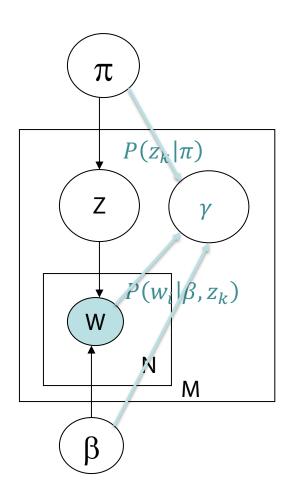
## Graphical Idea of the EM Algorithm





$$\theta = (\pi_k, \beta_{k, w_i})$$

#### The model



$$\pi_{z_k} \coloneqq P(z_k | \pi)$$
$$\beta_{z_k, w_i} \coloneqq P(w_i | \beta, z_k)$$

## Mixture of Unigrams: Learning

$$\pi_{z_k} \coloneqq P(z_k | \pi)$$
$$\beta_{z_k, w_i} \coloneqq P(w_i | \beta, z_k)$$

- EM solution
  - E step (compute  $\gamma_k = P(\gamma_k | \pi_{z_k}, \beta_{z_k, w_i})$ )

$$\gamma_k^{(t+1)} = \frac{\gamma_k^{(t)} \pi_{Z_k}^{(t)} \prod_{i=1}^{N_d} \beta_{Z_k, w_i}^{(t)}}{\sum_{j=1}^K \gamma_{Z_{dj}}^{(t)} \pi_{Z_j}^{(t)} \prod_{i=1}^{N_d} \beta_{Z_j, w_i}^{(t)}}$$

Independence assumption

M step (maximum likelihood optimization: use frequencies)

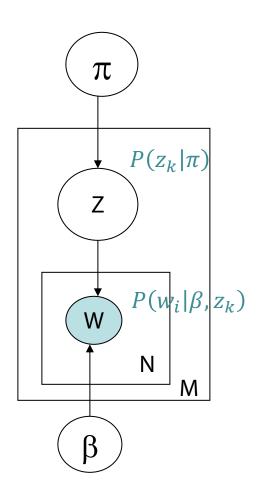
$$\pi_{Z_k}^{(t+1)} = \frac{\sum_{d=1}^{M} \gamma_{dk}^{(t)}}{M}$$

$$\beta_{z_k, w_i}^{(t+1)} = \frac{\sum_{d=1}^{M} \gamma_{dk}^{(t)} n(d, w_i)}{\sum_{d=1}^{M} \gamma_{dk}^{(t)} \sum_{j=1}^{N_d} n(d, w_j)}$$

 $n(d, w_i)$  number of times word  $w_i$  occurs in document d

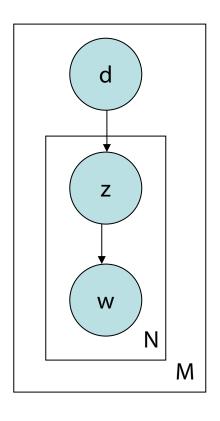
#### Back to Topic Modeling Scenario

- Documents are associated with a single topic
- Words do not depend on context
  - Bag-of-words model





#### **Probabilistic LSI**



- Select a document d with probability P(d)
- For each word of d in the training set
  - Choose a topic z with probabilityP(z | d)
  - Generate a word with probabilityP(w | z)

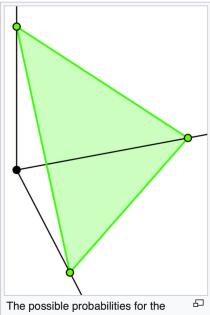
$$P(d, w_i) = P(d) \sum_{k=1}^{K} P(w_i|z_k) P(z_k|d)$$

Documents can have multiple topics



#### Prior Distribution for Topic Mixture

- Goal: topic mixture proportions for each document drawn from some distribution
  - Distribution on multinomials
     (k-tuples of non-negative numbers that sum to one)
- The space of all of these multinomials can be interpreted geometrically as a (k-1)-simplex
  - K-1 independent values
  - Simplex = Generalization of a triangle to (k-1) dimensions
- Criteria for selecting our prior:
  - It needs to be defined for a (k-1)-simplex
  - Should have nice properties

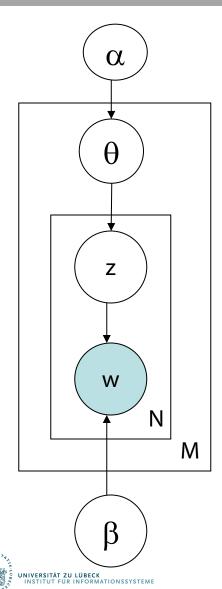


The possible probabilities for the categorical distribution with k=3 are the 2-simplex  $p_1+p_2+p_3=1$ , embedded in 3-space.



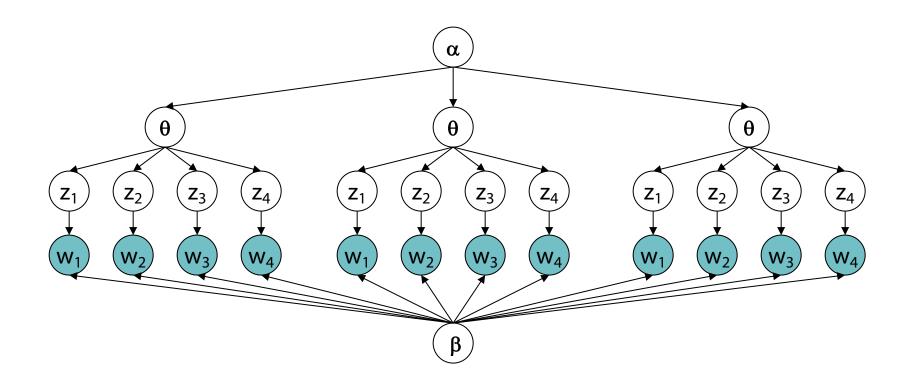
[Wikipedia]

