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Abstract

In standard information retrieval systems, queries can be specified with differ-

ent languages (string patterns, logical formulas, and so on). It is well known

that it is hard to simultaneously maximize quality measures for query answers,

such as, e.g., precision and recall.

Retrieval of documents with high recall, while maintaining at least a decent

precision level, is a frequent problem in knowledge management (KM) contexts

based on information retrieval (IR) processes, e.g., for information association

in business contexts. Similar to making implicit knowledge explicit, deriving

explicit symbolic content descriptions is important in KM tasks.

In this thesis we show how explicit symbolic descriptions can be combined

with implicit holistic content representations known from information retrieval

in order to support knowledge management processes in general, and informa-

tion association based on IR query answering in particular. The methodology

exhibited in this thesis is verified using representative examples, and validated

with feasibility and effectiveness studies.
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Zusammenfassung

In Standard-Information-Retrieval-Systemen können Anfragen mit verschiede-

nen Sprachen (Strings, logische Formeln usw. ) gestellt werden. Es ist bekannt,

dass es schwierig ist, verschiedene Qualitätsmaße gleichzeitig für die Suche nach

Antworten zu maximieren, wie beispielsweise Trefferquote und Präzision.

Das Retrieval von Dokumenten mit einer hohen Trefferquote, während zu-

mindest eine angemessene Präzision erhalten bleibt, ist ein häufiges Problem

in Wissensmanagement-Kontexten basierend auf Prozessen des Information-

Retrieval (IR), z.B. zur Zusammenführung von Informationen in einem Geschäft-

skontext. Ähnlich wie implizites Wissen explizit gemacht wird, ist die Ableitung

von expliziten symbolischen Inhaltsbeschreibungen ein wichtiger Aspekt im

Wissensmanagement.

In dieser Arbeit wird untersucht, wie explizite symbolische Beschreibun-

gen mit impliziten ganzheitlichen Inhaltsrepräsentationen beim IR kombiniert

werden können, um Prozesse im Allgemeinen zu unterstützen und besonders

die Vereinigung von Informationen basierend auf der IR-Anfragebeantwortung.

Die in dieser Arbeit vorgestellte Methodik wird unter Verwendung von repräsen-

tativen Beispielen verifiziert; und die Durchführbarkeit und Qualität durch

Studien validiert.
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Chapter 1

Introduction

Modern industrial nations are based on the knowledge of employees working

in companies, and thus, knowledge management (KM) has become a major

concern for achieving productivity advantages. Computer systems are used to

support KM in various application contexts. However, no clear definition of

KM has yet emerged. It is a central idea of this thesis to substantiate notions

of knowledge management based on information retrieval (IR).

Typically, knowledge management processes are based on content manage-

ment (CM) systems. In CM systems, content is stored, organized, and supple-

mented with metadata. Among simple data for authors, characters, publishers,

and so on, nowadays metadata contain feature-based as well as symbolic con-

tent descriptions (also called symbolic representations, see Figure 1.1), which,

for instance, can be represented via logic-based techniques [Kay11, EP11]. Ap-

plications exploit symbolic content descriptions in various ways. For example,

in the semantic web, content descriptions are used for finding documents, im-

ages, videos, or persons. Search requests are specified by posing queries in

query languages based on string patterns, logical formulas, and so on.

For matching queries with content as well as with content descriptions,

each query language has its pros and cons [Mel06]. For most purposes, string

patterns have a high recall but do not lead to high precision.1 In practice it is

difficult to maximize precision and recall simultaneously. Until now, large-scale

1Recall is defined as the number of relevant items retrieved divided by the number of

relevant items in the repository, while precision is defined as the number of relevant items

retrieved divided by the overall number of retrieved items.

1



2 Chapter 1. Introduction

information retrieval processes are rarely based on symbolic content descrip-

tions for matching queries with content [VH05]. Google’s Knowledge Vault

(KV) uses symbolic descriptions in order to help the user create useful follow-

up queries [DMG+14]. It is also possible that so called holistic content de-

scriptions (e.g., TF.IDF matrices) and corresponding similarity measures are

used for query answering [SWY75, MRS08a]. Matches on holistic content de-

scriptions can be realized efficiently, for example, by utilizing nearest-neighbor

algorithms.

Holistic
representation

Symbolic
representation
(metadata)Content

Holistic
content

description

Representation

Symbolic
content
description

Feature-
based

metadata

Query
Match

Figure 1.1: Content representation formats. Description see text.

In short and slightly exaggerating, holistic representations lead to high

recall and low precision, and symbolic representations tend to be character-

ized by low recall and high precision [BMM92, PKM+07a, PKM+07b]. In

the symbolic context, it is desirable to increase recall while at least maintain-

ing precision. In the holistic context the goal is to increase precision. Our

hypothesis is that this kind of improvement could be achieved by systemati-

cally combining symbolic and holistic content descriptions. In the literature
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there are ideas to combine symbolic and holistic content descriptions [WC16],

but to the best of our knowledge, a combination of both kinds of content

descriptions has been investigated as an extension to the standard boolean

model [Sal83, SM86]. This early work, however, is based on feature-based

metadata only (e.g., resolution of images, video encoding, etc.) and not on

symbolic content descriptions (see Figure 1.1). Many contributions are based

on a holistic approach such as latent semantic indexing (LSI) presented in

[DDF+90a], syntax- or dependency-based models presented in [PL07a], induc-

ing latent semantic relations for structured distributional semantics presented

in [JH14], or the distributed holistic clustering approach for linking many data

sources in order to enable an effective and efficient clustering of entity sets from

many data sources presented in [NGMR17]. Holistic methods for quantifying

and categorizing semantic similarities are also called distributional semantics.

Distributional semantic models vary w.r.t. the usage of frequency weighting,

dimension reduction, similarity measure, and differ in data representations

[RG65, Lin98, PL07b, RM10, RB12, LG14, FPBP16, SKI16, PRF+17].

It is a central idea of this thesis to suggest ways for systematically combin-

ing symbolic and holistic content descriptions in order to increase recall while

at least maintaining precision.

In the following, retrieved documents which are relevant will be called high-

quality documents. Retrieval of high-quality documents is a frequent task in

KM contexts, in the sense that the documents themselves or, in some appli-

cations, their authors are subject to further steps in KM processes. However,

we consider a use case in which finding documents might be a problem in case

that there is no direct match with simple queries. Consequently, queries need

to reformulated, which usually is a rather difficult task for users. This is true

for pattern-based as well as logic-based queries [Mel06, SI09]. Indeed, if there

are at least some query results due to a symbolic search, we argue that these

results can be analyzed and exploited for detecting relevant additional mate-

rial in order to find high-quality documents based on holistic search. While an

increase of recall might indeed be the result, the decrease in precision needs to

be controlled. It is our hypothesis that this idea can be realized with a sys-

tematic comparison of the symbolic descriptions of the initial results obtained

based on a holistic retrieval (see Figure 1.1).
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1.1 Research Objectives

The main objectives of this thesis are the substantiation of knowledge man-

agement notions and the enhancement of recall for queries in a KM context,

while at least maintaining precision, by suggesting ways for the combination

of holistic and symbolic content descriptions.

For deriving symbolic descriptions we further investigate fusion of multi-

modal representations, and we extend logic-based interpretation of content.

Logic-based techniques such as the non-standard inference service A-box ab-

duction have been studied and developed for representing symbolic content

descriptions [Kay11, EP11]. Symbolic representations (annotations) describe

documents, images, videos, or persons and can be seen as an interpretation

of content. The combination of several interpretation results is called fusion.

First investigations on a fusion process for multi-modal interpretation results

were done in [Kay11] in order to fuse symbolic content descriptions of differ-

ent parts of a multimedia document such that precision of retrieval results is

increased. In this process, the annotations of a multimedia document will be

conjoined and the individuals of one part will be identified with others if the

individuals describe the same real-world entity. However, the fusion algorithm

in [Kay11] fuses only individuals from different modalities, and due to simple

forward-chaining rules only in very specific situations. Thus, a further objec-

tive of this work is to expand the view on fusion such that no situation specific

rules need to be specified. For this purpose the so-called A-box difference

operator [MGK+14] is employed in order to define a new fusion algorithm.

