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Motivation: Part Of Speech Tagging

- Annotate each word in a sentence with a part-of-
speech (POS) tags.

- Lowest level of syntactic analysis.

John saw the saw and decided to take it to the table.
NNP VBD DT NN CC VBD TO VB PRPINDT NN

. Useful for subsequent syntactic parsing and word
sense disambiguation

- Topic modeling as discussed before could be
extended to better consider POS tags

Abbreviations: https://sites.google.com/site/partofspeechhelp/home



Information Extraction

- Identify phrases in language that refer to specific types
of entities and relations in text.

- Named entity recognition is the task of identifying
names of people, places, organizations, etc. in text.
people organizations places

— Michael Dell is the CEO of Dell Computer Corporation and lives
in Austin Texas.

- Extract pieces of information relevant to a specific
application, e.g. used car ads:

make model year mileage

— Forsale, 2002 Toyota Prius, 20,000 mi,
Available starting July 30, 2006.
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Semantic Role Labeling

 For each clause, determine the semantic role played by
each noun phrase that is an argument to the verb.

agent source destination instrument
— John drove Mary from Austin to Dallas in his Toyota Prius.
— The hammer broke the window.

. Also referred to as “case role analysis,” “thematic
analysis,” and “shallow semantic parsing”
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Sequence Labeling as Classification

Using Outputs as Inputs

. Better input features are usually the categories of the
surrounding tokens, but these are not available yet.

. Can use category of either the preceding or succeeding
tokens by going forward or back and using previous

output.
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Forward Classification

John saw the saw and decided to take it to the table.

classifier

l

NNP
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Forward Classification

saw the saw and decided to take it to the table.
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Forward Classification

NNP VBD
JohiM\ saWy the saw and decided to take it to the table.

classifier
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Forward Classification

NNP VBD DT
John sawx th saw and decided to take it to the table.
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Forward Classification

NNP VBD DT NN
John saw ths saWw and decided to take it to the table.
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Dynamic Topic Models

« In LDA the order of documents does not matter

- Not appropriate for sequential corpora (e.g., that span hundreds of years)
- Further, we may want to track how language changes over time

- Let the topics driftin a sequence.

1789 2009

Inaugural addresses
My fellow citizens: I stand here today humbled by the task AMONG the vicissitudes incident to life no event could
before us, grateful for the trust you have bestowed, mindful have filled me with greater anxieties than that of which
of the sacrifices borne by our ancestors... the notification was transmitted by your order...
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@ David M. Blei and John D. Lafferty. Dynamic topic models.
BT NI Mebidanonssysrewe In Proc. ICML '06. pp. 113-120. 2006.
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Dynamic Topic Models

Br.1 B2 BT
Q Q ... =O

- Use a logit normal distribution to model topics evolving
over time

- Embed it in a state-space model on the log of the topic
distribution

Bkl Bi—1ix ~ N (Bit-1x 10°)
p(wlBik) o exp{Bik}

- Let us make inferences about sequences of documents
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Recap: Logistic function

A logistic function or logistic curve is a
common "S" shape (sigmoid curve), with

\

equation:
L
where

« e = the natural logarithm base (also known as

Euler's number), 4_“/ "

 Xp = the x-value of the sigmoid's midpoint, -6 —4 -2 0 2 4 6
» L =the curve's maximum value, and Standard logistic sigmoid function i.e. =
« k= the steepness of the curve.!'] L=1k=1,20=0
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Normal Distribution
1

Logit Normal Distribution fa) = ——e3(F)
o2

The probability density function (PDF) of a logit-normal

distribution, for0 s x< 1, is: 5-
: 2
1 1 _ (logit(z)—p) 4-
fX(w; Ky 0) - € 2°
ov2r z(1—x) 3-
where u and o are the mean and standard deviation of 5 ﬁ
the variable’s logit (by definition, the variable’s logit is B i gma
normally distributed). 1-
— 0.32
ﬂ 20 - — 056
6 —f{x)=log %X & -
fix)=log I1-x qc_, 6 - — 1
4 ©
/ 5= - 1.78
2 / /’/ 4- I — 3.16
0 L 3- =
0 2//61/ 0.6 0.8 1.0 5-
-9 //
1-
-4 / 0- ,
Logit = log of odds | ! ! . | .
-6 - . | ’ ‘ ‘ 0.0 0.2 0.4 0.6 0.8 1.0
Plot of logit(p) in the domain of 0 to 1, where the base of =?
logarithm is e
[Wikipedial M FOCUS DAS LEBEN 16




B¢ is a multinomial: Simplex again

e The logistic normal is a distribution on the simplex that can model
dependence between components (Aitchison, 1980).

e The log of the parameters of the multinomial are drawn from a multivariate
Gaussian distribution,

X ~ Nk(wX)
0; x expix}.
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ynamic Topic Models

Original article

TECHVIEW: DNA SEQUENCING

Sequencing the Genome, Fast

James C. Mullikin and Amanda A. McMurray

enome sequencing projects reveal
Gm enetic makeup of an crganiam

by reading off the sequence of the
DNA bases, which encodes all of the infor-
mation necessary for the life of the organ-
ism. The base sequence contains four nu-
cleotides—adenine, thymidine, guanosine,
and cytosine—which are linked together
into long double-helical chains. Over the
last two decades, automated DNA se-
quencers have made the process of obtain-
ing the base-by-base sequence of DNA
casier. By application of an electric ficld
across a gel matrix, these sequencers sepa-
rate fluorescently labeled DNA molecules
that differ in size by one base. As the
molecules move past  given point in the
gel, laser excitation of a fluorescent dye
specific o the base at the end of the
molecule yields a base-specific signal that
can be automatically resorded.

The latest sequencer to be launched is
Perkin-Elmer's much-anticipated ABI
Prism 3700 DNA Analyzer which. like the
Molecular Dynamics MegaBACE 1000
launched last year, incorporates a capillary
mlxloh)lnllhemeg(lmmﬂunl
traditional slab-shaped gel apparatus. Extra
interest in the ABI 3700 has been X
ed because Craig Venter of Celera Ge-
nomics Corporation anticipates that ~230
of these machines (/) will enable the com-
pany to raw sequence for the en-
tire 3 gigabases (Gb) of the human
in 3 years. The specifications of the ABI
3700 machine say that, with less than |
hour of human labor per day, it can se-
quence 768 samples per day. Assuming
that each sample gives an average of 400
base pairs (bp) of usable sequence data (its.
read length) and any section from the en-
tire human genome is covered by an aver-
age of 10 overlapping independent reads
(2), the 75 million samples that Celera
must process will require ~100,000 ABI
3700 machine days. With ~230 machines,
that works out to less than 2 years or about
434 days, which affords some margin of er-
ror for unexpected developments.

At the Sanger Centre, we have finished
146 Mb of genomic sequence from a vari-

The authors are at The Sanger Centre, Wellcome
Trust Cenome Campus, Minxton, Cambs, CB10 154,

ety of genomes, including 81 Mb of se-
quence from the human genome, the
largest amount of any center so far (3). We
are aiming to sequence 1 Gb of human se-
quence in rough-draft form by 2001, with
a finished version by 2003. Our sequenc-
ing cquipment includes 44 ABI 373XL, 61
ABI 377XL, and 31 ABI 377XL-96 slab

gel sequencers from Perkin-Elmer plus 6
M«lccul-r Dynamics MegaBACE 1000
capillary sequencers, allowing a maximum
throughput of 32,000 samples per day. Two
ABI 3700 capillary sequencers—delivered

TECH.SIGHT

ples from the plates into wells that open in-
1o the capillaries. This and the rest of the
sequencing operation is fully automatic
The machine can currently process four
96-well plates of DNA samples unattended,
taking approximately 16 hours before oper-
ator intervention is required. This rate falls
short of the design specification of four
96-well plates in 12 hours.