#### Model – Parameters



- ← Proportions parameter (k-dimensional vector of real numbers)
- ← Per-document topic distribution (*k*-dimensional vector of probabilities summing up to 1)
- ← Per-word topic assignment (number from 1 to k)
- ← Observed word (number from 1 to v, where v is the number of words in the vocabulary)
- ← Word "prior" (v-dimensional)

#### LDA Model





#### **Latent Dirichlet Allocation**

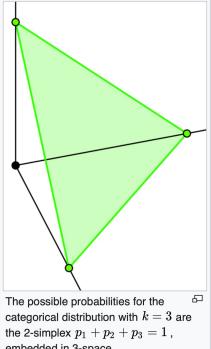
 Document = mixture of topics according to a Dirichlet prior



#### **Dirichlet Distributions**

$$p(\theta|\alpha) = \frac{\Gamma(\sum_{i} \alpha_{i})}{\prod_{i} \Gamma(\alpha_{i})} \prod_{i=1}^{K} \theta_{i}^{\alpha_{i}-1}$$

- Defined over a (k-1)-simplex
  - Takes K non-negative arguments which sum to one.
  - Consequently it is a natural distribution to use over multinomial distributions.



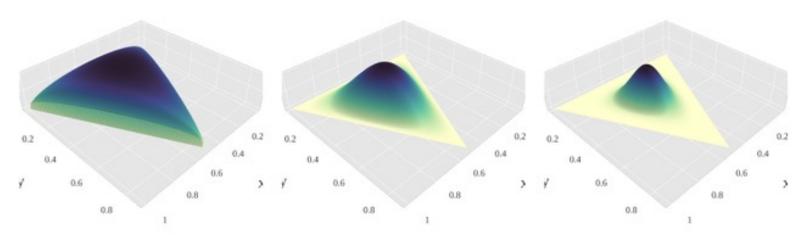
embedded in 3-space.

• The Dirichlet parameter  $\alpha_i$  can be thought of as a prior count of the ith class

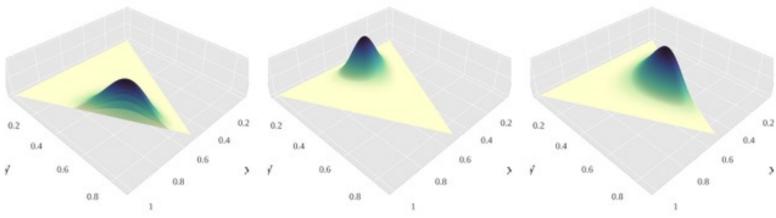
$$Dir(x_1, ..., x_K; p_1, ..., p_K) = \frac{\Gamma(\sum_i x_i + 1)}{\prod_i \Gamma(x_i + 1)} \prod_{i=1}^K p_i^{x_i}$$



## Dirichlet Distribution over a 2-Simplex

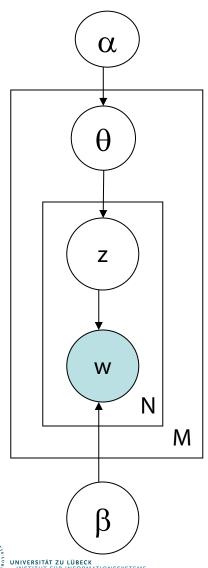


A panel illustrating probability density functions of a few Dirichlet distributions over a 2-simplex, for the following  $\alpha$  vectors (clockwise, starting from the upper left corner): (1.3, 1.3, 1.3), (3,3,3), (7,7,7), (2,6,11), (14, 9, 5), (6,2,6). [Wikipedia]





#### LDA Model – Plate Notation

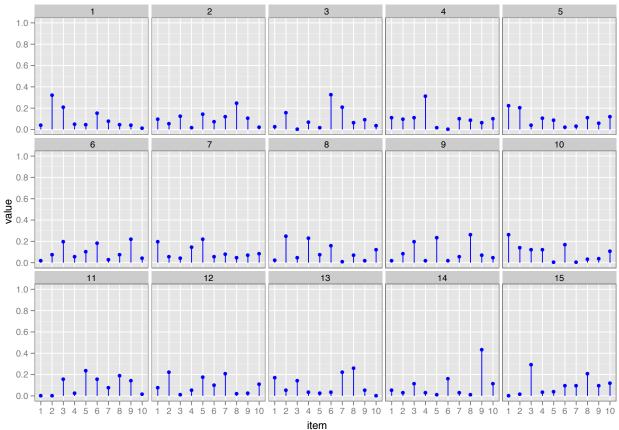


- For each document d,
  - Generate  $\theta_d \sim Dirichlet(\alpha)$
  - For each position  $i = 1, ..., N_d$ 
    - Generate a topic  $z_i \sim Mult(\cdot \mid \theta_d)$
    - Generate a word  $w_i \sim Mult(\cdot | z_i, \beta)$

$$\begin{split} &P\big(\beta,\theta,z_1,\ldots,z_{N_d},w_1,\ldots,w_{N_d}\big)\\ &=\prod_{d=1}^M P(\theta_d|\alpha)\prod_{i=1}^{N_d} P(z_i|\theta_d)P(w_i|\beta,z_i) \end{split}$$

