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Probabilistic Graphical Models
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Probabilistic Graphical Models
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Representation

Probabilistic Relational and Lifted Models
Sato (1995), Poole (2003), Ahmadi et al. (2013)
Parfactor graph G: Compact encoding of full joint d. Pg = %ergr(G) f
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Representation Reasoning Contributions

Probabilistic Relational and Lifted Models
Sato (1995), Poole (2003), Ahmadi et al. (2013)
Parfactor graph G: Compact encoding of full joint d. Pg = %ergr(G) f

QA: Eliminate all non-query variables
while avoiding grounding G and building Pg
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Representation Reasoning Contributions

QA: Lifted Variable Elimination (LVE)

Poole (2003), de Salvo Braz et al. (2005), Milch et al. (2008), Taghipour et al. (2013b)

P(Sick(eve))

>y indicates a sum over the values of V, |X| a domain size
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Representation Reasoning Contributions

QA: Lifted Variable Elimination (LVE)

Poole (2003), de Salvo Braz et al. (2005), Milch et al. (2008), Taghipour et al. (2013b)
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QA: Conditional Independences and Dynamic Programming
Lauritzen and Spiegelhalter (1988)

QA based on submodels
ensured to be independent
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QA: Conditional Independences and Dynamic Programming
Lauritzen and Spiegelhalter (1988)
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Lifting + Conditional Independences and Beyond

Lifted Junction Tree Alg. (LJT)

B and Moaller (2016)
@ Answer multiple queries efficiently

QA based on submodels
ensured to be independent
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Lifting + Conditional Independences and Beyond

Lifted Junction Tree Alg. (LJT)

Liftability

B and Méller (2017)
QA based on submodels Avoid message-induced groundings

ensured to be independent

Node 1 Node 2 Node 3

Nat(D Travel(X) Treat(X, P)
Man(W Sick(X) Slck(X
Ep/d Epid Epid
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Contributions

Lifting + Conditional Independences and Beyond

Lifted Junction Tree Alg. (LJT)

Liftability

Marginal queries

QA based on submodels

ensured to be independent B and Méller (2018a,c)
Conjunctive: P(Sick(eve), Epid)

Node 1 Node 2 Node 3 . .
Parameterised: P(Sick(X))
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Contributions

Lifting + Conditional Independences and Beyond

Lifted Junction Tree Alg. (LJT)

Liftability

QA based on submodels Marginal queries
ensured to be independent

Assignments queries

Node 1 Node 2 Node 3
Nat(D) Travel(X)\ (Treat(X, P) B and Modller (2018b)
Man(W)—— Sick(X) Sick(X) LVE + LJT versions using arg max
Eid ) | |\ Epid ) | Epid
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Contributions

Lifting + Conditional Independences and Beyond

Lifted Junction Tree Alg. (LJT)

Liftability

QA based on submodels Marginal queries

ensured to be independent
Assignments queries

Node 1 Node 2 Node 3
Nat(D) Travel(X) Treat(X, P)
Man(W) Sick(X) Sick(X) Complexity & Completeness
Epid | Epid | Epid
20,81 Epid & Epid & Polynomial w.r.t. domain size
me3 my Sick(X) my Classes of liftable queries
m3 my
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Contributions

Lifted Inference Continued...

Empirical studies
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Contributions

Lifted Inference Continued...

Empirical studies

Adaptive inference

B and Méller (2018e)

QA based on submodels Adapt to local changes
ensured to be independent

Node 1 Node 2 Node 3
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Contributions

Lifted Inference Continued...

Empirical studies

Adaptive inference

QA based on submodels LJT inference framework

B and Maller (2018d)
Use other QA algorithms
Node 1 Node 2 Node 3 Cond|t|ons apply

Nat(D Travel(X) Treat(X, P)
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Contributions

Lifted Inference Continued...

Empirical studies

Adaptive inference
QA based on submodels LJT inference framework
ensured to be independent -

Node 1 Node 2 Node 3 B and Moaller (2019)

Nat(D Travel(X) Treat(X, P) . g
Man(W Sick(X) Slck(X Retain tractability
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Contributions

Lifted Inference Continued...