“The main innovation of the ABI 3700 is
the use of a sheath flow fluorescence detec-
tion system (4). Detection of the DNA frag-
ments occurs 300 um past the end of the cap-
illary within a fused silica cuvettc. A laminar
fluid flows over the ends of the capillaries,
drawing the DNA fragments as they emerge
from the capillarics through a fixed laser
beam that simultancously intersects. with all
of the samples. The emitted fluorescence is
detected with a spectral CCD (charge-cou-
pled device) detector. This arrangement
means that there are no moving parts in the
detection system, other than a shutter in front

of the CCD detector.

e g

We have cvaluated these ma-
chines for their performans
eration, ease of use, and rel
ty in comparison to the more
commonly used slab gel se-
quencing machines. In automat-
ed sequencers, there are two
methods for containing the gel
matrix. One is to polymerize a
gel matrix between two finely
separated glass plates (0.4 mm or

w | less)—the slab gel method. The

other is 1o inject  polymer ma-

Fig. 1. Comparison of read-length histograms for se-
machine and

5 collected with the ABI 3700 capillary

quence:
the ABI 377X1-96 slab gel machine. The capillary machine
under-performs. the stab gel machine by about 200 bases.
Both sets of reads are from runs with ABI Big Dye Termina-

trix into a capillary (internal di-

sequencers have only

tly
tor chemistries. Read length is computed as the number of  become commercially available.
bases per read where the predicted error rate is less than or With cither type of system,
equal to 1.0% (azzo) The “phred” Q value was recali-  the aim is to read as many bases

beated for each type of

10 the Sanger Centre in December 1998—
are in our Research and Development de-
partment for evaluation. Thus, the ABI
3700 will ultimately be added to our pres-
ent capacity to reach our goal

The ABI 3700 DNA sequencer is built
into a floor-standing cabinet, which con-
tains in its base all the reagents required
for its operation. The

as possible for a given sample of

DNA-—that is, long read lengths
are desirable. In fact, a system that could
read twice as many bases but at half the
speed of another system is preferable, if
both systems cost the same. This is be-
cause assembling relatively fewer long-se-
quenced fragments is easier than assem-
bling many short ones. So, read length is
an important parameter when evaluating

readily accessible for replenishment, which
is required every day under high-through-
put operation. At bench height within the
cabinet is a four-position bed, on which mi-
crotiter plates of DNA samples are located.
The operator places the prepared plates in-
to position, closes the front of the machine
and programs it by using a personal com-
puter. A robotic arm transfers DNA sam-

new sequenc
We have directly compared the ABI
3700 sequencer to the ABI 377XL slab gel
by evaluating the sequence data
obtained from both machines with human
DNA samples. These samples were sub-
cloned into plasmid or m13 phage and pre-
pared and sequenced with our standard
protocols for Perkin-Elmer Big Dye Ter-
‘minator chemistry.

Topic proportions

UK E-mak jom@sanger.ac.uk 3 s . I I
www.sciencemag.org  SCIENCE  VOL 283 19 MARCH 1999 1867 e e e _J_ —
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Dynamic Topic Models

Original article

TECHVIEW: DNA SEQUENCING

Sequencing the Genome, Fast

James C. Mullikin and Amanda A. McMurray

enome sequencing projects reveal
the genetic makeup of an organism
by reading off the sequence of the
DNA bases, which encodes all of the infor-
mation necessary for the life of the organ-
ism. The base sequence contains four nu-
cleotides—adenine, thymidine, guanosine,
and cytosine—which are linked together
into long double-helical chains. Over the
last two decades, automated DNA se-
quencers have made the process of obtain-
ing the base-by-base sequence of DNA
easier. By application of an electric ficld
across a gel matrix, these sequencers sepa-
rate fluorescently labeled DNA molecules
that differ in size by one base. As the
molecules move past a given point in the
gel. laser excitation of a fluorescent dye
specific o the base at the end of the
molecule yields a base-specific signal that
can be automatically resorded.
The latest sequencer to be launched is
Perkin-Elmer's much-anticipated ABI

s MegaBACE 1000
launched last year, incorporates a capillary
tube to hold the sequence gel rather than a
traditional slab-shaped gel apparatus. Extra
interest in the ABI 3700 has been generat-
ed because Craig Venter of Celera Ge-
nomics Corporation anticipates that ~230
of these machines (/) will enable the com-
pany to produce raw sequence for the en-
tire 3 gigabases (Gb) of the human genome
in 3 years. The specifications of the ABI
3700 machine say that, with less than |
hour of human labor per day, it can se-
quence 768 samples per day. Assuming
that each sample gives an average of 400
base pairs (bp) of usable sequence data (its
read length) and any section from the en-
tire human genome is covered by an aver-
age of 10 overlapping independent reads
(2), the 75 million samples that Celera
must process will require ~100,000 ABI
3700 machine days. With ~230 machines,
that works out to less than 2 years or about
434 days, which affords some margin of er-
ror for unexpected developments.

At the Sanger Centre, we have finished
146 Mb of genomic sequence from a vari-
3t The Sanger Centre, Wellcome
Cenome Campus. Minxton, Cambs, CB10 1SA,

.
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ety of genomes, including 81 Mb of se-
quence from the human genome, the
largest amount of any center so far (3). We
are aiming to sequence | Gb of human se-
quence in rough-draft form by 2001, with
a finished version by 2003, Our sequenc-
ing equipment includes 44 ABI 373XL, 61
ABI 377XL, and 31 ABI 377XL-96 slab
gel sequencers from Perkin-Elmer plus 6
Molecular Dynamics MegaBACE 1000
capillary sequencers, allowing a maximum
throughput of 32,000 samples per day. Two
ABI 3700 capillary sequencers—delivered
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Fig. 1. Comparison of read

ngth histograms for se-
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ples from the plates into wells that open in-
to the capillaries. This and the rest of the
sequencing operation is fully automatic
The machine can currently process four
96-well plates of DNA samples unattended,
taking appeoximately 16 hours before oper-
ator intervention is required. This rate falls
short of the design specification of four
96-well plates in 12 hours.

“The main innovation of the ABI 3700 is
the use of a sheath flow fluorescence detec-
tion system (). Detection of the DNA frag-
ments occurs 300 pm past the end of the cap-
illary within a fused silica cuvette. A laminar
fluid flows over the ends of the capillaries,
drawing the DNA fragments as they emerge
from the capillaries through a fixed laser
beam that simultancously intersects with all
of the samples. The emitted fluorescence is
detected with a spectral CCD (charge-cou-
pled device) detector. This arrangement
means that there are no moving parts in the
detection system, other than a shutter in front
of the CCD detector.

We have cvaluated these ma-
chines for their performance, op-
eration, case of use, and reliabili-
ty in comparison 1o the more
commonly used slab gel se-
quencing machines. In automat-
ed sequencers, there are two
methods for containing the gel
matrix. One is 1o polymerize a
gel matrix between two finely
2 separated glass plates (0.4 mm or
w  we| less)-the slab gel method. The
other is to inject a polymer ma-
trix into a capillary (internal di-

quences collected with the ABI 3700 capillary machine and  Ameter <0.2 mm). Most sequenc-

the ABI 377X1-96 slab gel machine. The capillary machine 108 facilities use the slab gel

under-performs the stab gel machine by about 200 bases. Method, because multicapillary

Both sets of reads are from runs with ABI Big Dye Termina-  Sequencers have only recently

tor chemistries. Read length is computed as the number of ~ become commercially available.
Wi

bases per read where the predicted error rate is
equal to 1.0% (Q = 20). The “phred” Q value
beated for each type of read.

10 the Sanger Centre in December 1998—
are in our Research and Development de-
partment for evaluation. Thus, the ABI
3700 will ultimately be added to our pres-
ent capacity to reach our goal.

The ABI 3700 DNA sequencer is built
into a floor-standing cabinet, which con-
tains in its base all the reagents required
for its operation. The reagent containers are
readily accessible for replenishment, which
is required every day under high-through-
put operation. At bench height within the
cabinet is a four-position bed, on which mi-
crotiter plates of DNA samples are located.
The operator places the prepared plates in-
to position, closes the front of the machine
and programs it by using a personal com-
puter. A robotic arm transfers DNA sam-
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less than o ith cither type of system,
was recall-  the aim is o read as many bases
a given sample of
long read lengths
are desirable. In fact, a system that could
read twice as many bases but at half the
speed of another system is preferable, if
both systems cost the same. This is be-
cause assembling relatively fewer long-se-
quenced fragments is easier than assem-
bling many short ones. So, read length is
an important parameter when evaluating
new sequencing technologies.

We have directly compared the ABI
3700 sequencer to the ABI 377XL slab gel
sequencer by evaluating the sequence data
obtained from both machines with human
DNA samples. These samples were sub-
cloned into plasmid or m13 phage and pre-
pared and sequenced with our standard
protocols for Perkin-Elmer Big Dye Ter-
minator chemistry.