# Corpus-level Parameter $\alpha$ (uniform: $\alpha_{i} = \alpha_{j}$ )

- Let  $\alpha = 1$
- Per-document topic distribution: K = 10, D = 15

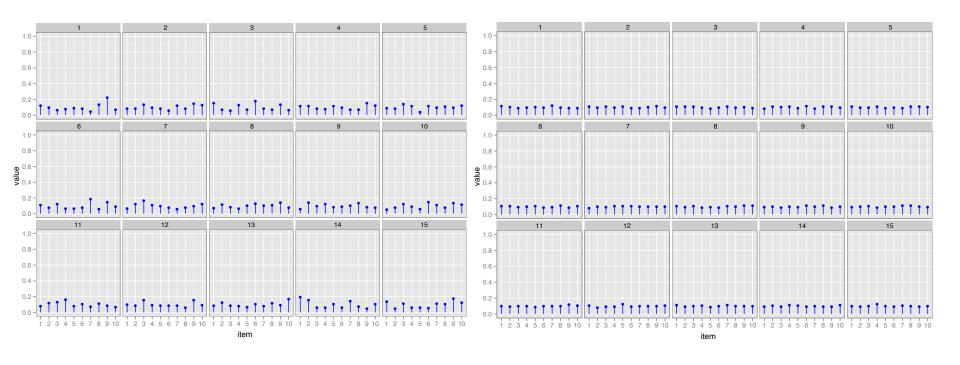




# Corpus-level Parameter $\alpha$

• 
$$\alpha = 10$$

• 
$$\alpha = 100$$

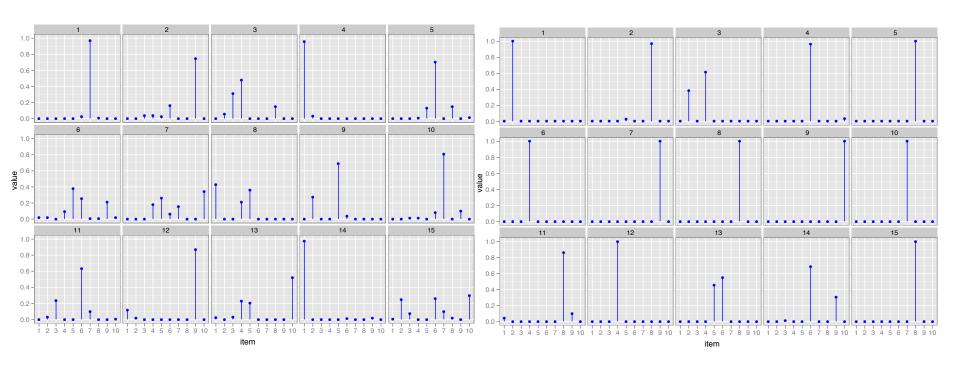




# Corpus-level Parameter $\alpha$

• 
$$\alpha = 0.1$$

• 
$$\alpha = 0.01$$





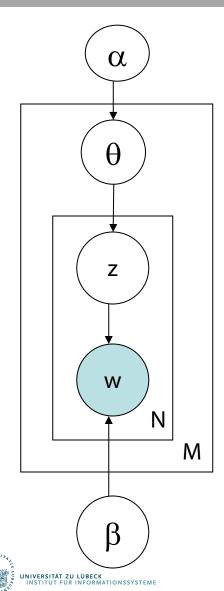
# Intelligent Agents Topic Analysis: LDA

Ralf Möller

Universität zu Lübeck Institut für Informationssysteme



#### Model – Parameters



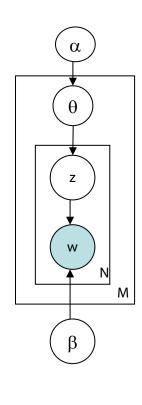
- ← Proportions parameter
  (k-dimensional vector of real numbers)
- ← Per-document topic distribution (*k*-dimensional vector of probabilities summing up to 1)
- ← Per-word topic assignment (number from 1 to k)
- Cobserved word (number from 1 to v, where v is the number of words in the vocabulary)
- ← Word "prior" (v-dimensional)

# Back to Topic Modeling Scenario

#### What are the words' topics and word distribs of topics?

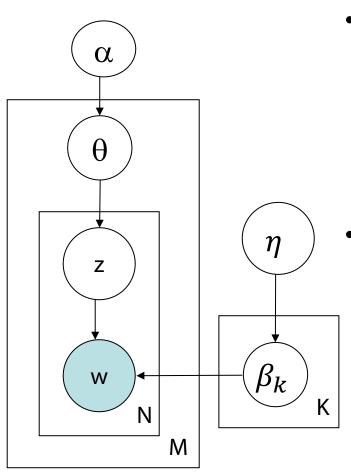
-  $P(\beta, \theta, \mathbf{z} | \mathbf{w}, \alpha)$ 

#### Topic proportions and **Topics Documents** assignments dna 0.02 **Seeking Life's Bare (Genetic) Necessities** genetic 0.01 COLD SPRING HARBOR, NEW YORK— "are not all that far apart," especially in How many genes does an organism need to survive? Last week at the genome meeting comparison to the 75,000 genes in the hu genome, notes Siv Andersson here,\* two genome researchers with radically University in Sy different approaches presented complemener. But coming up with a c tary views of the basic genes needed for life. life sus answer may be more than just 0.02 One research team, using computer analyevolve 0.01 ses to compare known genomes, concluded organism 0.01 sequenced. "It may be a way of organi that today's organisms can be sustained with just 250 genes, and that the earliest life forms any newly sequenced genome," explains required a mere 128 genes. The Arcady Mushegian, a computational moother researcher mapped genes lecular biologist at the National Center in a simple parasite and estifor Biotechnology Information (N mated that for this organism, in Bethesda, Maryland. Comparing 800 genes are plenty to do the brain 0.04 job—but that anything short 0.02 neuron of 100 wouldn't be enough. nerve 0.01 Although the numbers don't match precisely, those predictions \* Genome Mapping and Sequencing, Cold Spring Harbor, New York, Stripping down. Computer analysis yields an esti-May 8 to 12. mate of the minimum modern and ancient genomes. data SCIENCE • VOL. 272 • 24 MAY 1996 number computer 0.01





#### Topic-specific Words: "Smoothed" LDA Model



- Give a different word distribution to each topic
  - $\beta$  is  $K \times V$  matrix (V vocabulary size), each row denotes word distribution of a topic
- For each document d
  - Choose  $\theta_d$  ~ Dirichlet( $\alpha$ )
  - Choose  $\beta_k \sim \text{Dirichlet}(\eta)$
  - For each position  $i = 1, ..., N_d$ 
    - Generate a topic  $z_k \sim Mult(\cdot \mid \theta_d)$
    - Generate a word  $w_i \sim Mult(\cdot | z_{k'}\beta_{zk})$



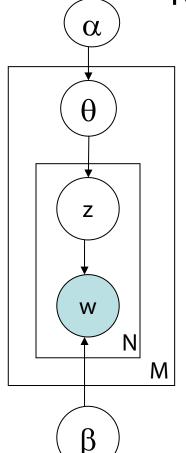
#### But why does LDA actually work?