The retrieval of documents using holistic content descriptions is well estab-

lished [MRS08a], and the investigation in this thesis will be based on latent

semantic indexing (LSI), such that we have a technology for holistic search

with high recall [Gee03a]. The challenge is to combine LSI with symbolic

retrieval. A combination of approaches for representing content symbolically

and holistically poses exceptional technological challenges in order to increase

precision on the one hand, and recall on the other. We argue that the combina-

tion of both approaches in a systematic way achieves better matching results.

In other words, our hypothesis is that IR processes, which are based on sys-

tematically combined holistic and symbolic content descriptions for matching
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queries with content, can result in high recall without an associated decrease of

precision. In this context it should be noted that this thesis has not the objec-

tive to present absolute numbers or performance measurements for a concrete

KM application. However, the objective is to reify the relationship between

symbolic and holistic representations by defining so-called semantic assets as

a basis for building KM sytems in the future.

We argue that semantic assets are essential for knowledge management

in companies. In most companies a lot of knowledge of documents and the

knowledge in the people’s head are available, but employees often do not know

how to utilize all available knowledge. In [NKT98, Non08] it is shown how

employees in a company can exploit their knowledge for innovation. Nonaka

et al. define a so-called knowledge-creation process, which provides general

foundations for creating knowledge. In the literature it has been argued [ES97,

SMD12] that nevertheless company managers still have to define a concrete

knowledge-creation process in order to develop innovative products. In other

words, to apply Nonaka’s ideas in a fruitful way, there is still a strong need

for a formalization of KM notions. In this thesis, another research objective

is to achieve a further substantiation of Nonaka’s idea of knowledge-creation

processes based on semantic assets.

1.2 Research Methodology

We define a methodology as a collection of related processes, methods, and

tools [Est08]:

• A process is a logical sequence of tasks performed to achieve a particular

objective. A process defines “WHAT” is to be done, without specifying

“HOW” each task is performed.

• A method consists of techniques for performing a task, in other words,

it defines the “HOW” of each task.

• A tool is an instrument that, when applied to a particular method, can

enhance the efficiency of the task; provided it is applied properly and by

somebody with proper skills and training. The purpose of a tool should
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be to facilitate the accomplishment of the “HOWs”. In a broader sense,

a tool enhances the “WHAT” and the “HOW”.

This thesis pursues different research approaches w.r.t. processes, methods,

and tools. An analysis of KM and CM is conducted with the focus on KM pro-

cesses based on combinations of symbolic and holistic content descriptions in

order to define the “WHAT”. The use and benefit of systematically combined

symbolic and holistic content descriptions is investigated to improve informa-

tion retrieval in a knowledge management environment. In order to achieve

an improvement, this thesis presents “HOW” to combine symbolic and holistic

representations profitably. Moreover, we argue that existing annotation con-

cepts such as RDFa (see [W3C14a]) are useful, but have disadvantages w.r.t.

generality, e.g., for multimodal documents. The central idea of this thesis deals

with fundamental principles of combining symbolic and holistic representations

in a KM application area.

The purpose of reification of the combination by defining semantic assets

in a KM application area is the definition of KM notions using semantic assets

in order to manage semantic assets in a document structure.

Schmidt and Sehring define content descriptions as assets by considering

pairs of media content and conceptual abstractions [SS04, SS03]. Bossung and

Schmidt develop a structurally rich way in order to represent and to handle

multimedia content [Bos08]. Accordingly, our idea is to extend the approaches

of Schmidt and Sehring, and Bossung and Schmidt in order to treat the central

problem of handling knowledge with associated inferences using existing tools.

Software for content management has been developed in [SS03, SS04, Seh04,

Sun06, CFO10], and we argue that the approaches, for example, from Sehring

presented in [Seh04] are applicable to knowledge management. Thus, the tool

selection in this thesis is clarified as well as the methods and processes.

The methodology used in this thesis, with the aim profitably combining

holistic and symbolic representations for information retrieval, is evaluated

with representative examples from a large multimedia repository from the EU

project BOEMIE.2 In order to complement these data we also use Wikipedia

pages and commercial annotation services. For presentation purposes we also

2Bootstrapping Ontology Evolution using Multimedia Information Extraction
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use a simple handcrafted example. The evaluation results show performance

of information retrieval and quality of retrieval results.

1.3 Contributions

The major contributions of this thesis are summarized as follows:

• The knowledge-creation process defined in [NKT98] is supported with

formal operators.

• Research approaches are investigated in order to find advantageous ways

for the combination of holistic and symbolic content representations with

the result to increase recall and at least maintaining precision for infor-

mation retrieval tasks in KM.

• An analysis of KM requirements is done in order to reify fundamen-

tal aspects of knowledge management systems and the management of

knowledge.

• Semantic assets based on description logics are defined for the purpose

of representing knowledge described in documents.

• The investigations of Sehring [Seh04] and Bossung [Bos08] are extended

for defining semantic assets in order to develop a structurally rich way

to represent and to handle multimedia content in a KM environment.

• A new logic-based fusion algorithm approach is presented which is used

for the combination of symbolic and holistic content descriptions. The

proposed logic-based fusion algorithm is based on the so-called A-box

difference operator. The A-box difference operator is used, on the one

hand, to obtain the difference of two content descriptions, and on the

other hand to identify individuals which describe the same real-world

entity. For the new logic-based fusion process the identification of iden-

tical individuals is required in order to fuse equal individuals with the

aim to increase precision.

Some parts of this work were published previously. The following paper present

use cases for computing differences of variants and show how to apply the
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A-box difference operator for symbolic content descriptions for constructing

knowledge representations.

• D. Arndt, S. Melzer, R. God, and M. Sieber. Konzept zur Verhaltens-

modellierung mit der Systems Modeling Language (SysML) zur

Simulation varianten Systemverhaltens. Tagungsband zum Tag des

Systems Engineering (Eds.: S.O. Schulze, C. Tschirner, R. Kaffenberger,

S. Ackva), Carl Hanser Verlag, pages 115-124, 2017 [AMGS17].

• S. Melzer, U. Wittke, H. Hintze, and R. God. Physische Architek-

turen variantengerecht aus Funktionalen Architekturen für Sys-

teme (FAS) spezifizieren, Tagungsband zum Tag des Systems Engi-

neering (Eds.: S.O. Schulze, C. Tschirner, R. Kaffenberger, S. Ackva),

Carl Hanser Verlag, pages 429-438, 2016 [MWHG16].

• T. Bahns, S. Melzer, R. God, and D. Krause. Ein modellbasiertes

Vorgehen zur variantengerechten Entwicklung modularer Pro-

duktfamilien, Tagungsband zum Tag des Systems Engineering (Hrsg.:

Chr. Muggeo, S.O. Schulze), Carl Hanser Verlag, pages 141-150, 2015

[BMGK15].

• S. Melzer, R. God, T. Kiehl, R. Möller, and M. Wessel. Identifika-

tion von Varianten durch Berechnung der semantischen Dif-

ferenz von Modellen. Tagungsband zum Tag des Systems Engineering

(Eds.: M. Maurer, S.O. Schulze), Carl Hanser Verlag, pages 279-288,

2014 [MGK+14].

With the computation of A-box differences an extended form of an abduc-

tion problem will be solved. Approaches for solving abductive problems for

multimedia data such as text and images are published here:

• S. Espinosa, A. Kaya, S. Melzer, and R. Möller. On Ontology Based

Abduction for Text Interpretation. Proceedings of 9th Inter-

national Conference on Intelligent Text Processing and Computational

Linguistics (Ed.: A. Gelbukh), number 4919 in LNCS, Springer, pages

194-205, 2008 [PKMM08].
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• S. Espinosa, A. Kaya, S. Melzer, R. Möller, and M. Wessel. Towards

a Media Interpretation Framework for the Semantic Web. The

2007 IEEE/ WIC/ ACM International Conference on Web Intelligence

(WI‘07), IEEE Computer Society, Washington, DC, USA, pages 374-380,

2007 [PKM+07b].