Probabilistic Topic Models, David Blei, 2013
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Most likely words from top topics

sequence
genome
genes

sequences

human
gene
dna

sequencing
chromosome

regions
analysis
data
genomic
number

devices
device

materials

current
high
gate
light
silicon
material

technology

electrical
fiber
power
based

data
information
network
web
computer
language
networks
time
software
system
words
algorithm
number
internet
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Dynamic Topic Models

(1880 ) (1890 ) (1900 ) (1910 ) (1920 ) (1930 ) (1940 )
electric electric apparatus air apparatus tube air
machine power steam water tube apparatus tube
power company power engineering air glass apparatus
engine steam engine apparatus pressure air glass
steam [—| electrical —»| engineering —» room —»| water [—®| mercury —| laboratory

two machine water laboratory glass laboratory rubber
machines two construction engineer gas pressure pressure

iron system engineer made made made small
battery motor room gas laboratory gas mercury

. Wwire ) [ _engine | . feet ) | tube | | mercury | small gas

v
(1950 ) ( 1960 ) ( 1970 ) ( 1980 | ( 1990 ) ( 2000
tube tube air high materials devices
apparatus system heat power high device
glass temperature power design power materials
air air system heat current current
chamber » heat —»| temperature —» system || applications gate
instrument chamber chamber systems technology high
small power high devices devices light
laboratory high flow instruments design silicon
pressure instrument tube control device material
rubber | ( control J ( design J ( large ) | heat ) | technology }
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Dynamic Topic Models

"Theoretical Physics" "Neuroscience"

OXYGEN

1880 1900 1920 1940 1960 1980 2000 1880 1900 1920 1940 1960 1980 2000

5 David M. Blei and John D. Lafferty. Dynamic topic models.
£ UNIVERSITAT ZU LUBECK In Proc. ICML '06. pp. 113-120. 2006. IM FOCUS DAS LEBEN 21
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Dynamic Topic Models

- Understand developments
. Distributions of topics over time
- Discretization of time might be a problem

— Runtime increases dramatically
— Continuous dynamic topic models

- Many applications

— E.g., comparison of science areas,
analysis of scientific work

- How can we compare distributions?

Wang, Chong; Blei, David; Heckerman, David. "Continuous Time
Dynamic Topic Models". Proceedings of ICML'08, 2008. 22
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Recap: Huffman code example

M code length  prob

A 000 3 0,125
B 001 3 0,125
C 01 2 0,250
D 1 1 0,500

average message length

If we need to send many messages

Exp. len
0,375

0,375
0,500
0,500
1,750

(A,B,C or D) and they have this
probability distribution and we
use this code, then over time, the
average bits/message should

approach 1.75

23



Recap: Information Theory Background

« Assume that you need to send messages from a repertoire of n messages

- If there are n equally probable possible messages, then the probability p of
eachis1/norn=1/p

« Information (number of bits) conveyed by a message is
log(n) =log(1/p)=-log(p)

- E.g., ifthere are 16 messages, then log(16) =4 and we need 4 bits to
identify/send each message.

- In general, if we are given a probability distribution
P =(P1, P2 s Pn)
- Expected information induced by distribution P (aka entropy of P):
I(P) = -(py*log(py) + p,*log(p,) + .. + py*log(p,)
=-2; pi*log(py) = %; pi*log(1/p)
- What if one used an erroneous distribution g?
— One might use too many bits for more frequent messages

D) w
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The KL Divergence

« The cross-entropy, or Kullback-Leibler divergence,
between two distributions p and q measures the

expected information gain (reduction in average
number of bits per event) due to replacing the
“wrong” distribution q with the “right” distribution p:

DR (p,q) = sz'(hl(l/qz') —In(1/pi)) = Ep[ln(p/q)]

- Not symmetric




Hellinger Distance

- The Hellinger distance is a symmetric measure of distance
between two distributions that is popular in machine
learning applications:

D" q) = |vp - valy, = | S (VBT — V&)

j=1

€ [0,v2]

« Sometimes value should bein [0, 1]

1/2

For two discrete probability distributions P = (p1,...,pr) and Q@ = (q1,---,4k),
their Hellinger distance is defined as

k
H(P,Q) = \IZ - V),

[Wikipedia]



Dynamic Topic Models

- Time-corrected similarity shows a new way of using the
posterior

- Consider the expected Hellinger distance between the topic
proportions of two documents,

K
dijZE Z(V 0/, " Hf,k)zlwi’wf
k=1

. Uses the latent structure to define similarity

- Time has been factored out because the topics associated to
the components are different from year to year

- Similarity of documents based only on topic proportions

GERST
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ynamic Topic Models

The Brain of the Orang (1880

326 SCIENCE.
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Dynamic Topic Models

Representation of the Visual Field on the Medial Wall
of Occipital-Parietal Cortex in the Owl Monkey (1976

project, the visuotopic organization of the
medial occipital-parictal cortex was ex-
plored with ekectrophysiological mapping
techaiques in five owl monkeys (2). The
monkeys were anesthetized with srethan
and prepared for recording. Tungstcn and
platinum-iridiom  microclectrodes  were
used to record from small clusters of ney-
rons or occasionally from single nesrons in
tangential penctrations parallel (o the me.
surface of occipital-parietal cortex.
Receptive fiekds were plotted by moving
circular spots or rectangalar slits and bars
on the surface of a translucent plastic
hemisphere centered in front of the con-
tralateral eye. The position of the ops
disk was projected onto the plastic hemi-
sphere with the method of Fernald and
Chase (3). The ipsitateral eye usually was

or  +10v 1200 w40* 460"
© 0€0R050es

" view
72-485

Fig. 1

o
-20°
~40*

Catearine

N

-60°

covered with an opaque shickd. Elcctrode
tracks and recording sites were recon-
structed from histological sections and
photographs of the intact brain.

Figure | illustrates the data from our
most complete mapping of the medial
area: data obtained in the other four ex-
periments revealed the same pattern of vis-
wotopic organization. Tangeatial pene
trations | through 4 ran parallel to the me-
dial surface of occipital-parictal cortex at a
distance of approximately | mm from the
medial surface. In previously published ex-
periments, we found that the receptive
fields recorded adjacent 10 the medial area
in the seond visual area (V 11) were lo-
cated in the lower guadrant ncar the hori-
zontal meridian abost 50" to 60" from
center (4). Thus. as is shown in Fig. |, and

ot

20",

" area in owl monkey
view of the posterior half of the medial wall of cerebeal. the left the b s

also in Fig. 2, which llustrates the organi-
zation of the other cortical visual areas
that have been mapped in the owl monkey,
the border between the medial arca and the
second vissal arca corresponds to a periph-
eral portion of the horizontal meridian. In
other experimeats in the dorsomedial arca.
we found that receptive fickds recorded
near its common border with the medial
area began near the vertical meridi
an in the lower quadrant and proceeded in
2 broad loop in the periphery toward the
horizontal meridian (5). Thus. as is shown
in Figs. 1 and 2. the common border be-
tweea the dorsomedial and the medial
areas corresponds to part of the lower fickd
vertical meridian and the peripheral por.
tions of the lower visual quadrant. Dor-
sally. the medial area is adjoined by posic-

LYYW
s
a
.

Aans

72455, The diagram on the lower left i3

sal i 10 the eft in this diagram. Microclectrode penetrations are number
sponding receptive fickds arc shown in the perimeter chart on the right. In the upper lftis an expanded map of the visuotopsc o,

The crcles indicate «

removed. Anierior is up and dor-

rod. and recording stes are indicated by short bars denoted by letiers. The corre.

the visual field; the

h
1 half of the vissal fied; the triangles
I arex: DM s the dorsomedial visual

13 FEBRUARY 1976

K .,

H { S UNIVERSITAT ZU LUBECK

‘a' i INSTITUT FUR INFORMATIONSSYSTEME
5 5

e the temporal periphery of
rea. OD indicates the projestion of th

hemibeld. V1 Vs thesecond
e opt disk or blind spot.
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Dynamic Topic Models: Summary

- Can model changes of topics (= word distributions) in
corpora over time

- Uses a technique for
modeling temporal influences

« As a by-product we have discussed
techniques for comparing distributions

30



Word-Word Associations in Document Retrieval

Recap
« LSI: Documents as vectors, dimension reduction

« Topic Modeling
— Topic = Word distribution
— From LDA-Model: P(Z | w)
— Assumption: Bag of words model
(independence, naive Bayes, unigram distribution)

Words are not independent of each other

- Word similarity measures

- Extend query with similar words automatically

- Extend query with most frequent followers/predecessors
- Insert words in anticipated gaps in a string query

31



Approaches for Representing Word Semantics

Beyond bags of words

Distributional Semantics Word Embeddings (Predict)

(Count) - Inspired by deep learning

- Used since the 90's e word?2vec

. Sparse word-context (Mikolov et al., 2013)
PMI/PPMI matrix . GloVe

- Decomposed with SVD (Pennington et al., 2014)

N /.