- Trade-off between two goals
  - 1. For each document, allocate its words to as few topics as possible
  - 2. For each topic, assign high probability to as few terms as possible
- These goals are at odds
  - Putting a document in a single topic makes #2 hard:
     All of its words must have non-negligible probability under that topic
  - Putting very few words in each topic makes #1 hard:
     To cover a document's words, it must assign many topics to it
- Trading off these goals finds groups of tightly co-occurring words



#### Query Answering Problem (non-smoothed version)





$$P(\theta, \mathbf{z} | \mathbf{w}, \alpha, \beta) = \frac{P(\theta, \mathbf{z}, \mathbf{w} | \alpha, \beta)}{P(\mathbf{w} | \alpha, \beta)}$$

$$P(\theta, \mathbf{z}, \mathbf{w} | \alpha, \beta) = P(\theta | \alpha) \prod_{i=1}^{N} P(z_i | \theta) P(w_i | z_i, \beta)$$

$$P(\mathbf{w} | \alpha, \beta) = \int \sum_{k=1}^{K} P(\mathbf{w}, \theta, \mathbf{z} | \alpha, \beta) d\theta = \int \sum_{k=1}^{K} P(\theta | \alpha) \prod_{i=1}^{N} P(z_i | \theta) P(w_i | z_i, \beta) d\theta = \int \frac{\Gamma(\sum_{i} \alpha_i)}{\prod_{i} \Gamma(\alpha_i)} \int \left(\prod_{k=1}^{K} \theta_k^{\alpha_k - 1}\right) \left(\prod_{i=1}^{N} \sum_{k=1}^{K} \prod_{i=1}^{V} (\theta_k \beta_{kj})^{w_i^j}\right) d\theta$$

This not only looks awkward, but is as well *computationally intractable* in general. Coupling between  $\theta$  and  $\beta_{ij}$ . Solution: *Approximations*.



$$p(\theta|\alpha) = \frac{\Gamma(\sum_{i} \alpha_{i})}{\prod_{i} \Gamma(\alpha_{i})} \prod_{i=1}^{K} \theta_{i}^{\alpha_{i}-1}$$

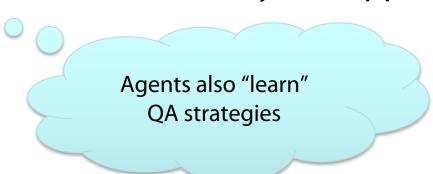
#### LDA Learning

- Parameter learning:
  - Variational Inference / EM
    - Numerical approximation using lower-bounds
    - Results in biased solutions
    - Convergence has numerical guarantees
  - Gibbs Sampling
    - Stochastic simulation
    - Unbiased solutions
    - Stochastic convergence
- Implementation
  - https://mimno.github.io/Mallet/
  - https://radimrehurek.com/gensim/models/ldamodel.html



#### Back to Agents

- Agents not only use models
- Agents build models that are appropriate to fulfil the agents' task descriptions ...
  - ... or maximize the utilities derived from preference structures and goals
- Agents need to derive approximation algorithms for query answering on the models they find appropriate





#### LDA Application: Reuters Data

- Setup
  - 100-topic LDA trained on a 16,000 documents corpus of news articles by Reuters
  - Some standard stop words removed
- Top-7 words from some of the P(w|z)

| "Arts"  | "Budgets" | "Children" | "Education" |
|---------|-----------|------------|-------------|
| new     | million   | children   | school      |
| film    | tax       | women      | students    |
| show    | program   | people     | schools     |
| music   | budget    | child      | education   |
| movie   | billion   | years      | teachers    |
| play    | federal   | families   | high        |
| musical | year      | work       | public      |



#### LDA Application: Reuters Data

#### Result

Again: "Arts", "Budgets", "Children", "Education".

The William Randolph Hearst Foundation will give \$1.25 million to Lincoln Center, Metropolitan Opera Co., New York Philharmonic and Juilliard School. "Our board felt that we had a real opportunity to make a mark on the future of the performing arts with these grants an act every bit as important as our traditional areas of support in health, medical research, education and the social services," Hearst Foundation President Randolph A. Hearst said Monday in announcing the grants.



#### Measuring Performance

- Perplexity of a probability model
- Describe how well a probability distribution or probability model predicts a sample
  - q: Model of an unknown probability distribution p
     based on a training sample drawn from p
  - Evaluate q by asking how well it predicts a separate test sample  $x_1, ..., x_N$  also drawn from p
  - Perplexity of q w.r.t. sample  $x_1, ..., x_N \sim p$  defined as

$$2^{-\frac{1}{N}\sum_{i=1}^{N}\log_2 q(x_i)}$$

- A better model q will tend to assign higher probabilities to  $q(x_i)$ 
  - → lower perplexity ("less surprised by sample")



#### Relation to cross-entropy

The exponent may also be regarded as a cross-entropy,

$$H( ilde{p},q) = -\sum_x ilde{p}(x) \log_2 q(x)$$

where  $\tilde{p}$  denotes the empirical distribution of the test sample (i.e.,  $\tilde{p}(x) = n/N$  if x appeared n times in the test sample of size N).

The definition may be formulated using the Kullback–Leibler divergence  $D_{\mathrm{KL}}(p \parallel q)$ , divergence of p from q (also known as the *relative entropy* of p with respect to q).

