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Marginal distribution query: P(Ai
π|E0:t) w.r.t. the model:

• Prediction: π > t (is the topic hot in π − t days?)

• Filtering: π = t (is the topic hot today?)

• Hindsight: π < t (was the topic hot t − π days ago?)
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while avoiding grounding and unrolling G as well as building PG

Marcel Gehrke 3 / 15



Representation Reasoning Contributions References

Probabilistic Temporal Relational and Lifted Models
Murphy (2002), Poole (2003), Ahmadi et al. (2013)

Parfactor graph G : Compact encoding of full joint d. PG = 1
Z

∏
f ∈gr(u(G)) f

Hott−1
g0
t−1

Pubt−1(X , J)

Attt−1(X )

g1
t−1

DoRt−1(X )

Hott
g0
t

Pubt(X , J)

Attt(X )

g1
t

DoRt(X )
gH

QA: Eliminate all non-query variables
while avoiding grounding and unrolling G as well as building PG

Marcel Gehrke 3 / 15



Representation Reasoning Contributions References

QA: Lifted Variable Elimination (LVE)
Poole (2003), Braz et al. (2005), Milch et al. (2008), Taghipour et al. (2013b)
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QA: Lifted Junction Tree Algorithm (LJT)
Lauritzen and Spiegelhalter (1988), Braun and Möller (2016)
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Lifting + Temporal Conditional Independences
Braun and Möller (2016), Murphy (2002), G. et al. (2018d)
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Lifting + Temporal Conditional Independences and Beyond
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Complexity & Completeness
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Lifted Inference Continued...
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Continued by/with colleagues

• lifted decision making cont.

• lifted continuous models

• real life settings
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Tree Algorithm. In Proceedings of the 23rd International Conference on
Conceptual Structures, pages 55–69. Springer, 2018d.

Marcel Gehrke, Tanya Braun, and Ralf Möller. Relational Forward
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