Underlying Theory: The Distributional Hypothesis (Harris, '54; Firth, 57)

“Similar words occur in similar contexts”

https://www.tensorflow.org/tutorials/word2vec

https://nlp.stanford.edu/projects/glove/




Point(wise) Mutual Information: PMI

Measure of association used in information theory and

statistics
pmi(a:° y) — log p(az, y) - log p(a:]y) p(y|a:)
T p(2)p(y) p(z) p(v)

Positive PMI: PPMI(x, y) = max( pmi(x,y), 0)

Quantifies the discrepancy between the probability of their
coincidence given their joint distribution and their
individual distributions, assuming independence

Finding collocations and associations between words

Countings of occurrences and co-occurrences of words in a
text corpus can be used to approximate the probabilities
p(x) or p(y) and p(x,y) respectively

Kenneth Ward Church and Patrick Hanks. "Word association norms, mutual
information, and lexicography". Comput. Linguist. 16 (1): 22-29. 1990.
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PMI - Example

word 1 word 2 | count word 1 count word 2 | count of co-occurrences PMI
puerto rico 1938 1311 1159 10.0349081703
hong kong 2438 2694 2205 9.72831972408
los angeles 3501 2808 2791 9.56067615065
carbon | dioxide 4265 1353 1032 9.09852946116
prize | laureate 5131 1676 1210 8.85870710982
san francisco 5237 2477 1779 8.83305176711
nobel prize 4098 5131 2498 8.68948811416
ice hockey 5607 3002 1933 8.6555759741
star trek 8264 1594 1489 8.63974676575
car driver 5578 2749 1384 8.41470768304
it the 283891 3293296 3347 ' -1.72037278119
are of 234458 1761436 1019 -2.09254205335
this the 199882 3293296 1211 -2.38612756961
is of 565679 1761436 1562 -2.54614706831
and of 1375396 1761436 2949 -2.79911817902
a and 984442 1375396 1457 -2.92239510038
in and 1187652 1375396 1537 -3.05660070757
to and 1025659 1375396 1286 -3.08825363041
to in 1025659 1187652 1066 -3.12911348956
of and 1761436 1375396 1190 -3.70663100173
@ UNMERSITAT 20 LOBECK o ssvsreme [Wikipedia]

Counts of pairs of words
getting the most and the
least PMI scores in the
first 50 millions of words in
Wikipedia (dump of
October 2015)

Filtering by 1,000 or more
CO-occurrences.

The frequency of each
count can be obtained by
dividing its value by
50,000,952. (Note: natural
log is used to calculate the
PMI values in this
example, instead of log
base 2)
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The Contributions of Word Embeddings

Novel Algorithms

(objective + training method)

- Skip Grams + Negative Sampling
CBOW + Hierarchical Softmax
Noise Contrastive Estimation
GloVe

New Hyperparameters

(preprocessing, smoothing, etc.)

- Subsampling of Frequent Words

Dynamic Context Windows
Context Distribution Smoothing
Adding Context Vectors

What's really improving performance?

Improving Distributional Similarity with Lessons Learned from Word

Embeddings, Omer Levy, Yoav Goldberg, [do Dagan, Transactions of the
Association for Computational Linguistics, Volume 3, 2015.
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Embedding Approaches

- Represent each word with a low-dimensional vector
- Word similarity = vector similarity
- Key idea: Predict surrounding words of every word

- Faster and can easily incorporate a new
sentence/document or add a word to the vocabulary

GERST
\\\\\
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Represent the meaning of a word — word2vec

« 2 basic network models:

— Continuous Bag of Word (CBOW): use a window to
predict the middle word

— Skip-gram (5G): use a word to predict the surrounding
ones in window.

INPUT PROJECTION OUTPUT INPUT PROJECTION  OUTPUT

w(t-2)
SUM /

/ w(t-1)

wit)| ——
x w(t+1)
w(t+2)

w(t-2)

w(t-1)

w(t+1)

N

w(t+2)

cBOW Skip-gram
37



Word2vec - Continuous Bag of Words

- E.g."The cat sat on floor”
— Window size =2

INPUT PROJECTION OUTPUT

the w(t-2)
cat w(t-1)
L SUM
— w(t) sat
on w(t+1) 7'

floor w(t+2)

Distributed Representations of Words and Phrases and their Compositionality
Tomas Mikolov, llya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean, NIPS 2013

IM FOCUS DAS LEBEN 38




Input layer

0
Index of cat in vocabulary 1
0
0 .
cat | 0 Hidden layer Output layer
0
0 0
0 0
0
0 0
one-hot 0 sat  one-hot
vector 0 vector
0 0
0 1
0
1 0
on 2
0
0
0
0

£ VIR Ko marionssvsTeme IM FOCUS DAS LEBEN 39




We must learn W and W

Input layer
0
1
0
. Hidden |

cat |0 idden layer
0 WVXN
0
0

V-dim | o ,
W' nxy
0
0
- N-di
-dim

o Wyxw

on
0
0
0

V-dim o N will be the size of word vector

S UNIVERSITAT ZU LUBECK
INSTITUT FUR INFORMATIONSSYSTEME

Output layer

- OO0 o o o o ©

sat

V-dim

IM FOCUS DAS LEBEN 40




T _
Wy xn XXcat = Vcat

01 24 16 18 05 09 .. .. .. 32 0 2.4
Input Iayer 05 26 14 29 15 36 .. .. .. 61 :) 2.6
0 X 0 e
1 0
0 0
0 06 1.8 27 19 24 20 .. ... .. 12 0 1.8
Xcar |0 %7, 0 Output layer
0
0w, ; ;
0 Car 0
S
=~ V5 0
V-dim | o Car 0
+ 9 — vcat + vOTl 0
— 5 5 sat
0 »(\, 0
0 41\')0 1
0
A\ .
1 +*0 o/ V-dim
Xor 12 3} +$ Hidden layer
g WY N-diim
0
V-dim [

é UNIVERSITAT ZU LUBECK
5 INSTITUT FUR INFORMATIONSSYSTEME IM FOCUS DAS LEBEN 41




T _
Wy xn XXon = Von

01 24 16 18 05 09 .. ... .. 32 0 1.8
Input Iayer 05 26 14 29 15 36 .. .. .. 61 Z 29
0 X 1 =
1 0
0 0
0 06 18 27 19 24 20 .. .. .. 12 0 1.9
Xcar |0 % » 0 Output layer
0
0w, ; ;
0 CQt ~ 0
=~ V5 0
V-dim | o Car 0
+ ﬁ — vcat + vOTl 0
— 5 S sat
0 A\’ q 0
0 4 '\f) 0 1
0
q\" 4
1 4o 0| V-dim
Xon g \Nril +$ Hidden layer -
. N-dim
0 What is the effect of
V-dim | . averaging?

g

.E UNIVERSITAT ZU LUBECK IM FOCUS DAS LEBEN 42
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Input layer

0
1
0
0 .

cat | o Ww. Hidden layer Output layer
0 VXN
0 0
0 0
0

V‘dlm 0 01 A
Wiy xp =2z  [9 = softmax(z)
0

0 0
0 1
0 v
1 0

on L0 Wy xn N-dim .
0 Vsat
2 V-dim

V-dim o N will be the size of word vector

:é, UNIVERSITAT ZU LUBECK IM FOCUS DAS LEBEN 43
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Logistic function

A logistic function or logistic curve is a
common "S" shape (sigmoid curve), with

|

equation:
L
) = e 05
where

« e = the natural logarithm base (also known as

Euler's number), 4_“/ "

 Xp = the x-value of the sigmoid's midpoint, -6 —4 -2 0 2 4 6
» L =the curve's maximum value, and Standard logistic sigmoid function i.e. =
« k= the steepness of the curve.!'] L=1k=1,2y=0

§ ORI U AOBECK, everee [Wikipedia] IM FOCUS DAS LEBEN 44




softmax(z)

The softmax function, or normalized
exponential function, is a generalization of the
logistic function that "squashes" a K-dimensional vector z
of arbitrary real values to a K-dimensional vector o(z) of
real values in the range [0, 1] that add up to 1. The
function is given by

o:R¥ —10,1]
(2) e K
O\Z ] — Or_l= ’ ’
ZkK:I ek

In probability theory, the output of the softmax function
can be used to represent a categorical distribution — that
is, a probability distribution over K different possible
outcomes.