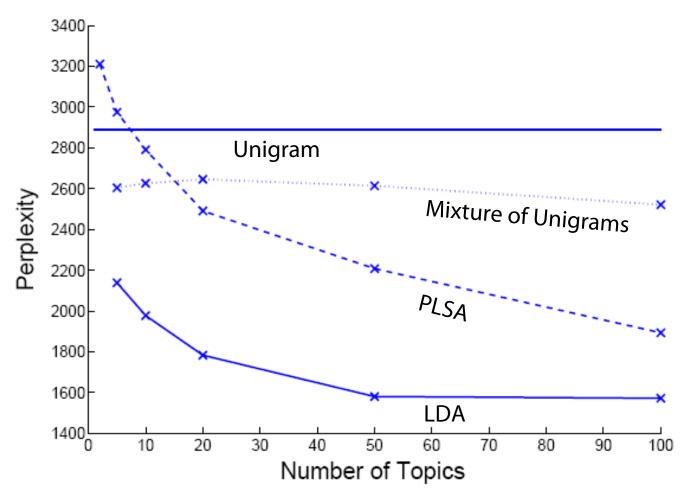
$$H(p,q) = H(p) + D_{\mathrm{KL}}(p \parallel q),$$

where H(p) is the entropy of p.

$$D_{\mathrm{KL}}(P \parallel Q) = -\sum_{x \in \mathcal{X}} P(x) \log igg(rac{Q(x)}{P(x)}igg)$$



# Perplexity of Various Models





#### Use of LDA

- A widely used topic model (Griffiths, Steyvers, 04)
- Complexity is an issue
- Use in IR:
  - Ad hoc retrieval (Wei and Croft, SIGIR 06: TREC benchmarks)
  - Improvements over traditional techniques (e.g., LSI)
  - But no consensus on whether there is any improvement over a relevance model, i.e., model with relevance feedback (relevance feedback part of the TREC tests)

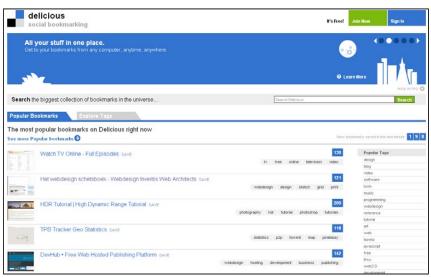
T. Griffiths, M. Steyvers, Finding Scientific Topics. Proceedings of the National Academy of Sciences, 101 (suppl. 1), 5228-5235. **2004** 

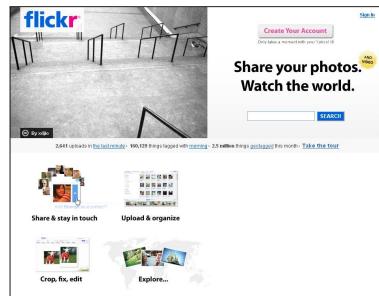
Xing Wei and W. Bruce Croft. LDA-based document models for ad-hoc retrieval. In *Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval* (SIGIR '06). ACM, New York, NY, USA, 178-185. **2006**.



#### Social annotation services

- Delicious, Flickr, CiteULike, youtube, Last.fm, Technorati, Hatena
- Users can attach annotations freely to objects, and share the annotations.







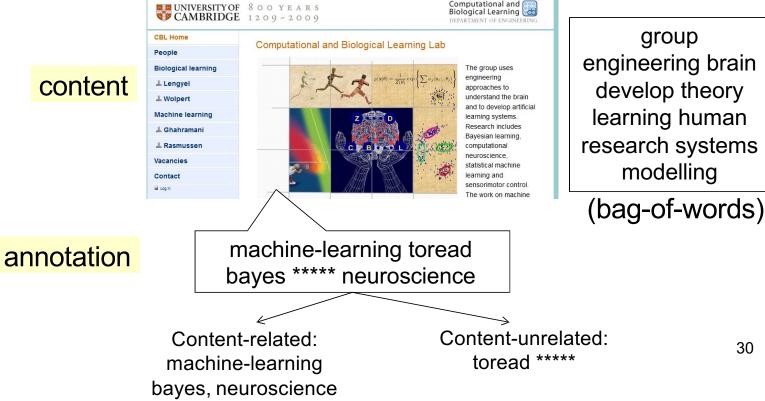
#### Derive content-unrelated annotations

- manufacturer of camera that took the photo
  - 'nikon', 'canon'
- when they were taken
  - '2008', 'november'
- remind the annotator
  - 'toread'
- qualities
  - 'great', '\*\*\*\*\*'
- ownership



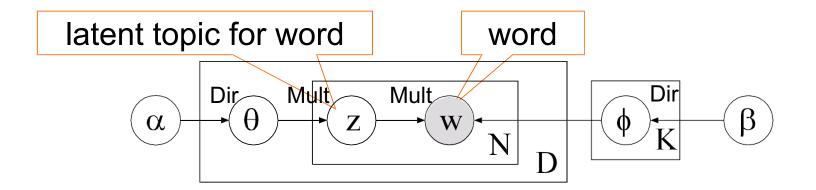
#### Text-based image retrieval

- generative model for contents (words) and annotations with relevance based on topic models
- infer relevance to the content for each annotation