The following contribution presents a way for systematically combining sym-

bolic (ontology-based) and holistic content descriptions in context of knowledge

management in order to increase recall while at least maintaining precision.

• S. Melzer. On the Relationship between Ontology-based and

Holistic Representations in a Knowledge Management System.

Ontology-based Applications for Enterprise Systems & Knowledge Man-

agement (Eds.: M. Nazir Ahmad, R. Colomb, and M. Abdullah). IGI

Global, pages 292-323, 2013 [Mel13].

More specifically, in the latter contribution an investigation for holistic con-

tent descriptions and retrieval of documents are based on the latent semantic

indexing (LSI) [MRS08b, DDF+90b], and symbolic (ontology-based) content

descriptions are based on descriptions logics (DLs) (see Section 3.3.1).

1.4 Outline

This thesis is structured as follows: Chapter 2 introduces the fundamental as-

pects of knowledge management systems and the management of knowledge

representation for documents. The characteristics of KM and the fundamentals

of the representation of symbolic and holistic content descriptions via seman-

tic assets are described in Chapter 3. The goal of Chapter 4 is to present

current technologies and tools for representing content holistically and sym-

bolically. General issues about content descriptions, which are essential to

build semantic assets in context of KM as well as the latent semantic indexing

approach for representing holistic content descriptions are presented. In addi-

tion, description logic as a formalism for the representation of symbolic content

descriptions is presented. Chapter 5 describes the realization of semantic as-

sets using the systematic combination of symbolic and holistic representations.

After an evaluation of the systematic combination methodology, we conclude
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this thesis in Chapter 6 by summarizing the major contributions of this work

and by presenting promising directions for future research.



Chapter 2

Content and Knowledge

Management Characteristics:

The Motivation for Semantic

Assets

In the last years many research projects for supporting human work were car-

ried out, emphasizing different aspects of the management of documents, im-

ages, videos, or persons: content management (CM), document management

(DM), information management (IM), knowledge management - to name just

a few [Seh04]. The general term content management also includes conceptual

content management (CCM), web content management (WCM), and enter-

prise content management (ECM). Most of these terms are not defined suc-

cinctly, and indeed, all these management systems have the same purpose,

namely the management of media data.

Data is represented in a media-specific form and in a structured, semi-

structured, or unstructured way. This kind of data is considered as unstruc-

tured because it requires complex processes to allow computers to process the

content behind it, or represented by it, beyond merely displaying the data on

an output medium. We use the notion semi-structured for representations that

contain symbolic annotations inside the data that allow for machine processing

tasks to be supported by standardized notations such as RDFa or RDF Data

11
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Cube [W3C14b]. In addition, data can be extended by so-called feature-based

metadata based on standards such as XMP [Int12] (or, more specifically, Dublic

Core). Interestingly, holistic representations of data are derived only for spe-

cific purposes (e.g., information retrieval), but are not intrinsically related to

the data itself, and besides RDF Data Cube, which covers only statistics data,

there are currently no standards available for systematically relating symbolic

with holistic descriptions of media data.

Media data, i.e., structured, semi-structured, or unstructured data, are rel-

evant for human information processing, and are therefore often referred to as

content. The way in which content is handled by machines depends on the data

model used, but data models are constrained by technical issues of the target

system, for example imposed by databases. The notion of content tries to em-

phasize that media data should be handled at a more abstract layer, relevant

for human problem solving tasks defined at a conceptual level. A conceptual

model can avoid dealing with low-level technical constraints such as details of

combining media data with metadata, say, as shown in [SS04]. Schmidt and

Sehring introduce assets in order to specify such a conceptual model. The asset

definition is presented in Section 2.1. In a knowledge management scenario,

content is organized and presented in such a way that by “consuming” content,

humans can increase their knowledge. This holds in particular in industrial

knowledge management settings. Knowledge is used in a context-specific way

and depends on the situation at hand [DACN03, HH15, HK15]. Consequently,

it is essential to know how to create knowledge on the one hand, and how

to handle knowledge on the other in order to support productivity increases.

While speaking at the knowledge level might be appropriate for planning pur-

poses, eventually knowledge management needs to be done at the content level

and, lastly, at the data level.

The main purpose of this section is to give an overview about the character-

istics of conceptual content and knowledge management. A detailed analysis

of KM and CCM notions that are essential for the formalization of KM notions

via semantic assets is described in Section 5.
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2.1 Conceptual Content Management

Content management (CM) applies a set of processes and technologies for

creating and managing content, and supports the evolutionary life cycle of

content (texts, diagrams, codes, data, and so on). A content management

system (CMS) is a tool that enables a variety of centralized technical and non-

technical staff to create, edit, and publish various forms of content. Content

is managed by a set of rules, processes, and workflows such that CM systems

ensure coherent and validated representations of data. Moreover, a CMS must

enable users to collaborate and interact for the creation and management of

trusted content through a so-called portal, and also must allow users to import

new content [SCRP09]. In particular the import functionality makes clear that

media data, feature-based metadata, and symbolic content descriptions need

to be combined under a single “handle”. In order to combine both aspects in a

concrete situation, Schmidt and Sehring coined the notion of an asset [SS03].

According to Schmidt and Sehring, assets are used to provide descriptions of

entities through pairs of media content and conceptual abstractions in a CCM

system (see Figure 2.1) [Seh04, SS04, SS03].

Figure 2.1: Dualistic description of entities by assets. Adapted from [Seh04].

The content part is a reference to the raw media data (media view) and the

concept part contains feature-based metadata for describing media data and a

single entity being modeled.
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Interestingly, in the [SS04] approach, there are no holistic representations of

content considered. In addition, the concept part considers just one entity, and

is therefore in some sense a local representation. For knowledge management

in the large, we argue that assets need to be extended with holistic represen-

tations, which, due to their nature, provide an integrated view on a whole

repository of entities, albeit there is a holistic representation still associated

with a particular media object. The intricate relationship of local (media-

specific) representations and global representations (influences from repository

context) is captured by our extension of Sehring’s and Schmidt’s assets [SS04]

to so-called semantic assets .1

2.2 Knowledge Management

In most companies a lot of knowledge is available, but management often does

not acknowledge the importance of this knowledge [SMD12]. Many companies

do not work with existing knowledge because they are not aware of the knowl-

edge they already possess. Therefore, a lot of knowledge remains unused, and

therefore according to [SMD12] the core of “knowledge management (KM) is

about trying to harvest all the insights and experience that go into making

an organization function”. To this end, knowledge management can provide

a more effective and efficient usage of knowledge. The idea is that knowledge

of an employee is made available for other employees in order to ensure the

long-term success of the company.

In most of the literature about KM, knowledge is divided into explicit

knowledge and implicit knowledge (also called tacit knowledge).

Explicit knowledge Explicit knowledge is knowledge that can be captured

and written down in documents.

Implicit knowledge Implicit knowledge refers to the skill that people pos-

sess, and skill is hard to communicate.

1Note that the terms content and concepts described in the works of Schmidt and Sehring

are not exactly the same as used in this work. Schmidt and Sehring define concept as a

description for concrete and abstract entities.
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In [SS00] Schneider argues that it is important to share and to manage ex-

plicit knowledge as well as implicit knowledge because both types of knowledge

are essential for the development of enterprises. This opinion is confirmed by

Nonaka [Non08] and others. Not only is the consideration of explicit and im-

plicit knowledge essential, but also the management of this knowledge. In 1986

Wiig defined the term knowledge management in [Wii86]. He proclaims that

the main objectives of a knowledge management system (KMS) are:

• Making the enterprise act as intelligently as possible to secure its viability

and overall success.