[Wikipedia] IM FOCUS DAS LEBEN 45




Input layer

o A A
] We would prefer y close to Y.+
0
o .
cat | o W, Hidden layer Output layer
0 VXN
0 0 0.01
0 0
0 0.02
V-dim | o , R 0 0.00
WN XV XV =2 z 0.02
g y = softmax(z) 001
0 1 0.02
0 D
] W o 0.01
On 0 V XN N'dim A~ 0.7
0 Ysat
2 V-dim 0.00
V-dim [ N will be the size of word vector y

é UNIVERSITAT ZU LUBECK IM FOCUS DAS LEBEN 46
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CBOW Model

Objective: Given w,_j, ..., Wp_1, Wei1, ) Werk, Predict w,

Training data: Given sequence of words < wy, w,, ... w,, >,
extract context and target: (Wg_x ..., We—1, Wea1) oo s Wik We)

Knowns:
— Trainingdata {(We_g ., We_1, Weay voer Weaks We) }
— Vocabulary {wy, w,, ... wy } of the training corpus

Unknowns:

— Word embedding matrices W, y and W'y, , with N being a
hyperparameter

47
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Loss Function for Learning

- How to determine word embedding matrices?

. Cross entropy for comparing probability distributions
- H@,y) =— }/:13’]' log(y;)

e yisaone-hotvector with a “one” at position ¢
-H@,y) = =y log(y.) = —log(¥.)

In this formulation, c is the index where the correct word’s one
hot vector is 1. We can now consider the case where our predic-
tion was perfect and thus . = 1. We can then calculate H(j,y) =
—1log(1) = 0. Thus, for a perfect prediction, we face no penalty or
loss. Now let us consider the opposite case where our prediction was
very bad and thus §j. = 0.01. As before, we can calculate our loss to
be H(7,y) = —11og(0.01) ~ 4.605. We can thus see that for proba-
bility distributions, cross entropy provides us with a good measure of
distance.




CBOW: Derivation of Learning Procedure

Minimize —log P(W.| Wo_j, eeey We—1, Weg 1) oo s Wetk)

= —logP(W'[c] | ¥) (and due to the softmax)

eWel'?
p— _logz eW’ ]

= —W'[c]"® + log TY_, eW'UT'?

where Use gradient descent

1 T to update word
v = (2k)” Zl——kW We+i vectors

49



T
WVXN

01 24 16 18 05 09 ... ... .. 32 .
| £l Contains word vectors
npu ayer 05 26 14 29 15 36 ... ... ... 6.1
0
1
0
0 06 18 27 19 24 20 ... ... .. 12
Xeat |0 Output layer
0
0 0
0 7 VXN 0
0
V-dim |o / 0
l/l/ 0
NXV 5 sat
0 0
0 1
0
1 WVX N | 0 V-dim
0 Hi n r
Xon |2 dden laye
N-dim
0
0
V-dim | o

We can consider either W or W’ as the word'’s representation.

, Or even take the average.
,;: U’;‘IEIVSFIII('?LIJTT‘;UZI;JIII-‘IUF%ERCI\%ATIONSSYSTEME IM Focus DAS LEBEN 50




Intrinsic Evaluation

Word Analogies

Test for linear relationships, examined by Mikolov et al. (2014)

(wb — Wq + wc)Tw:v
ab:c? — d = arg max Trr——"
man:woman :: king:? 1
+ king [0.300.70] . queen
0.75 " kmg
- man [0.200.20 ]
05
+ woman [0.600.30] orman
0.25 man
queen [0.700.80 ]
0
0 0.25 05 0.75 1

IM FOCUS DAS LEBEN 51




Word analogies

2 | | . 1 I | | |
Ching¢----- ...
"""""""""""""" ~»Beijing
15 Russiac-— . |
Japanc-.... TeSeme——..
L ---- “»Moscow _
TUKEewnnwenrnmmermemrmmenmermeemmremenm et e ~Ankara ~Tokyo
05 )
Poland<- - .
0 - Germany<-...__ [ 7
France e T “~Warsaw
05 - alye Paris }
P I TIIIzzies -z Athens
-4+ Spainco.... Rome 7
_____________________________________________________ ~»Madrid -
-1.5 - Portugal e Lisbon
_2 | | 1 1 | | 1
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

nnnnnn

UNIVERSITA1I 2u Lubeen
INSTITUT FUR INFORMATIONSSYSTEME
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Word Analogies (Tense)

walked

swimming

IM FOCUS DAS LEBEN 53




Extrinsic Evaluation

. Evaluate in applications
— Sentiment analysis

IM FOCUS DAS LEBEN 54




CBOW
y

Input layer
? We would prefer y close to Y.+
0
o .
cat | o W, Hidden layer Output layer
0 VXN
0 0 0.01
0 0
0 0.02
V-dim | o o 4D , 0 0.00
ﬁ:% WNXva = Z z sat 0.02
g y = softmax(z) 001
0 1 0.02
0 D 001
1 W 0
On 0 V XN N'dim A~ 0.7
0 Ysat
2 V-dim 0.00
V-dim [ N will be the size of word vector y

':é, UNIVERSITAT ZU LUBECK IM FOCUS DAS LEBEN 55
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\ Skip-Gram

We would prefer y close to z

Ouptut layer Hidden layer Input layer

0.01

0.5 cat

0.00

on

0.4

Il
D

A 14
Wyxn XU =z Wi sy Xw, sat

0.01

0.02

o/ o o/ = O =0
- OO0 o o o o ©

y = softmax(z)
0.01 N
V-dim |o o
N-dim

0.01

Vsat

0.00 Vdim

<<

N will be the size of word vector

5 UNIVERSITAT ZU LOBECK o nssvsTEME IM FOCUS DAS LEBEN 56




Skip-Gram Model

Objective: Given w,, predict Wo_j ..., We_1, Wei1, oo s Witk

Training data: Given sequence of words < wy, w,, ... w,, >,
extract input and output: (W, ; We_g oo, We_1, Wegty eons Wesk)

Knowns:
— Trainingdata {(w.; We_g ., We_1, Wegq, woes Weak)}
— Vocabulary {wy, w,, ... wy } of the training corpus

Unknowns:

— Word embedding matrices W, y and W'y, , with N being a
hyperparameter

57
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Skip-Gram: Derivation of Learning Procedure

Minimize —108 P(We_py, ooy We—1, Wei1) vee s Wegm | We)

—10g 1574 j2m P (Weem+j |ve)  (and due to softmax)

eWec—m+jVc
_lOgH] O,]#-'sz eW, vc

W,

_( ,]imWC —m+j Ve) +2m1082k 1€

Use stochastic gradient

where Ve = W’Wc decent to minimize and
(no averaging for skip-gram) then to ur)tdate word
vectors

word2vec Explained: Deriving Mikolov et al.’s Negative-Sampling Word-

Embedding Method, Yoav Goldberg and Omer Levy, arxiv, 2014.
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What is word2vec?

« word2vec is not a single algorithm

. lItis a software package for representing words as
vectors, containing:
— Two distinct models
- CBoW
. Skip-Gram
— Various training methods
. Softmax is a bottleneck (discussed next)
— Arrich preprocessing pipeline
- Dynamic Context Windows
« Subsampling of Frequent Words
« Deleting Rare Words (left out)

& INSTITUT FUR INFORMATIONSSYSTEME
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Softmax is a Bottleneck (CBOW and Skip-Gram)

The denominator is a sum across entire vocabulary

_(Z] =0,j2m We—m+j ve) +2mlog X<, e’ ve
To be computed for every window

— Too expensive

— Single update of parameters requires iteration of entire
vocabulary (which usually is in millions)

Various optimized training methods

— Hierarchical Softmax (use binary tree)

- Probability of a word is calculated through the product of
probabilities on each edge on the path to that node

— Noise Contrastive Estimation (left out)

— N eg ative Sa m p I i N g Rong, X. word2vec Parameter Learning Explained (cite

arxiv:1411.2738). 2014.