Empirical studies

Adaptive inference
QA based on submodels LJT inference framework
ensured to be independent -

Node 1 Node 2 Node 3
Nat(D Travel(X))  (Treat(X, P) Continued by/with colleagues
Man(W Sick(X) Slck(X . .
Ep:d Epid Epid ¢ lifted dynamic models
80. &1 Epld & EP'd 8s ® [ifted decision making
my Sick(X) m . .
ms mo ® [ifted continuous models
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for a variety of queries
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Reasoning Contributions

Exact Lifted Inference

e Lifting junction trees

® Lifting marginal and
assignment queries
® (Classes of liftable queries

Tractable inference
for a variety of queries

Future Work
® Going beyond explanations
® Manoeuvring open universes

® Travelling between universes
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Construction Queries Extensions

Appendix

O Construction
First-order Decomposition Tree
First-order Junction Tree
Fusion

@ Queries

Parameterised Queries
Assigment Queries
Variety of Queries
Liftable Queries

@ Extensions
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Construction

First-order Decomposition Tree (FO Dtree)
Darwiche (2001), Taghipour et al. (2013a)

{Nat(D)} U {Epid} 0 U {Epid}

{Man(w)} U {Epid, Nat(D)} {Sick(x)} U {Epid}
0 U {Epid, Man(w), Nat(D)} 0 U {Epid, Sick(x)}

0 U {Epid, Man(w), Nat(d)} {Treat(x, p)} U {Epid, Sick(x)}

&' &3
Labels: cutset(N) U context(N)
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Construction Queries Extensions

First-order Junction Trees (FO Jtrees)

Clusters

Epid, Nat(D)

(Hot, Nat(D), Man(w))

(x)

(Epid, Sick(x), Treat(x, p))
Epid, Sick(x),

Epid, Sick(x),
Travel(x)
Epid, Sick(x),
Travel(x)

(Epid, Nat(D), Man(w))

(Epid, Nat(d), Man(w))
Epid, Nat(d))

Man(w) ) er'} {g2} Treat(x, p) e

FO jtree
Travel(X, P) Treat(X, P)
Sick(X) Sick(X)

Epid Epid
80, 81 82 83
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Construction

Fusion: Ensuring Lifted Calculations

Node 1 Node 2 Node 3
Travel(X) Treat(X, P, E)
Sick(X, E) Sick(X, E)

| Epid(E) Epid(E)
Epid(E) Epid(E), Sick(X, E)

Elimination order restricted by tree structure AND logical variables

® |Lifted summing out of Ain g:
A has to contain all logical variables in g

® Message calculation:
Terms not on edge need to be eliminated

® Travel(X) has to be eliminated but does not contain X and E
— Merge nodes 2 and 3 to avoid elimination
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Construction Queries Extensions

Parameterised Queries
P(Sick(eve), Sick(alice), Sick(bob)) vs. P(Sick(X)T)

Sick(alice)  Sick(eve)  Sick(bob) g’ #x[Sick(X)] g’
0 0 0 1 [0,3] 1
0 0 1 2 [1,2] 2
0 1 0 2 [2,1] 3
1 0 0 2 3,0] 4
1 1 0 3
1 0 1 3
1 1 0 3
1 1 1 4

Elimination Count conversion Elimination
gm
gm CEpid) gm CEpid)

CSick(X)> TEx[Sick (X > TxSiek(X)>
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Construction Queries Extensions

Assignment Queries: Most Probable Explanation (MPE)

arg maxy P(V|Sick(eve) = true, Sick(bob) = true)

/
Sick(X) i 82
Node 3 Ep/d Node 1 Ep/d Node 2 Travel(alice)

Nat(D ravel(X) Treat(X, P)
Man(W Sick(X Sick(X)
Ep/d Ep/d Epid

{go, &1} {g3, 85", M2, m3} {g3, 85"}
Node 2
LJTMPE MPE
® Absorb evidence at nodes ® Epid = false
® Pass messages (inward) ® VX’ ¢ {eve, bob}, P :
e 1 39 Treat(X', P) = true, Travel(X') = false
© 3 _49 ® Sick(alice) = false, Travel(alice) = true,

VP : Treat(alice, P) = false
® VD : Nat(D) = false

® At inner-most node

® Eliminate variables
® Qutput MPE ® VYW : Man(W) = false

Tanya Braun

/19



Extensions References

Construction Queries

Assignment Queries: Maximum A Posterioi (MAP)
arg maxy,,,exry 21 P(Travel(X")[Sick(X") = true), X" € {eve, bob}

Sick(X)
Node 3 Ep/d Node 1 Epld Node 2

Nat(D ravel(X) Treat(X, P)
Man(W Sick(X Sick(X)
Ep/d Ep/d Epid

Travel(alice)

{g0,81}  {a2,85" 2 mn}  {g385'} Node 1
LJTMAP Answer query
® Absorb evidence at nodes ® Travel(eve), Travel(bob): node 1
® Pass messages with LVE ® Eliminate with LVE:
® Answer query Travel(alice), Sick(alice), Epid
(V = {Travel(X")}) e Eliminate with LVEMPE: Travel(X')

® Find nodes covering V o MAP: VX' ¢ {eve, bob} :