• Realize the best value of its knowledge assets.

There are two fundamental aspects of KM. The first aspect involves knowledge

being considered as an asset that is capable of being shared within a wider com-

munity. The second aspect considers that there should be a balance between

explicit and implicit knowledge [CW99]. Many early knowledge management

projects involve intranet solutions to keep and distribute a form of“knowledge”

inside companies. The visibility of the asset model enabled its use to justify

significant levels of investment, principally in technology-based solutions.

In [DB05] KM is defined as follows: KM is based on the idea that an

organization’s most valuable resource is knowledge of its people. Therefore,

the extent to which an organization performs well will depend, among other

things, on how effectively its people can create new knowledge, share this

knowledge within the organization, and use that knowledge most effectively.

Schütt describes in [Sch03] two generations of knowledge management.

Generation 1 [Sch03] The need for knowledge management strategies was

identified, in combination with a new role: the Chief Knowledge Officer (CKO),

at best directly reporting to the CEO. CKOs immediately went to the first KM

conferences in the UK or the US. They all only had one question in their mind:

“What is my job?” Unfortunately, they did not received an answer and so most

of them resigned from their positions within a year. That was Generation 1 of

Knowledge Management, for early adopters roughly lasting from 1990 to 1995.
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Generation 2 [Sch03] From 1995 to 2000: the erroneous belief that knowl-

edge can be codified to a large extent came into managers’ minds. The theo-

retical background for it had been created by Nonaka. He had published some

work on information creation and since 1991 he used the label “knowledge cre-

ation”. His article “The Knowledge Creating Company” in Harvard Business

Review brought some attention, but the real breakthrough had to wait until

1995, when he published a book with the same title [NT95], together with

Takeuchi. In this book a knowledge creation process, called SECI process, is

described. The SECI process defines “WHAT” kind of knowledge is required.

In subsequent contributions of Nonaka et al. (cf. [NK98], and [NTB03]), the

SECI process is extended.

Generation 3 Knowledge representation in the third generation gets a new

meaning by considering semi-automated knowledge management processes.

Such a partially automated knowledge management process is presented in

this thesis by describing the systematic combination of holistic and symbolic

representations and the integration of this method in a knowledge creation

process (see Section 5.3). Documents produced in previous project a company

carried out automatically contribute to holistic representations, as will be ex-

plained below. In total, third generation approaches define “WHAT” kind of

knowledge is required, “HOW” each task is performed, and which tools can be

used.

2.2.1 Knowledge Creation Model

The challenge of early knowledge management approaches was to develop mod-

els to make implicit knowledge explicit while allowing for explicit knowledge

to be made individually meaningful.

In [NTB03] Nonaka, Toyama, and Byosière propose a multilayered process

of knowledge creation in order to understand how companies create knowledge

dynamically and how knowledge might be actually transferred. For that to

happen, knowledge has to be “transformed to information”, and only then can

it be “moved” [SMD12].

The Nonaka approach of knowledge creation is based on the SECI process, a
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platform for knowledge creation, and “knowledge assets”, which are the inputs

and outputs of the knowledge creation process. We revisit each of these notions

in the following paragraphs.

SECI process

Nonaka et al. sought to establish a sense of sharing of explicit and implicit

knowledge in the knowledge transfer model, and to this end they proposed the

SECI model which has four sub-processes:

• Implicit to implicit: socialization (S),

• Implicit to explicit: externalization (E),

• Explicit to explicit: combination (C), and

• Explicit to implicit: internalization (I).

Socialization Socialization is the process that transfers implicit knowledge

of one person to implicit knowledge of another person [Non08]. According to

[SMD12] this process can be seen as an experiential, active and a “living thing”

process.

Externalization Externalization is the process for making implicit knowl-

edge explicit [Non08]. Or, as [SMD12] characterize it, with externalization,

implicit knowledge is translated into a readily understandable form (explicit

knowledge).

Combination Combination is the process for transferring one’s explicit knowl-

edge into explicit knowledge [Non08]. Combination provides for an increased

usability of explicit knowledge. Information technology is readily suitable for

realizing such a process because explicit knowledge can be conveyed in docu-

ments, email, or databases [SMD12].

Internalization Internalization is the process of understanding and absorb-

ing explicit knowledge into implicit knowledge [SMD12, Non08]. For [SMD12],

implicit knowledge is “executable” by the owner. However, internalization is

largely experiential.
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The SECI process defines “WHAT” kind of knowledge is required for KM.

In addition, Nonaka and Konno define an environment for knowledge sharing

processes called ba.

Ba : The environment for knowledge creation

The creation of new knowledge requires a environment for sharing, creating

and utilizing knowledge. The ba concept [NK98, NT01] defined by Nonaka

and Konno offers such an environment. They have extended the SECI model

with four types of ba environments. The four types correspond to the four

modes of the SECI model:

• Socialization with originating ba: The originating ba is a place where

individuals share feelings, emotions, experiences, and mental models.

• Externalization with dialoguing ba: The dialoguing ba is a place where

selected people with a specific knowledge interact during a face-to-face

communication with other people with a similar specific knowledge. For

example, mental models from the originating ba are shared through con-

cepts, articulation of their thinking, and so on.

• Combination with systemizing ba: The systemizing ba is a place where

new explicit knowledge is combined with other explicit knowledge. This

kind of knowledge transfer is accomplished among groups across organi-

zations [SMD12].

• Internalization with exercising ba: The exercising Ba is a place where the

conversion of organization and group explicit knowledge to the individual

implicit knowledge is facilitated [SMD12].

The ba concept offers a knowledge transfer environment and defines the

“WHERE”of each SECI mode, but neither the“HOW”nor the“WITH WHAT”.

The “WITH WHAT” question is answered by Nonaka et al. with the definition

of so-called knowledge assets.
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Knowledge assets

In the context of KM inspired by Nonaka, so-called knowledge assets are the

basis for knowledge creation. In [NTB03], Nonaka, Toyama, and Byosière

define knowledge assets as follows: Nonaka’s knowledge assets are inputs and

outputs of the knowledge creation process. They are unseizable and have a

limited lifetime in contrast to physical assets. In [NT01], Nonaka and Teece

divide knowledge assets into four types corresponding to the SECI modes:

• Experiential: implicit knowledge shared through common experiences

• Conceptual: explicit knowledge articulated through images, symbols,

and language

• Systemic: systematized and packaged explicit knowledge

• Routine: implicit knowledge embedded in actions and practices

Knowledge assets cannot easily be managed in the traditional way of man-

agement (for instance with CCM) because they change over time. In [NKT98]

Nonaka, Konno, and Toyama present a new method about “HOW” knowledge

assets can be dynamically managed, and they define a creation process for

knowledge assets. Figure 2.2 illustrates this knowledge creation process with

the three basic concepts SECI, ba, and knowledge assets (KA).

A company uses existing knowledge assets and creates new knowledge

through the SECI process taking place in the ba environment. Newly cre-

ated assets will be added to the existing knowledge assets of the company.

Management of these assets encompasses the following activities: All users

can work on all three elements of the knowledge creation process: build and

set up (energize) the tool environment (ba), execute or lead the SECI process,

and define the knowledge vision. The knowledge vision defines what kind of

knowledge the company should create in what a domain. The definition of a

knowledge vision supports the realization of dynamic knowledge management

because it gives a direction where the company should be going and defines

how knowledge can be managed over a long-term period [DACN03].

Nonaka’s model of knowledge management played a crucial role in under-

standing “HOW” to create and share knowledge in general. However, there
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Figure 2.2: Knowledge creation process. Description see text. Source [NKT98].

are fundamental problems with this model because it is too informal, and it

lacks nuance and sophistication to be made useful across different companies,

countries, and over time [ES97, SMD12]. This is also confirmed by some case

studies mentioned in [SMD12]. In addition, the authors in [SMD12] mention

that knowledge management, conversion, and codifying requires further re-

search and development to take into consideration the implicit origins (set of

documents) of knowledge and the rapidly changing methods of communication

(provision and exchange of documents).