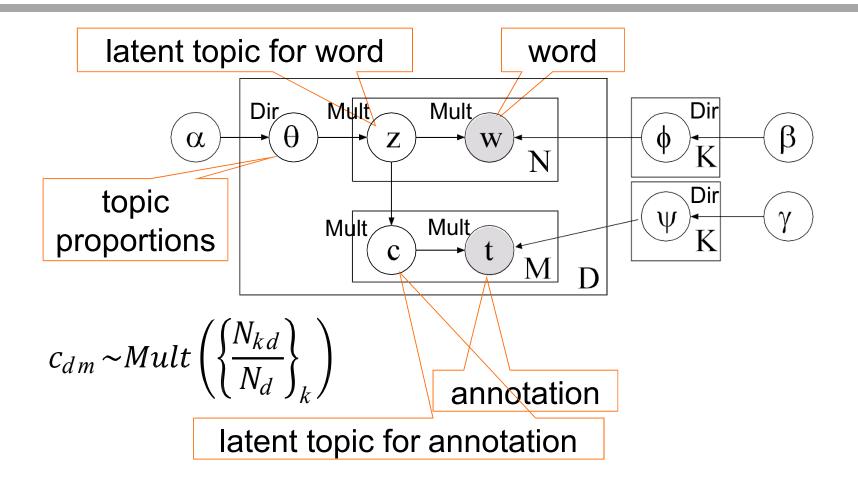




#### Latent Dirichlet allocation



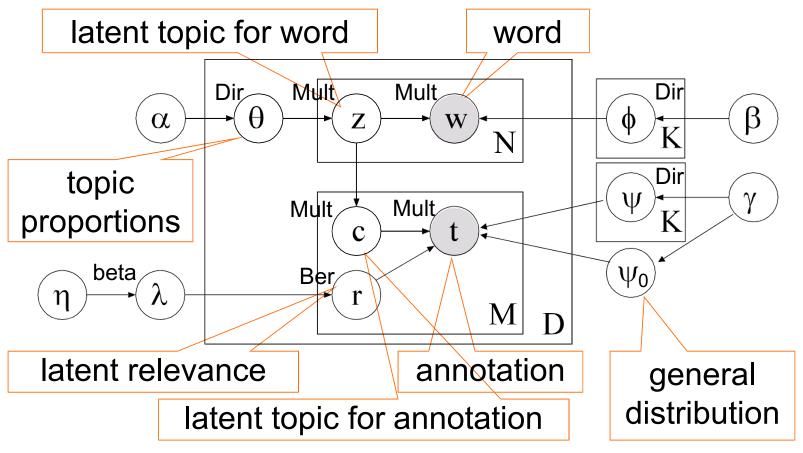
# Correspondence LDA



David M. Blei and Michael I. Jordan. Modeling annotated data. In Proceedings of the 26th annual international ACM SIGIR conference on Research and development in information retrieval (SIGIR '03). Association for Computing Machinery, New York, NY, USA, 127–134. **2003**.

#### Extended model

Tomoharu Iwata, Takeshi Yamada, and Naonori Ueda. Modeling social annotation data with content relevance using a topic model. In Proceedings of the 22nd International Conference on Neural Information Processing Systems (NIPS'09). Curran Associates Inc., Red Hook, NY, USA, 835–843. **2009**.



- N: #words, M: #annotations, D: #documents, K: #topics
- each annotation is associated with a latent variable r, r=1 if content-related, r=0 otherwise



# Topics in Delicious

|                | unrelated  | Topic1     | Topic2        | Topic3      | Topic4     | Topic5    |
|----------------|------------|------------|---------------|-------------|------------|-----------|
|                | reference  | money      | video         | opensource  | food       | windows   |
| 0)             | web        | finance    | music         | software    | recipes    | linux     |
| JE             | imported   | economics  | videos        | programming | recipe     | sysadmin  |
| 7              | design     | business   | fun           | development | cooking    | Windows   |
| ō              | internet   | economy    | entertainment | linux       | Food       | security  |
| ट्ट            | online     | Finance    | funny         | tools       | Recipes    | computer  |
| Ē.             | cool       | financial  | movies        | rails       | baking     | microsoft |
| annotation     | toread     | investing  | media         | ruby        | health     | network   |
| $\supset$      | tools      | bailout    | Video         | webdev      | vegetarian | Linux     |
|                | blog       | finances   | film          | rubyonrails | diy        | ubuntu    |
|                | <u>l</u> i | money      | music         | project     | recipe     | windows   |
| S              |            | financial  | video         | code        | food       | system    |
| 2              |            | credit     | link          | server      | recipes    | microsoft |
| 1              |            | market     | tv            | ruby        | make       | linux     |
| <u> </u>       |            | economic   | movie         | rails       | wine       | software  |
| 1 <del>+</del> |            | october    | itunes        | source      | made       | file      |
| <b>S</b>       |            | economy    | film          | file        | add        | server    |
| $\delta$       |            | banks      | amazon        | version     | love       | user      |
| content word   |            | government | play          | files       | eat        | files     |
| 7              |            | bank       | interview     | development | good       | ubuntu    |



# Topics in Flickr

|             | unrelated  | Topic1       | Topic2    | Topic3         | Topic4    | Topic5      |
|-------------|------------|--------------|-----------|----------------|-----------|-------------|
|             | 2008       | dance        | sea       | autumn         | rock      | beach       |
| ()          | nikon      | bar          | sunset    | trees          | house     | travel      |
| <b>5</b>    | canon      | de           | sky       | tree           | party     | vacation    |
| 5           | white      | digital      | clouds    | mountain       | park      | camping     |
| ō           | yellow     | concert      | mountains | fall           | inn       | landscape   |
| <u>~</u>    | red        | bands        | ocean     | garden         | coach     | texas       |
| et          | photo      | music        | panorama  | bortescristian | creature  | lake        |
| Ξ.          | italy      | washingtondc | south     | geotagged      | halloween | cameraphone |
| annotation  | california | dancing      | ireland   | mud            | mallory   | md          |
| _           | color      | work         | oregon    | natura         | night     | sun         |
| prob        |            |              |           |                |           |             |
| probable in |            |              |           |                |           |             |
| image       |            |              |           |                |           |             |