® Eliminate remaining )
variables of T Travel(X') = false

® Eliminate V

Tanya Braun 7/ 19



Construction Queries

LJT for a Variety of Queries

Extensions

procedure CoM-LJT(Model G, Query terms and types {(Qx, tx)}}_;, Evidence E)

Construct an FO jtree J for G
Enter E into J
Pass messages on J
for each (Qk, tk) S {(Qk, tk)}Tzl do
if t, = MPE then
J-MPE-LJT(J)
else
Find a subtree J' s.t. Qx C rv(J')
if t, = MAP A Qi = rv(J’) then
J-MPE-LJT(J")
else
Extract a submodel G’ from J/
if t, = MAP then
MAP-LVE(G’, Qg, 0)
else
LVE(G’, Qg 0)
end if
end if
end if
end for
end procedure

> LVE as subroutine

>Qx=0

> Output or store result

> Output or store result

> Qx C rv(J’)
> Output or store result

> Output or store result

Tanya Braun 8 /19



Queries

Liftable Probability Queries

Conjunctive queries

For each logical variable, only one set of constants occurs.

P(Sick(eve), Treat(eve, p1))
P(Sick(eve), Treat(alice, p1))

Parameterised queries

Each query term contains at most one logical variable and one set of
constants per logical variable.

P(SiCk(X)XE{alice,eve}v Trave/(X)Xe{a/ice.,eve})
P(SiCk(X)XG{alice,eve}7 Trave/(X/))X’E{bob,eve})

Tanya Braun 9/19



Queries

Liftable Assignment Queries

Most probable explanation (MPE)
Liftability results from LVE transfer to MPE.

Maximum a posteriori (MAP)

Each MAP term contains at most one logical variable and one set of
constants per logical variable.

Bounded MAP queries

If the random variables of entire subtrees occur as MAP terms, then the
MAP query does not lead to a higher tree width.

MAP query over Sick(X), Travel(X), Epid
MAP query over Treat(X, P), Travel(X), Epid

Tanya Braun 10 / 19



Construction Extensions

Adaptive Inference

Solve each query more efficiently than starting from scratch

Evidence changes (new/retracted)
Travel(alice) = true
Travel(bob) = true

Domains change (new constants)
X € {alice, eve, bob}
U {charlie}

Node 1 Node 2 Node 3
Nat(D) Travel(X) Treat(X, P)

Node 4

Man(W) Sick(X) Sick(X)
Epid Epid ‘ Epid )
20, 81 Epid g Epid, Sick(X) &3 Sick(X)

mo1 mi2, m32 m23

11/ 19
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Construction Queries Extensions References

LJT as a Backbone for Lifted Inference

Requirements for Subroutines

@ Lifted evidence handling

@® Lifted message calculation (conjunctive, parameterised query)

— Expressiveness of the query language of the subroutine determines the
expressivity of the query language of LJT.

LVE FOKC (Van den Broeck, 2013)
@ Lifted absorption v @ Lifted conditioning v
® Eliminate all non-query terms ® Circuit determines queries easily
with LVE answered %
— Marginal or conditional — Marginal or conditional
distributions of conjunctions of distributions of single random
random variables variables

Tanya Braun 12 /19



Construction Queries Biadas

LJT with LVE and FOKC

Parfactor model Algorithm steps
go(Epid)
g1(Epid, Nat(D), Man(W)) © Construct J
g2(Epid, Sick(X), Treat(X, P)) @ Enter evidence E

@ Pass messages
First-order Junction Tree J ) o caelh edla £

Node 1 Epid Node 2

@ Transform node into a
Markov logic network M;

@ Transform M; into d-DNNF.

@ Build C; for M;.

® Compute WFOMC ¢; in G,.

G, may Gy, Mo :
My, Ci, 1 Mo, Co, ¢ ® Answer queries Q@ € Q
@® Build G, for Mi A q
LVE in steps Il + Il @ Compute \!VFOMC g in Cq.
FOKC in step IV 4+ V @ Compute 2

Tanya Braun 13 /19



Construction Queries Extensions

Probabilistic Inference with Unknown Universes
Syntactic components:
Template model, constraint program, domain worlds

— Set of possible worlds: Expected values, runtime increases
— Constraint meta-programming: Build oracle for algorithms

— Transfer learning: Decoupling from specific domain

New queries emerging

0.35 o

o

)
030 2 o o

Exploration and model checking, e.g.,
R I S does the probability of
0.20 —#—  Model probability

® an individual being sick decrease

0.15 o o c
with larger domains?
0.10 H % * * . ) ) .
i oy ® an epidemic rise if more people
0.05 — *
T T T T T T 1
200 300 400 500 600 700 800 t ra Vel ?

Domain sizes d
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