We argue and investigate in this thesis that Nonaka’s visionary model is

indeed practically realizable by (i) defining concrete processes for all four SECI

modes, (ii) using Nonaka’s method for knowledge creation, and (iii) by defining

concrete knowledge management units. Nonaka’s knowledge assets are imple-

mented in this thesis as semantic assets with feature-based as well as holistic

and symbolic representations. The formalization essentially relies on system-

atically combining holistic and symbolic content descriptions, and is this basis
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for information retrieval tasks supporting knowledge creation work as part of

the tools being used in the ba. We explain the formalization in detail later

with a concrete knowledge management scenario, which is explained in the

next subsection.

2.2.2 A Knowledge Management Scenario

Knowledge Management is important for large and challenging engineering

projects. Obviously, in this thesis we cannot deal with fully-fledged engineer-

ing problems. Nevertheless, for illustration purposes we roughly consider the

concept of building a sports stadium. In 1966, the Munich Olympic Stadium

was built that meets the concept“Green Olympic Games” [Wik15a]. The num-

ber of disciplines engineers have to know about increase while designing, for

example, an olympic stadium. Besides science and engineering-oriented chal-

lenges, engineers require knowledge about what is important to fulfill a concept

such as “Green” for building a sports stadium. We assume that, first of all,

in general an engineer starts to search for information about the concept of,

say, a green stadium, using information retrieval (IR) systems. Second, while

starting a construction, engineers could also benefit from additional informa-

tion being made available to them automatically and in a proactive way. Thus,

their knowledge is extended due to meet the challenges involved in a very spe-

cific construction task without requiring them to pose particular queries. This

kind of ba could increase productivity and creativity of engineers, and this is

what we have in mind with knowledge management based on semantic assets.

For constructing the athletic areas, for instance jumping areas, in a sta-

dium, engineers might be inspired by having at look at descriptions of athletic

events or particular athletes. Using standard information retrieval with, for

instance, the name of a concrete athlete such as “Kajsa Bergqvist” the user is

shown references to documents (web pages, Youtube videos, etc.) as well as

symbolic descriptions of the person (Google, Knowledge Vault [DMG+14], see

Figure 2.3).

While Google’s Knowledge Vault (KV) enables certain kinds of specific

follow-up queries, one can, for example, not easily search for other high jumpers

in an olympic context. Selecting “high jumper” and querying Google leads to
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Figure 2.3: Google information retrieval results for the string query “Kajsa

Bergqvist” are, on the left-hand side, a list of references to documents, and, on

the right-hand side, symbolic descriptions of the person.

unspecific answers concerning various kinds of high jump athletes with high

recall (see Figure 2.4).

However, Google does not allow for easily increasing precision by focusing on

Kajsa Bergqvist high jump events apparently because the text “high jumper”

is not considered which is below the images in Figure 2.3 at the right-hand

side.

Previously, engineers had to search manually for “jumping events” in or-

der to gain information that “hurdling”, “long jump”, and “pole vault” belong

to “jumping events”. Engineers had to repeat this manual process for each

jumping event type in order to obtain particular references to documents or

symbolic representations because of the missing latent structure of jumping

events. The latent structure of all documents can be retrieved if the data of

linked documents associate with one another (see Figure 2.5, left).

In order to efficiently deliver relevant document links to the user, the chal-

lenge of IR systems is to filter, prioritize, and efficiently deliver results to users
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Figure 2.4: Google information retrieval results for the string query “high

jumper” are, at the top as a list of references to symbolic descriptions of a

person, and, at the bottom as a list of references to documents.

with high recall and high precision. For our knowledge management scenario

we suggest to consider the engineer’s working context in the ba environment

so that engineers can easily search for related information and the IR system

acts in a proactive way.

Figure 2.5 illustrates that holistic and symbolic representations can be used

in order to find relevant documents for the string query“Kajsa Bergqvist”using

context-specific data from the ba environment. The idea is that each docu-

ment d1 . . . dM has symbolic and holistic representations. In this example, the

symbolic representation is delivered by Google’s KV (see Figure 2.5 on the

right-hand side). The holistic representation, here presented as a simplified
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example, is a vector ~V which represents document representations with rela-

tions to other documents. If the term ‘Kajsa Bergqvist” occurs, in ~V the value

is 1, and 0 otherwise (see Figure 2.5 on the left-hand side). One can imagine

a ba environment as a local repository with previous posed queries, here “high

jumper” and “jumping events.” The aim is to use the ba so that an IR system

can act in a proactive way. It follows that the term “high jumper” in the text

of the symbolic description is highlighted and has a new link to high jumper

content. In order to achieve these new links, the challenge is to systematically

combining holistic and symbolic information retrieval approaches. A system-

atic combination approach is presented in Chapter 5. For implementation

purposes, we need formal preliminaries introduced in the next two chapters.
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Figure 2.5: An illustration of systematically combining holistic and symbolic IR approaches in a ba environment ( for a

description see text).





Chapter 3

Fundamentals for Semantic

Assets

The discussion of the previous knowledge management scenario and several

other research contributions [Ing99, DSdGM15, HK15] shows that there is

a need for linking information retrieval results with context-specific data for

supporting the creativity of engineers. The aim of this thesis is to link seman-

tic and context-specific annotations in a systematic way, such that the latent

structure of a specific domain an engineer is interested in is addressed auto-

matically. We build on the idea that a formalization for the ba environment,

as well as Nonaka’s overall knowledge creation process, provides support for

making available additional information automatically in a proactive way. Be-

fore we present our methodology for knowledge management using semantic

assets in Chapters 4 and 5, we give some formal preliminaries.

3.1 Representation of Content Descriptions

We now explain the symbolic notions of content interpretation, as defined

by philosophers, because these notions play a fundamental role in the area

of content management and content descriptions [SS03, Bos08]. In addition,

we outline holistic content descriptions, which could be used for representing

context-specific data.

The notion of a symbol is defined by Cassirer [CN64]. He defines a sym-

bol as an invisible unit capable to encompass the totality of phenomena in

27
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which the sensuous symbol is in any way filled with meaning, following from

a process of symbolic formation [Cas23]. In other words, Panofsky defines a

symbol as a synthetic intuition that could identify the proper meaning of the

content [Pan75]. The way how content becomes a symbol is already defined in

[Pan70]. More concretely, Panofsky develops a methodological approach to the

systematic specification of objects, especially objects of art. He distinguishes

three levels of description (cf. [Sch09]):

Pre-iconographical level (level 1) The pre-iconographical level is a de-

scription level for objects found in document content, and represents the par-

ticular characteristics of objects, such as being a person, horizontal bar, or

medal.

Iconographical level (level 2) The iconographical level gives the meaning

of objects by introducing the specific iconographic vocabulary which could

be used in a context-specific way. At this level, person, horizontal bar, and

medal, as defined at the pre-iconographical level, are now specialized to athlete,

crossbar, and honorary award, respectively.

Iconological level (level 3) The iconological level additionally represents

objects by general cultural effects. At this level, athlete, crossbar, and a hon-

orary award, for example, together represent a high jump champion.

According to Panofsky, symbols are classification labels generated from the

object content, and symbol generation can be framed as a problem of clas-

sifying an image region to one of several objects [MLLK04]. The technical

implementation of Panofsky’s approach is carried out by traditional databases

(level 1), (digital) libraries (level 2), and web-provided content (level 3). How-

ever, Panofsky’s methodology to image description and understanding was not

unanimously accepted because, mentioning just one reason for criticism, there

was no room for any elements of stile and form used by an artist [Sch09]. In

[SS03] and [Bos08] the authors address the issue and define assets [SS03] as a

structurally rich way to capture explanations of content. However these works

show that the management of content with their meaning is not easily accom-
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plished. The reason is that “symbols”, as we see then in this work, need to be

sets of first-order logic formulas (see Section 3.3) and not simple classification

labels. In this thesis, these symbolic content descriptions are managed with

so-called semantic assets .