5 T
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Tree for Computing Word Probabilities

Context C

(w]| C)
'” ll_lll-l

*What” *“I'm” “Horse” “*Why” “Huh” “No” “Yes”  “Sup”

TTTTTTTTT GR INFORMATIONSSYSTEME IM FOCUS DAS LEBEN 61




Skip-Grams with Negative Sampling (SGNS)

Marco saw a furry little wampimuk hiding in the tree.

Distributed Representations of Words and Phrases and their Compositionality
Tomas Mikolov, llya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean, NIPS 2013
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Skip-Grams with Negative Sampling (SGNS)

Marco saw a furry little wampimuk hiding in the tree.

words contexts
wampimuk furry

wampimuk little

wampimuk hiding ~ D (data)
wampimuk In

“word2vec Explained...”
Goldberg & Levy, arXiv 2014




Skip-Grams with Negative Sampling (SGNS)

+  SGNS finds a vector w for each word w in our vocabulary 1/,
 Each such vector has d latent dimensions (e.g. d = 100)
. Effectively, it learns a matrix W whose rows represent I/},

- Key point: it also learns a similar auxiliary matrix C of
context vectors

- Infact, each word has two embeddings

d d d was called N before
E_> w:wampimuk =
—3.1,4.15,9.2,—-6.5, ... T
SR ( ) ~HHC
=
c:wampimuk = -—

(=5.6,2.95,1.4,—1.3, ...)

“word2vec Explained...”
Goldberg & Levy, arXiv 2014 70




Coming back to Negative Sampling

. Given (w, ¢): word and context

« Let P(D = 1| w, ¢) be the probability that (w, ¢) came
from the corpus data
e P(D = 0| w,c) = probability that (w, ¢) are not from
the corpus data
« Letus model P(D = 1| w, ¢) with sigmoid
1

e P(D =1|w,c) =sigmoid(ulv,) = -
1+e YwVc

u, =Ww v, =Cc

- Objective:
— Maximize P(D = 1| w, ¢) if (w, ¢) is in the corpus data
— MinimizeP(D = 1| w, ¢) if (w, ¢) not in the corpus data

Distributed Representations of Words and Phrases and their Compositionality
Tomas Mikolov, llya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean, NIPS 2013
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Skip-Grams with Negative Sampling (SGNS)

w

words

wampimu
wampimu
wampimu
wampimu

- Maximize:o(w - ¢)
-~ ¢ was observed with

contexts

furry
little
hiding
In

“word2vec Explained...”
Goldberg & Levy, arXiv 2014 72



Skip-Grams with Negative Sampling (SGNS)

- Maximize:o(w - ¢)

- ¢ was observed with

w

words contexts
wampimuk furry
wampimuk little
wampimuk hiding
wampimuk In

- Minimize:o(w - ¢”)
-~ ¢" was hallucinated

with w
words contexts
wampimuk Australia
wampimuk cyber
wampimuk the
wampimuk 1985

“word2vec Explained...”
Goldberg & Levy, arXiv 2014
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Math behind Negative Sampling

Maximum Likelihood approach for learning 8 = (W, C)

0 =argmax [| P(D=1|w,c0) [] P(D=0|w,c,6)
6 (w,c)eD (w,c)eD
=argmax || P(D=1lw,08) [[] (1-P(D=1w,c0))
6  (wc)eD (w,c)eD
=argmax ) logP(D=1|w,c0)+ ) log(1—P(D=1w,c,96))
6  (wc)eD (w,c)eD
1
= argmax lo + log(1 —
g;n (w,cE)eD 51+ exp(—ulv,) (w,cz):eb 8( 1+ exp(—uz,vc))
1 ) !
= argmax lo 8 lo
g;n (w;)ED 81+ exp(—ulov.) (w,;)ED g(1 + exp(ulv,) )

u, =Ww v, =Cc

Distributed Representations of Words and Phrases and their Compositionality
Tomas Mikolov, llya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean, NIPS 2013 | Focus DAS LEBEN 74




Math behind Negative Sampling

- Maximize log likelihood = minimize -log likelihood

1 1
- lo — lo
(wlcz)e[) . L exp(—u;{,vc) (w,CZ)ED g( 1+ exp(ung) )
Sigmoid

D is the negative corpus with wrong contexts

. Generate D on the fly by randomly sampling from the
vocabulary

- New objective function for observing context word
Weem+; (G = 0..2m) given the center word w, would be

?1 ! 4 IVﬁ

~ c—m c+1 ( C)
—loga( Uu._ m+j C)_ 2108(7(—11,{-%) s + 108 L= oxp (10

regular softmax loss for skip-gram

V| W, v
—Z] —0,j2m We-m+j Ve +2mlogX,_ e ¢
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Skip-Grams with Negative Sampling (SGNS)

- “Negative Sampling”
« SGNS samples k contexts ¢’ at random
as negative examples

- “Random” = unigram distribution

#cC

C'EVC(#C’)

P (c) =

- Changing this distribution has a significant effect

S, Distributed Representations of Words and Phrases and their Compositionality
: Tomas Mikolov, llya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean, NIPS 2013
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Context Distribution Smoothing

. In practice, it's a smoothed
unigram distribution

PO'75(C) — (#C)OJS

.....

C’EVC(#C,)O'75 AERRRN NN

- This little change makes a big difference

Distributed Representations of Words and Phrases and their Compositionality
: g Tomas Mikolov, llya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean, NIPS 2013

E
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Context Distribution Smoothing

We can adapt context distribution smoothing to PMI!

- Replace P(c) with P%7>(c)
P(w,c)

PMI®7>(w,c) =1
(w,€) = 108 5557553

. Consistently improves
PMI on every task

- Always use Context
Distribution Smoothing!

GERST
\\\\\



Math behind CBOW with Negative Sampling

+ Likewise for CBOW 55 — Ze=mTVc—mi1T--FVctm

2m
- Objective: K
—1 T - T
ogo(u; -0) — ) logo(—iy - 0)
k=1

where {ii, | k = 1..K} is sampled from vocabulary
(also use context distribution smoothing)

« Rather than:

Th 4 T A
—u; 0+ log Ej exp(u ; D)  regular softmax loss for CBOW
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What is SGNS learning?

- Take SGNS’s embedding matrices (W and C)

“Neural Word Embeddings as Implicit Matrix Factorization”
Levy & Goldberg, NIPS 2014 IM FOCUS DAS LEBEN 80




What is SGNS learning?

- Take SGNS’s embedding matrices (W and C)
« Multiply them
- What do you get?

“Neural Word Embeddings as Implicit Matrix Factorization”
Levy & Goldberg, NIPS 2014
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What is SGNS learning?

« AV, XV, matrix

 Each cell describes the relation between a specific
word-context pair

W-C=7

“Neural Word Embeddings as Implicit Matrix Factorization”
Levy & Goldberg, NIPS 2014
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What is SGNS learning?

- Levy&Goldberg [2014] proved that for large enough d
and enough iterations ...

“Neural Word Embeddings as Implicit Matrix Factorization”
Levy & Goldberg, NIPS 2014
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What is SGNS learning?

- Levy&Goldberg [2014] proved that for large enough d
and enough iterations ...

e ...o0ne obtains the word-context PMI matrix

“Neural Word Embeddings as Implicit Matrix Factorization”
Levy & Goldberg, NIPS 2014
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What is SGNS learning?

- Levy&Goldberg [2014] proved that for large enough d
and enough iterations ...

« ...o0ne obtains the word-context PMI matrix ...
- shifted by a global constant

Opt(w - c) = PMI(w,c) —logk
d Ve

f W = C — f i —]()gk

where k is the number of negative examples

“Neural Word Embeddings as Implicit Matrix Factorization”
Levy & Goldberg, NIPS 2014 85




What is SGNS learning?

- SGNS is doing something very similar to the older
approaches

« SGNS factorizes the traditional word-context PMI matrix

« So does SVD!