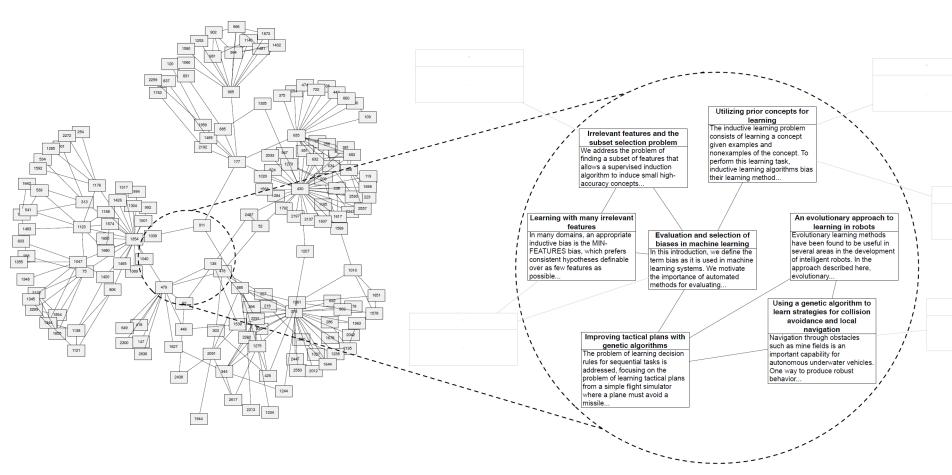
# Perplexity



The proposed method performed better than Corr-LDA in the case of noisy social annotation data.



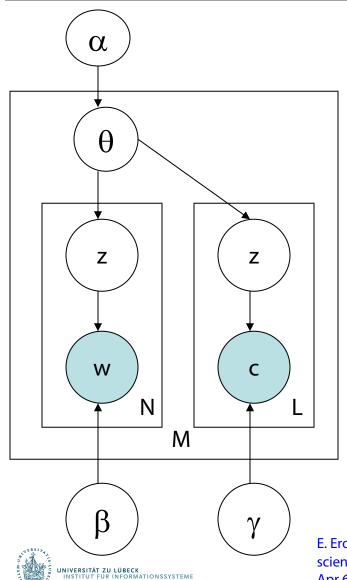
# What if the corpus has network structure?



CORA citation network. Figure from [Chang, Blei, AISTATS 2009]



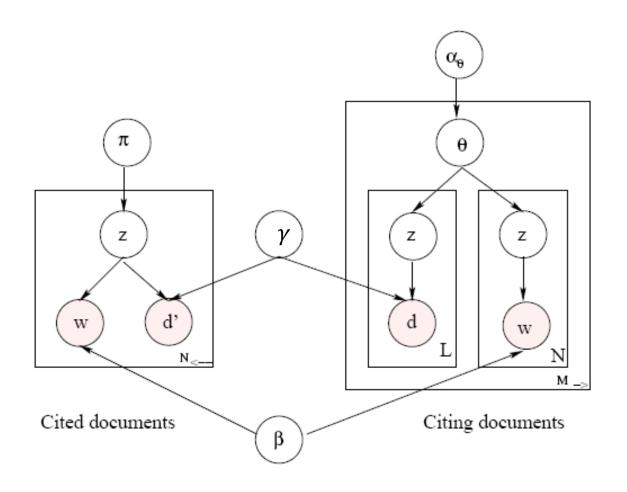
# Hyperlink modeling using LDA



- For each document d,
  - Generate  $\theta_d \sim Dirichlet(\alpha)$
  - For each position  $i = 1, ..., N_d$ 
    - Generate a topic  $z_i \sim \text{Mult}(\cdot | \theta_d)$
    - Generate a word  $w_i \sim Mult (\cdot | \beta_{Z_n})$
  - For each citation  $j = 1, ..., L_c$ 
    - Generate  $z_i \sim Mult(\theta_d)$
    - Generate  $c_i \sim \text{Mult} (\cdot | \gamma_{Z_i})$
- Learning using variational EM, Gibbs sampling

E. Erosheva, S Fienberg, J. Lafferty, Mixed-membership models of scientific publications. Proc National Academy Science U S A. 2004 Apr 6;101 Suppl 1:5220-7. Epub **2004** Mar 12.

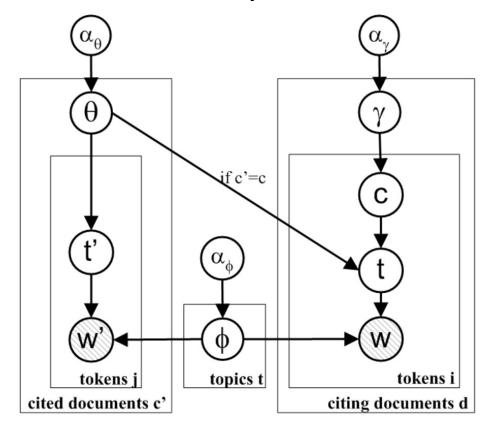
#### Topic Influence in Blogs





# Modeling Citation Influences - Copycat Model

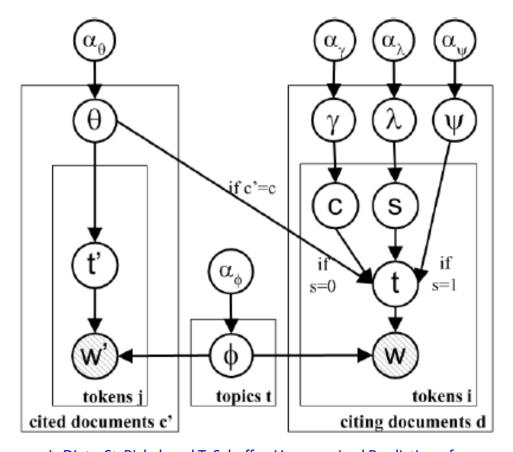
 Each topic in a citing document is drawn from one of the topic mixtures of cited publications