The approaches presented in [DMG+14] are used to represent informa-

tion via symbolic descriptions, e.g., taken from Wikipedia1, derived by Open

Calais2, and described with RDFa (Resource Description Framework in At-

tributes) [W3C14a]; but the relation to a cultural environment is missing,

which is essential, as we presented in the knowledge management scenario, for

providing support for the work of an engineer. In the following we describe ap-

proaches for representing content holistically and symbolically in combination

with their pros and cons (Sections 3.2 and 3.3). Based on both approaches

we present a new methodology in Section 5.1 and a methodology in which

context-specific data can be anchored (Section 5.3).

3.2 Holistic Representations

The most popular holistic approach for representing document content is the

TF-IDF scheme [Jon72, SM86], in which a basic vocabulary of M terms is

chosen, and, for each of the N documents in the repository, a count is formed

as the number of occurrences of each term in a document. After normalization,

a term count (“frequency”) is related to an inverse document frequency count,

which measures the number of occurrences of a term in the entire corpus.

The result is an M × N term-document matrix whose columns contain the

IDF values for each of the documents in the repository. Thus, documents of

arbitrary length are reduced to vectors of M numbers [BNJ03], considering

other documents in the repository to some extent in the inverse document

frequency measure. A semantic space is built wherein similar documents are

located closed to one another. In addition, semantic indexing uses the terms

in a query to identify a pseudo document as a point in the semantic space.

The central idea exploited for information retrieval (IR) is that documents in

the neighborhood of this point are returned to the user [SWY75].

1https://en.wikipedia.org/
2http://www.opencalais.com/

https://en.wikipedia.org/
http://www.opencalais.com/
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3.2.1 Latent Semantic Indexing

Given the TF-IDF matrix, the idea of latent semantic indexing (LSI) is to

implement a dimension reduction procedure for deriving a structure “hidden”

behind the TF-IDF numbers [DDF+90b]. Formally, the M×N matrix TF-IDF

is defined as

TF-IDFi,j := TF(ti, dj) · IDF(ti) =
#terms(ti, dj)

M
(1− log

N

#docs(ti)
), (3.1)

where #terms(ti, dj) denotes the number of occurrences of term ti in document

dj, and #docs(ti) denotes the number of documents in the whole repository in

which the term ti appears. We consider only terms that appear somewhere in

the repository.

The hidden structure is exploited to deal with synonymy and polysemy

effects to better support IR. An M -dimensional document vector is approxi-

mated by a vector of k numbers (k < M), and so is a query pseudo document.

In this new space similarity-based retrieval produces higher recall, thus coping

with synonymy and polysemy effects w.r.t. terms used in the repository. The

LSI approach is described in detail below.

Fundamentals of latent semantic indexing

Let C be an M ×N matrix, where the M ×N matrix is a term-by-document

matrix with non-negative values. Each row corresponds to a unique term in

the document corpus and each column corresponds to a document.

For the rank of C, an M×N matrix, it holds that rank(C) ≤ min{M,N}.
Furthermore, a square matrix can be a diagonal matrix, denoted diag(σ1, σ2,

. . . , σr), with the dimension r × r. If all diagonal entries of a diagonal matrix

are 1, this matrix will be called the identity matrix (of dimension r). The

matrix is represented as

I =



1 0 · · · 0 0

0 1 0 0
... 0

. . . . . .
...

0
. . . 1 0

0 0 · · · 0 1


(3.2)
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An orthogonal matrix C has the characteristics CTC = I. For an M × M

matrix C and a vector ~x, the values of λ satisfying the equation

C~x = λ~x with ~x 6= 0, (3.3)

are called eigenvalues of C. The associated vectors ~x are called (right) eigen-

vectors. This equation is equivalent to the following equation

(C − λIM)~x = 0 with ~x 6= 0. (3.4)

There can be at most r ≤ rank(C) eigenvalues.

Singular value decomposition

Given an M × N matrix C, let U be the M × r matrix whose columns are

the eigenvectors of CCT , and V be the r × N matrix whose columns are the

eigenvectors of CTC. The singular value decomposition (SVD) for C is defined

as

C := UΣV T , where (3.5)

U =



u1,1 u1,2 · · · u1,r−1 u1,r

u2,1 u2,2 · · · u2,r−1 u2,r

...
...

. . .
...

...

um−1,1 um−1,2 · · · um−1,r−1 um−1,r

um,1 um,2 · · · um,r−1 um,r


(3.6)

Σ =



σ1 0 · · · 0 0

0 σ2 · · · 0 0
...

...
. . .

...
...

0 0 · · · σr−1 0

0 0 · · · 0 σr


(3.7)

V T =



v1,1 v1,2 · · · v1,n−1 v1,n

v2,1 v2,2 · · · v2,n−1 v2,n

...
...

. . .
...

...

vr−1,1 vr−1,2 · · · vr−1,n−1 vr−1,n

vr,1 vr,2 · · · vr,n−1 vr,n


(3.8)
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For the LSI application we can assume r = M because there are no duplicate

documents in the repository. The idea of an LSI is to compute a rank-k-

approximation Ck of C with low error, where k < r. It has been shown [EY36]

that this can be achieved by setting σk+1 . . . σr to zero.

Figure 3.1: Diagram of an SVD for a rank-k-approximation of low error. De-

scription see text.

The computation of Ck captures the important underlying semantic struc-

ture of types and documents [MB07] as shown in Figure 3.1. “The semantic

structure is only the correlation structure in the way in which individuals words

appear in documents; semantic implies the fact that terms in a document may

be taken as referents to the document itself or to its topic“ [DDF+90a]. The

white areas indicate matrix entries that are zero. Σk contains k non-zero sin-

gular values. As can be seen UΣ = UkΣk, where Uk is a projection of U to the

first k columns. Analogously for V T and V T
k . Hence, a rank-k-approximation

of low error is defined as

Ck := UkΣkV
T
k . (3.9)

The rank of Ck, an M ×N matrix, is at most k. This follows from the fact

that Σk has a most k non-zero values (see Figure 3.1).

The Frobenius norm of a matrix X is defined as

‖X‖F :=

√√√√ M∑
i=1

N∑
j=1

X2
ij. (3.10)

The matrix Ck is the best rank-k approximation of the original matrix C

because the distance between C and Ck is minimized according to the Frobe-

nius norm [EY36], i.e.
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Ck := arg minZ|rank(Z)=k ‖C − Z‖F . (3.11)

Retrieval: Latent semantic indexing

A low-rank approximation of C yields a new representation for the set of

documents in a repository. As we will see in the following, queries can been seen

as documents and can also be represented using the low-rank approximation.

Given such a query (document), similarities between query and document can

be computed in the low-rank space. In this context the process of computing

query-document similarity scores is known as latent semantic indexing.

In the latent semantic indexing process the value k is generally chosen in

the low hundreds [MRS08b]. Thus k is far smaller than the original rank of C.

Originating from Equation 3.9, we derive the holistic repository representation

H as follows

H := V T
k . (3.12)

A string query is represented by a query vector ~q.

~q :=


q1

q2

...

qM

 , (3.13)

where the values q1 . . . qM are either 0 or 1. If a string is equal to a term, the

value is 1, and 0 otherwise. The vector ~q is mapped into its representation in

the LSI space via the following equation

~qk := Σ−1
k UT

k ~q. (3.14)

The cosine similarity computes the distance between a query and a docu-

ment, or between two documents. The cosine similarity (sim) between two

documents d1 and d2 is defined as:

sim(d1, d2) := cos(α) =
~d1
~d2∥∥∥~d1

∥∥∥∥∥∥~d2

∥∥∥ , (3.15)
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where α is the angle between the document vectors ~d1 and ~d2.

Given the similarities between a query ~qk and column vectors ~d from H

(document vectors), the documents with similarity values beyond a given

threshold are selected as a query result.