86



But embeddings are still better, right?

. Plenty of evidence that embeddings outperform
traditional methods

— “Don’t Count, Predict!” (Baroni et al.,, ACL 2014)
— GloVe (Pennington et al., EMNLP 2014)

- How does this fit with our story?

Marco Baroni, Georgiana Dinu, German Kruszewski. Don’t count,

predict! A systematic comparison of context-counting vs. context-
predicting semantic vectors. In: Proc. ACL-14, 238-247, 2014.

Jeffrey Pennington, Richard Socher, Christopher Manning.

GloVe: Global Vectors for Word Representation.
In: Proc. EMNLP-.14, 1532-1543, 2014.
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The Big Impact of “Small” Hyperparameters

« word2vec & GloVe are more than just algorithms...

. Introduce new hyperparameters

- May seem minor, but make a big difference in practice
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New Hyperparameters

- Preprocessing
— Dynamic Context Windows
— Subsampling of Frequent Words
— Deleting Rare Words

- Postprocessing
— Adding Context Vectors

« Association Metric
— Shifted PMI
— Context Distribution Smoothing

g, -
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(word2vec)

(GloVe)

(SGNS)
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Dynamic Context Windows

Marco saw a furry little wampimuk hiding in the tree.

IM FOCUS DAS LEBEN 90




Dynamic Context Windows

saw a furry little wampimuk hiding in the tree
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Dynamic Context Windows

furry little wampimuk hiding in

Word2vec: = %

GloVe: t1
4

Aggressive: = %

The Word-Space Model (Sahlgren, 2006)

S w
IS
INEINN

=

1

Magnus Sahlgren, The Word-Space Model,
Dissertation, Stockholm Univ., 2006.
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1
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Subsampling of Frequent Words

« Counter imbalance of rare and frequent words

- Each word in the training set is discarded with a
probability computed by

t
f(wz')

- where f(w;) is the number of occurrences of word w;
and t is a chosen threshold

Distributed Representations of Words and Phrases and their Compositionality
Tomas Mikolov, llya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean, NIPS 2013
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Adding Context Vectors

SGNS creates word vectors w

« SGNS creates auxiliary context vectors ¢
— So do GloVe and SVD

« Instead of just w
- Representawordas:w + ¢

- Introduced by Pennington et al. (2014)
« Only applied to GloVe




Don’t Count, Predict! ?

« “word2vec is better than count-based methods”
[Baroni et al., 2014]

- Hyperparameter settings account for most of the
reported gaps in count-based approaches

- Embeddings do not really outperform count-based
methods

- No unique conclusion available

Marco Baroni, Georgiana Dinu, German Kruszewski. Don’t count,
predict! A systematic comparison of context-counting vs. context-
predicting semantic vectors. In: Proc. ACL-14, 238-247, 2014. 95
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Problem

- Learn low-dimensional, dense representations (or
embeddings) for documents.

- Document embeddings can be used off-the-shelf to
solve many IR applications such as,
* Document Classification
* Document Retrieval
= Document Ranking

rSI
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Power of 2Vec Representations

- Bag-of-words (BOW) or Bag-of-n-grams
= Data sparsity
= High dimensionality
= Not/hardly capturing word order
- Latent Dirichlet Allocation (LDA)
= Computationally inefficient for larger dataset.

- Paragraph Vector
= Dense representation
= Compact representation
= Captures word order
= Efficient to estimate

IM FOCUS DAS LEBEN
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Represent the meaning of sentence/paragraph/doc

- Paragraph Vector (Le and Mikolov, 2014)
— Extend word2vec to text level
— Also two models: add paragraph vector as the input

Classifier Classifier [ the] | cat| |sat| |on |

Average/Concatenate mm
/7 1 \
ITIm oo oITmm
¢ ¢ 1
Paragraph Matrix----- > W W W Paragraph Matrix
1 1 |
P h
araigdrap the cat sat Paragraph

id

Quoc Le and Tomas Mikolov. Distributed representations of
sentences and documents. In Proceedings ICML'14. 2014.
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Paragraph Vector

- Learn document embedding by predicting the next
word in the document using the context of the word
and the (‘'unknown’) document vector as features.

- Resulting vector captures the topic of the document.

- Update the document vectors, but not the word vectors
[Le et al.]

- Update the document vectors, along with the word
vectors [Dai et al ]

* Improvement in the accuracy for document similarity
tasks.

Quoc Le and Tomas Mikolov. Distributed representations of
sentences and documents. In Proceedings ICML'14. 2014.

Dai, A.M,, Olah, C,, Le, Q.V., Corrado, G.S.: Document embedding with
N E—— 20 Loseck paragraph vectors. In: NIPS Deep Learning Workshop. 2014 IM FOCUS DAS LEBEN
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Doc2Sent2Vec ldea - Being granular helps

. Should we learn the document embedding from the
word context directly?

- Can we learn the document embedding from the
sentence context?

= Explicitly exploit the sentence-level and word-level
coherence to learn document and sentence embedding
respectively.

8
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Notation

- Document Set: D ={d,, d,, ..., dy}; ‘M’ documents;

- Document:d,, ={s(m,1),s(m,2), ..., s(m,T,))}; T, sentences;
- Sentence: s(m,n) ={w(n,1), w(n,2), ..., w(n,T,)}; T, words;

- Word: w(n,t);

Doc2Sent2Vec’s goal is to learn low-dimensional representations of
words, sentences and documents as a continuous feature vector of

dimensionality D,,, D.and D4 respectively.
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Architecture Diagram

sentences within document (sentence-level coherence)

A
[ 1

hidden

hidden

Y
words within sentence (word-level coherence)
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Phase 1: Learn Sentence Embedding

|dea: Learn sentence representation from the word sequence
within the sentence.

Input Features:

= Context words for target word w(n,t): w(n,t-c,), ..., w(n,t-1),
w(n,t+1), ..., w(nt+c,) (where‘c,/ is the word context size)

»= Target Sentence: s(m,n) (where ‘m’is the document id)
Output: w(n,t)
Task: Predict the target word using the concatenation of word

vectors of context words along with the sentence vector as
features.

= Maximize the word likelihood:

L vorg = P(W(n,t)| w(n,t-c,), ..., w(n,t-1), w(n,t+1), ...,
w(n,t+c,), s(m,n))

rSI
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Phase 2: Learn Document Embedding

ldea: Learn document representation from the sentence
sequence within the document.
Input Features:

= Context sentences for target sentence s(m,t): s(m,t-c,), ...,
s(m,t-1), s(m,t+1), ..., s(m,t+c;) (where ‘¢S’ is the sentence
context size)

= Target Document: d(m)
Output: s(m,t)
Novel Task: Predict the target sentence using the

concatenation of sentence vectors of context sentences
along with the document vector as features.

= Maximize the sentence likelihood:
Lsene = P(s(m,1)| s(m,t-cy), ..., s(m,t-1), s(m,t+1), ..., s(m,t+cs), d(m))
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Training

. Overall objective function: L =L,,,,q + Leent
« Use Stochastic Gradient Descent (SGD) to learn

parameters
« Use Hierarchical Softmax (Mikolov et al.) to facilitate
faster training
; R LK TIONSSYSTEME IM FOCUS DAS LEBEN
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Latent Relational Structures

Processing natural language data:

 Phrase chunking

- Named entity recognition
. Coreference resolution

- Semantic role labeling

Ronan Collobert and Jason Weston. A unified architecture for natural language
processing: deep neural networks with multitask learning. In Proceedings ICML
'08. pp. 160-167. 2008. 106




Phrase Chunking

Identifies phrase-level constituents in sentences

[NP Boris] [ADVP regretfully] [VP told] [NP his wife]
[SBAR that] [NP their child] [VP could not attend]| [NP
night school] [PP without| [NP permission] .

. Useful for filtering: identify e.g. only noun phrases, or only
verb phrases

. Used as source of features, e.g. distance, (abstracts away
determiners, adjectives, for example), sequence,...
— More efficient to compute than full syntactic parse
— Applications in e.g. Information Extraction — getting (simple)
information about concepts of interest from text documents
- Hand-crafted chunkers (regular expressions/finite automata)

- HMM/CRF-based chunk parsers derived from training data

,,,,,
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Named Entity Recognition

 Identifies and classifies strings of characters representing
proper nouns

* [PER Neil A. Armstrong] , the 38-year-old civilian commander,

radioed to earth and the mission control room here: “[LOC
Houston] , [ORG Tranquility] Base here; the Eagle has landed."