#### Modeling Citation Influences

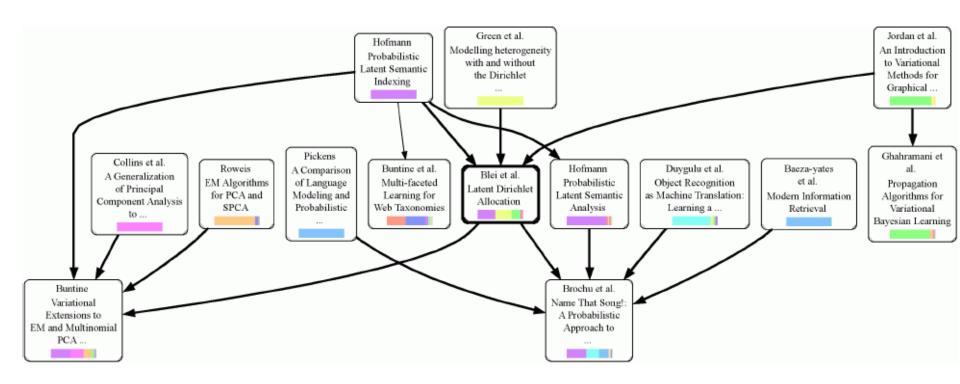
 Citation influence model: Combination of LDA and Copycat model





#### **Modeling Citation Influences**

Citation influence graph for LDA paper





# Modeling Citation Influences

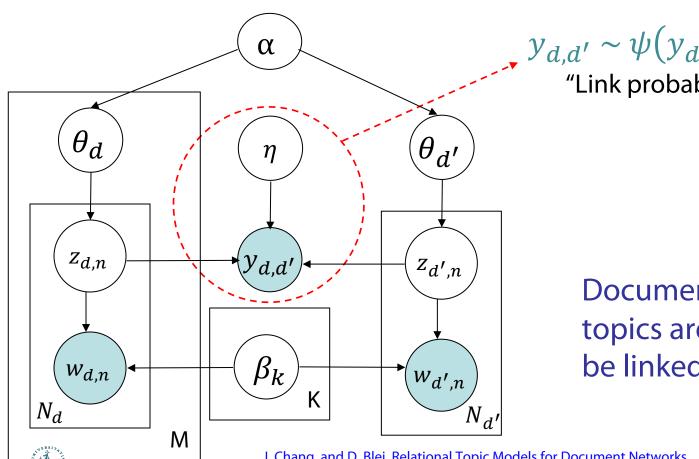
#### Words in LDA paper assigned to citations

| Cited Title       | Associated Words                           | $\gamma$ |
|-------------------|--------------------------------------------|----------|
| Probabilistic     | text(0.04), $latent(0.04)$ ,               | 0.49     |
| Latent Semantic   | modeling(0.02), model(0.02),               |          |
| Indexing          | indexing(0.01), $semantic(0.01)$ ,         |          |
|                   | document(0.01), collections(0.01)          |          |
| Modelling         | dirichlet(0.02), mixture(0.02),            | 0.25     |
| heterogeneity     | allocation(0.01), $context(0.01)$ ,        |          |
| with and          | variable(0.0135), $bayes(0.01)$ ,          |          |
| without the       | continuous(0.01), $improves(0.01)$ ,       |          |
| Dirichlet process | model(0.01), $proportions(0.01)$           |          |
| Introduction to   | variational(0.01), $inference(0.01)$ ,     | 0.22     |
| Variational       | algorithms $(0.01)$ , including $(0.01)$ , |          |
| Methods for       | each(0.01), we(0.01), via(0.01)            |          |
| Graphical         |                                            |          |
| Methods           |                                            |          |



#### Relational Topic Model (RTM) [ChangBlei 2009]

 Same setup as LDA, except now we have observed network information across documents



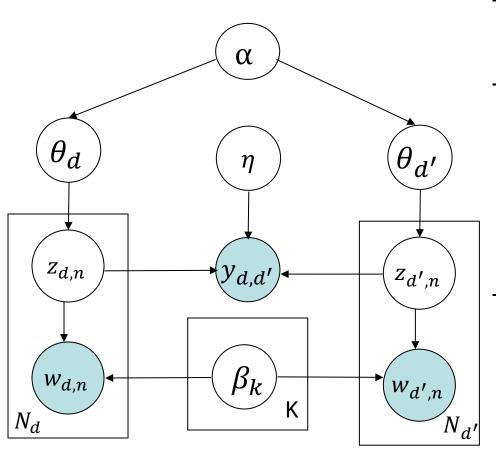
NIVERSITÄT ZU LÜBECK

 $y_{d,d'} \sim \psi(y_{d,d'}|z_d, z_{d'}, \eta)$ "Link probability function"

> Documents with similar topics are more likely to be linked.

J. Chang, and D. Blei. Relational Topic Models for Document Networks. AISTATS, volume 5 of JMLR Proceedings, page 81-88. JMLR.org, 2009.

#### Relational Topic Model (RTM) [ChangBlei 2009]



- For each document d
  - Draw topic proportions  $\theta_d | \alpha \sim Dir(\alpha)$
  - For each word  $w_{d,n}$ 
    - Draw assignment  $z_{d,n} | \theta_d \sim Mult(\theta_d)$
    - Draw word  $w_{d,n}|_{Z_{d,n}}, \beta_{1:K} \sim Mult(\beta_{Z_{d,n}})$
  - For each pair of documents d, d'
    - Draw binary link indicator  $y|z_d, z_{d'} \sim \psi(\cdot|z_d, z_{d'}, \eta)$

#### Document networks

|                           | # Docs | # Links | Ave. Doc-<br>Length | Vocab-Size | Link Semantics                              |
|---------------------------|--------|---------|---------------------|------------|---------------------------------------------|
| CORA                      | 4,000  | 17,000  | 1,200               | 60,000     | Paper citation (undirected)                 |
| Netflix<br>Movies         | 10,000 | 43,000  | 640                 | 38,000     | Common actor/director                       |
| Enron<br>(Undirected<br>) | 1,000  | 16,000  | 7,000               | 55,000     | Communication between person i and person j |
| Enron<br>(Directed)       | 2,000  | 21,000  | 3,500               | 55,000     | Email from person i to person j             |



#### Conclusion

- Topic modeling basic tool
- Relational topic modeling provides a useful start for combining text and network data in a single statistical framework
- Can agents derive a model for a certain task description?
- Can agent derive appropriate inference methods for the constructed model?