3.2.2 Related Approaches

In the field of IR, many researchers optimize LSI in order to increase recall and

precision. While the TF-IDF provides a relatively small amount of reduction

of document representations or structure, LSI addresses these shortcomings.

However, further optimization approaches which are based on LSI are devel-

oped such as probabilistic latent semantic analysis (PLSA) [Hof99] and Latent

dirichlet allocation (LDA) [BNJ03].

PLSA is a method for unsupervised learning, which is based on a statis-

tical latent class model. This class model is called aspect model which is a

latent variable model containing observations in the form of co-occurrences

of words and documents (w|d). PLSA computes the probability of each co-

occurrences as a mixture of conditionally independent variables, formally:

P (w|d) =
∑

z∈Z P (z)P (d|z)P (w|z), where the variable z is a observed class

variable z ∈ Z := {z1, . . . , zp}, i.e., the words’ topic [Hof99]. A further opti-

mization method for PLSA is presented in [Hof03], in which a novel statistical

class model is used for IR tasks. The new approach is called Gaussian pLSA.

LDA is a three-level hierarchical Bayesian model, in which each item of

a collection is modeled as a finite mixture over an underlying set of topics.

Further on, each topic is modeled as an infinite mixture over an underlying set

of topic probabilities. These topics represents the implicit knowledge behind a

document. LDA can be viewed as a dimensionality reduction technique, in the

spirit of LSI with proper underlying generative probabilistic semantics [BNJ03].

In other words we see LDA is an optimized LSI method. However, these

approaches demonstrate that LSI is a very good basis for IR tasks because

such systems delivers documents with high recall. But precision decreases

when recall increases (cf. experiments in [KFN09]).

LSI is one implemented model for distributional semantics and varies w.r.t.

the usage of i.e., dimension reduction or similarity measure. With regard to
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the performance of cosine similarity measure, Locality Sensitive Hashing (LSH)

[IM98] is a more efficient approach. The basic idea of LSH is to hash objects

into the same bucket in such a way that the probability of collision is much

higher for objects that are close to each other than for those which are far

apart. In the LSH method, there is a possibility for the emergence of false

positive and false negative. False positives are dissimilar objects which are

hashed to the same bucket, and false negatives are similar objects which are

not dispatched to the same bucket [AM13]. In [AM13] it is shown how to

reduce false positives and false negatives.

In this thesis we present a novel approach for finding latent structures

for knowledge management which is based also on LSI in order to receive IR

results with high recall. For increasing precision a symbolic approach is used

for document representations. In a systematic combination of both methods,

we present how to retrieve IR results with high recall and at least maintaining

precision.

3.3 Symbolic Representations

Nowadays, many documents in repositories contain not only textual but also

visual and auditory information [Kay11]. Despite this fact, retrieval techniques

that rely only on information from textual sources (i.e., surrounding texts of

web sites) are still widely used due to the success of existing IR software sys-

tems, in particular with respect to stability and scalability [DMG+14]. Despite

the idea that the right part of the web page in Figure 2.3 in Section 2.2.2 should

indeed support follow-up queries, this holds only for certain items. Google’s

technique does not allow for easily increasing precision by focusing on Ka-

jsa Bergqvist as a high jumper (see the text that is presented for describing

Kajsa Bergqvist), which would be interesting in our knowledge management

scenario from above. The user is forced to type in another query with “Kajsa

Bergvist high jumper” as a query text. The system is not able to compute

follow-up query possibilities on the fly. This would require the consideration

of the context (the ba in terms of knowledge management) as well as symbolic

representations (annotations) for words or phrases in text content.

In this thesis, we use description logics (DLs) for symbolic representations,
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and in the following we present preliminaries of DLs and logic programming.

We start to introduce syntax and semantics of DLs.

3.3.1 Description Logics

Description logics (DLs) [BCM+03] correspond to a large fragment of standard

ontology languages such as OWL. DLs can be used to represent knowledge

of an application domain in a structured and formally well-understood way.

In DLs, important notions of application areas are described by names for

concepts, roles, and attributes . From a first-order logic point of view, concepts

are unary, and roles as well as attributes are binary predicates to represent

class membership conditions and arbitrary relations between two objects or

object and a value from a concrete domain, respectively. Names will later be

combined to complex description, and therefore names are also called atomic

descriptions.

Let us assume that Jumper, Event, and JumpingEvent are selected as

atomic concept descriptions, and hasParticipant is selected as an atomic role

description by the knowledge modeler of the athletics domain. Assume fur-

ther that the modeler would like to describe certain objects of the domain

using these atomic descriptions, e.g., “An Event in which at least one Jumper

participates.” Then he needs concept constructors to build complex descrip-

tions from atomic ones, e.g., Event u (∃≥1hasParticipant.Jumper). It is

also possible to define the atomic concept description JumpingEvent by stat-

ing that JumpingEvent ≡̇Event u (∃≥1hasParticipant.Jumper). We have a

conjunction (u) and a constructor with ∃, which is called qualified cardinality

restriction. Details will be explained below.

There are some variations of DLs suitable for different purposes. The pro-

totypical description logic language ALC (Attributive Language with Comple-

ment) is the basis of many more expressive DLs, e.g., DLs with qualified cardi-

nality restrictions (Q). In this work, the DL ALCQ(D) with a concrete domain

D for dealing with string values is introduced. We prefer qualified cardinality

restrictions for modeling because atomic role descriptions can be selected that

are more general, i.e., we do not need a role hasJumperParticipant in the

example above.
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Syntax

For a particular application a set CN of atomic concepts (concept names) and a

set RN of atomic roles (role names) is assumed to be given. In ALCQ(D), de-

scriptions for complex concepts are inductively built using concept constructors

shown in Table 3.1, where A ∈ CN is a complex concept by definition, R ∈ RN

is a role name, and D is a name for a decidable mathematical theory over a set

of objects (e.g., linear inequations over real numbers or strings with equality

as the only operator for comparing them). For concrete domains we assume

another kind of descriptions be given, namely attribute names Attr ∈ AttrN
and strings s ∈ Σ∗ for some alphabet Σ.

Syntax Constructor

C1 u C2 conjunction

C1 t C2 disjunction

¬C negation

∃R.C existential restriction

∀R.C value restriction

∃≥nR.C qualified minimum restriction

∃≤nR.C qualified maximum restriction

= Attr.s data type restriction

> top concept

⊥ bottom concept

Table 3.1: Constructors for building complex concepts in ALCQ(D).

For specifying semantic relations between complex concepts so called gen-

eralized concept inclusions (GCIs) of the form C1 v C2 are used. A set of

GCIs is called terminological box (T-box).

For instance with the GCI

JumpingEvent v Event u ∃≥1hasParticipant .Jumper

we specify that JumpingEvent is a specific event with the necessary condition

that there is at least one related participant which is a jumper.

If we have both A v C and C v A in a T-box and A is not mentioned on

the left-hand side of another GCI, we write A≡̇C as an abbreviation. C is a
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necessary and sufficient condition for A in this case, hence we say A is defined

and A≡̇C is called a concept definition.

Specific objects considered in an application are referred to using individual

names. So-called assertions are used to specify the following four cases:

Instance assertion: An individual name i is an instance of a concept name

A ∈ CN is specified with the expression i : A.

Role assertion: Individual names i, j are in relation R ∈ RN is specified

with (i, j) : R.

Attribute assertion: An individual name i has s ∈ Σ∗ as value for attribute

Attr ∈ AttrN is specified with (i, s) : Attr.

Same-as assertion: Individual names i, j refer to the same object with

same-as(i, j).

A set of assertions is called an A-box. A pair KB = (T ,A) where T is a

T-box and A is an A-box is called a knowledge base. An ontology is a tuple

(CN , RN , AttrN ,Σ, T ,A).