» Useful for filtering documents

- “I'need to find news articles about organizations in which Bill Gates
might be involved...”

* Disambiguate tokens: “Chicago” (team) vs. “Chicago” (city)
 Source of abstract features

- E.g."Verbs that appear with entities that are Organizations”
- E.g."“Documents that have a high proportion of Organizations”

El I s
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Named Entity Recogniton: Definition

- NE involves identification of proper names in texts,
and classification into a set of predefined categories
of interest

— Three universally accepted categories: person, location
and organisation

— Other common tasks: recognition of date/time
expressions, measures (percent, money, weight etc),
email addresses etc.

— Other domain-specific entities: names of drugs, medical
conditions, names of ships, bibliographic references etc

- NER st not easy




Named Entity Classification

- Category definitions are intuitively quite clear, but there
are many grey areas.

- Many of these grey areas are caused by metonymy.

— Person vs. Artefact: “The ham sandwich wants his bill.” vs
“Bring me a ham sandwich.”

— Organisation vs. Location : “England won the World Cup”
vs. “The World Cup took place in England”.

— Company vs. Artefact: “shares in MTV” vs. “watching MTV”

— Location vs. Organisation: “she met him at Heathrow” vs.
“the Heathrow authorities”




Basic Problems in NE

- Variation of NEs - e.g. John Smith, Mr Smith, John.
- Ambiguity of NE types

— John Smith (company vs. person)

— May (person vs. month)

— Washington (person vs. location)

— 1945 (date vs. time)

- Ambiguity with common words, e.g. “may”




More complex problems in NER

. Issues of style, structure, domain, genre etc.

— Punctuation, spelling, spacing, formatting, ....all have an
impact

Dept. of Computing and Maths
Manchester Metropolitan University
Manchester

United Kingdom

> Tell me more about Leonardo
> Da Vinci
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List Lookup Approach

. System that recognises only entities stored in its lists
(gazetteers).

- Advantages - Simple, fast, language independent, easy
to retarget

- Disadvantages - collection and maintenance of lists,
cannot deal with name variants, cannot resolve
ambiguity




Shallow Parsing Approach

. Internal evidence — names often have internal
structure. These components can be either stored

or guessed.

location:

CapWord + {City, Forest, Center}
e.g. Sherwood Forest

Cap Word + {Street, Boulevard, Avenue, Crescent, Road}
e.g. Portobello Street

5 RULJT & UNIVERSITAT Z
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Shallow Parsing Approach

. External evidence - names are often used in very
predictive local contexts

Location:
“to the” COMPASS “of” CapWord
e.g. to the south of Loitokitok
“based in” CapWord
e.g. based in Loitokitok
CapWord “is a” (ADJ)? GeoWord
e.g. Loitokitok is a friendly city

GERST
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Difficulties in Shallow Parsing Approach

- Ambiguously capitalised words (first word in sentence)
[All American Bank] vs. All [State Police]
- Semantic ambiguity
“John F. Kennedy” = airport (location)
“Philip Morris” = organisation
« Structural ambiguity
[Cable and Wireless] vs. [Microsoft] and [Dell]

[Center for Computational Linguistics] vs. message from
[City Hospital] for [John Smith].

& INSTITUT FUR INFORMATIONSSYSTEME



Coreference

* I|dentify all phrases that refer to each entity of interest - i.e.,
group mentions of concepts

 [Neil A. Armstrong] , [the 38-year-old civilian
commander], radioed to [earth]. [He] said the
famous words, has landed”."

* The Named Entity Recognizer only gets us part-way...
« ...ifwe ask, “what actions did Neil Armstrong perform?”, we
will miss many instances (e.g., “He said...”)

* Coreference resolver abstracts over different ways of
referring to the same person
» Useful in feature extraction, information extraction




Semantic Role Labeling (SRL)

Input Text:
A car bomb that exploded outside the U.S. military base in Beniji killed 11 Iraqi citizens.

Result: Complete!

General Explanation of Argument Labels

A bomb [A1] [l iller [AO] « SRL reveals relations
Cbi';nb E and arguments in the
that bomb . sentence (where
(Reference) .

[R-A1] relations are expressed
exploded | V:explode | | as verbs)
outside location [
the [aM-Loc] « Cannot abstract over
:J,;iﬁ'tary T = variability of expressing
base [aM-TMP] L the relations - e.g. kill
in location [
Benji (aM-Loc] [ vs. murder vs. slay...
killed
11
Iraqi
citizens

L N maTiONssYsTEME IM FOCUS DAS LEBEN
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Why is SRL Important — Applications

« Question Answering
— Q: When was Napoleon defeated?
— Look for: [PATIENT Napoleon] [PRED defeat-synset] [areM-Tmp FANS*]

« Machine Translation

English (SVO) Farsi (SOV)

[acenT The little boy] [acenT pesar koocholo] boy-little
[prep kicked] [tHEme toop germezi]  ball-red
[theme the red ball] [aram-Mnr MOQtam] hard-adverb
[ArReMm-mNR hard] [prep zaad-e] hit-past

« Document Summarization
— Predicates and Heads of Roles summarize content

«_Information Extraction
— SRL can be used to construct useful rules for IE




Some History

« Minsky 74, Fillmore 1976: Frames describe events or
situations
— Multiple participants, “props”, and “conceptual roles”
- E.g., agent, instrument, target, time, ...

- Levin 1993: verb class defined by sets of frames (meaning-
preserving alternations) a verb appears in

— {break,shatter,..}: Glass X’s easily; John Xed the glass, ...
— Cutis different: The window broke; *The window cut.

- FrameNet, late ‘90s: based on Levin’s work: large corpus of
sentences annotated with frames

- PropBank

Marvin Minky. A Framework for Representing Knowledge Marvin Minsky,
MIT-Al Laboratory Memo 306, June, 1974.

Charles J. Fillmore, Frame semantics and the nature of language
Annals of the New York Academy of Sciences 280(1):20 - 32, 1976.

Levin, B. English Verb Classes and Alternations: A Preliminary Investigation,
University of Chicago Press, Chicago, IL. 1993.




FrameNet

Frame: Hit_target Lexical units (LUs):
(hit, pick off, shoot)- Words that evoke the frame
~ Agent Means (usually verbs)

Core Target Place Non-Core

Instrument Purpose
Manner  Subregion

N
Time /

[agent Kristina] Rit [1,,get ] [instrument With a baseball] [yime YESterday 1.

Frame elements (FEs):
The involved semantic roles

Gildea, Daniel; Jurafsky, Daniel. "Automatic Labeling of Semantic
Roles”. Computational Linguistics. 28 (3): 245-288. 2002. IM FOCUS DAS LEBEN




Proposition Bank (PropBank)

. Transfer sentences to propositions
— Kristina hit — hit(Kristina, )

- Penn TreeBank — PropBank
— Add a semantic layer on Penn TreeBank
— Define a set of semantic roles for each verb
— Each verb’s roles are numbered

A0 the company] to ... offer[ = a 15% to 20% stake] [A2 to the public]

A0 Sotheby’s] ... offered [A2 the Dorrance heirs] [ = a money-back guarantee]
an amendment] offered [AO by Rep. Peter DeFazio] ...

A2 Subcontractors] will be offered [ = a settlement] ...

[
[
el
[

Palmer M, Kingsbury P, Gildea D. "The Proposition Bank: An Annotated
Corpus of Semantic Roles". Computational Linguistics. 31 (1): 71-106. 2005.




Semantic Role Labeling (SRL)

Input Text:
A car bomb that exploded outside the U.S. military base in Beniji killed 11 Iraqi citizens.

Result: Complete!

General Explanation of Argument Labels

A bomb [A1] [l iller [AO] « SRL reveals relations
Cbi';nb E and arguments in the
that bomb . sentence (where
(Reference) .

[R-A1] relations are expressed
exploded | V:explode | | as verbs)
outside location [
the [aM-Loc] « Cannot abstract over
:J,;iﬁ'tary T = variability of expressing
base [aM-TMP] L the relations - e.g. kill
in location [
Benji (aM-Loc] [ vs. murder vs. slay...
killed
11
Iraqi
citizens
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