Semantics

The semantics of a description logic knowledge base (and an ontology) is de-

fined using an interpretation I that consist of a non-empty set ∆, the domain,

and an interpretation function ·I , which assigns to every atomic concept de-

scription A a set AI ⊆ ∆ and to every (atomic) role R a set RI ⊆ ∆ × ∆,

every attribute Attr a set AttrI ⊆ ∆×Σ∗, >I = ∆, and ⊥I = ∅. For complex

concept descriptions, the interpretation function ·I is extended as presented

in Table 3.2.

The semantics of description logics is based on the notion of satisfiability.

An interpretation I = (∆, ·I) satisfies a concept description C if CI 6= ∅.
In this case, I is called a model for C. An interpretation I satisfies a GCI

C1 v C2 if CI1 ⊆ CI2 . An interpretation is a model of a T-box if it satisfies

all GCIs in the T-box. A concept description C1 is subsumed by a concept

description C2 w.r.t. a T-box if the GCI C1 v C2 is satisfied in all models of
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(C1 u C2)I = CI1 ∩ CI2 ,

(C1 t C2)I = CI1 ∪ CI2 ,

(¬C)I = ∆\CI ,

(∃R.C)I = {x ∈ ∆ | ∃y ∈ ∆ with (x, y) ∈ RI and y ∈ CI},
(∀R.C)I = {x ∈ ∆ | ∀y ∈ ∆, if (x, y) ∈ RI then y ∈ CI},

(∃≥nR.C)I = {x ∈ ∆ | ]{y ∈ ∆ | (x, y) ∈ RI and y ∈ CI} ≥ n},
(∃≤nR.C)I = {x ∈ ∆ | ]{y ∈ ∆ | (x, y) ∈ RI and y ∈ CI} ≤ n},
(= Attr.s)I = {x ∈ ∆ | ∃(x, s) ∈ AttrI}

where ]M denotes the cardinality of the set M .

Table 3.2: Semantics of a description logic knowledge base.

the T-box. In this case, we also say that C2 subsumes C1. An interpretation

I satisfies

• a concept assertion i : A if iI ∈ AI ,

• a role assertion (i, j) : R if (iI , jI) ∈ RI ,

• an attribute assertion (i, s) : Attr if (iI , s) ∈ AttrI ,

• a same-as assertion same-as(i, j) if iI = jI .

A knowledge base (T ,A) is satisfied by an interpretation I if I satisfies T and

A (analogously for ontologies).

Let α be an assertion. A knowledge base KB = (T ,A) entails an assertion

α (or: α follows from KB), denoted as KB |= α if for all models I of KB it

holds that I satisfies α. Let A be an A-box. A knowledge base KB entails an

A-box, denoted as KB |= A, if for all α ∈ A it holds that KB |= α.

In the following sections we sometimes slightly misuse notation and as-

sume that (T ,A) ∪ A′ means (T ,A ∪ A′). The function inds(A) delivers the

individuals mentioned in A-box A.

Decision problems and their reductions

A decision problem is a question with a true or false answer, depending on

the values of some input parameters. The definitions given in the previous

subsection can be paraphrased as decision problems:
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• Check if a model for a concept description exists (concept satisfiability

problem).

• Check if C v D holds in all models of a T-box (concept subsumption

problem).

• Check if a model for a T-box exists (T-box satisfiability problem).

Satisfiability checks of content descriptions and consistency checks of A-boxes

are useful to determine whether a knowledge base is meaningful at all. An

overview about basic inference problems for A-boxes are given in the following:

• The A-box consistency problem for an A-box A (w.r.t. a T-box T ) is the

problem of determining whether there exists a model of A (that is also

a model of the T-box T ).

• Another problem is to test whether an individual i is an instance of

a concept description C w.r.t. a T-box T and an A-box A. A related

problem is to test whether individuals i, j are related by role R w.r.t. a T-

box T and an A-boxA (instance test or instance problem: (T ,A) |= i : C

or (T ,A) |= (i, j) : R).

• The instance retrieval problem w.r.t. a query concept C and an ontology

O = (CN , RN , AttrN ,Σ, T ,A) is to find all individuals i mentioned in

the assertions of the A-box A such that i is an instance of C w.r.t. the

T-box T .

The following problem reductions are well known:

• The concept satisfiability problem for a concept description C can be

reduced to the consistency problem for the A-box {i : C}.

• In order to solve the instance problem for an individual i and a con-

cept description C one can check if the A-box {i : (¬C)} is inconsistent

[BN03].

• In theory, the retrieval problem can be reduced to several instance prob-

lems.
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In theory, all problems introduced above can be reduced to the A-box consis-

tency problem. In practical systems, however, specific optimization techniques

are used to decide a certain decision problem.

Queries for A-boxes A

Assume that A ∈ CN , R ∈ RN , Attr ∈ AttrN , s ∈ Σ∗, and VN is a set of

variable names (or variables for short), and let X, Y be variables or individual

names, A(X), R(X, Y ), Attr(X, s), same-as(X, Y ) will be query atoms.

A substitution σ is mapping from VN∪inds(A) to inds(A) such that σ(i) =

i for i ∈ inds(A) .

A query is an expression {(X1, . . . , XN) | φ(X1, . . . , XN)} where N ≥
0, {X1, . . . , XN} ⊆ VN , and φ(·) is a conjunction of atoms (the atoms are

usually separated with commas) such that the variables in {X1, . . . , XN} are

mentioned in at least one atom. The expression (X1, . . . , XN) is called query

head, and φ(·) is called query body (there can be additional variables in the

body).

Given a query cq = {(X1, . . . , XN) | φ(X1, . . . , XN)}, the query answer-

ing problem, called answers((T ,A), cq), is to compute all (σ(X1), . . . , σ(Xn))

such that for the atoms α in φ(·) it holds that if α = A(X) then (T ,A) |=
σ(X) : A, if α = R(X, Y ) then (T ,A) |= (σ(X), σ(Y )) : R, if α = Attr(X, s)

then (T ,A) |= (σ(X), s) : Attr, and if α = same-as(X, Y ) then (T ,A) |=
same-as(σ(X), σ(Y )), respectively. If for cq it holds that N = 0 then we

have a so-called boolean query. We say the query is answered with true if

answers((T ,A), cq))= {()} and false otherwise (answers((T ,A), cq)={}).
Before we describe the syntax and semantics of another modeling construct,

namely a rule, we need preliminaries of logic programming.

3.3.2 Logic Programming

Logic Programming uses the language of logic to express data and programs - in

most cases first-order logic (FOL). Similarly to first-order logic, logic program-

ming allows for constant, function and predicate symbols. Atomic formulas

(also known as atomic sentences or atoms in short) have the form p(t1, . . . , tn),

where the ti are terms and p is a predicate symbol of arity n. An atomic for-
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mula or its negation is called a literal. A clause is a logic formula of the form

L1 ∨ . . . ∨ Ln, n ≥ 0 (3.16)

where each Li is a literal. A Horn clause is a clause that contains at most one

positive literal. A definite clause (also known as rule) is a Horn clause that

contains exactly one positive literal. A Horn clause without negative literals

is called a fact.

Following the notational convention proposed e.g. in [NM95], definite clauses

are written as follows:

A0 ← A1, . . . , An. (3.17)

where n ≥ 0 and A0, . . . , An are atomic formulas. All variables occurring in

a formula are universally quantified over the whole formula. The backward

arrow ← is read as “if”, and “,” as “and.” The atomic formula A0 is called the

head of the clause whereas the sequence of A1, . . . , An is called the body of the

clause. If n = 0, then the body is equivalent to true, and the clause A0 ← true

is abbreviated to A0 and is called a fact. Otherwise if n 6= 0, the clause is

called a rule [Kow88]. Formulas and clauses are called ground if they contain

no variables. A fact is a ground atomic formula. A Horn clause with an empty

head, i.e. where A0 is absent, is called a goal clause. A definite program is

a finite set of rules or facts. A program is recursive if the body of one rule

directly or indirectly depends on the head of another rule, otherwise it is called

non-recursive.

To give an example, let Π be a definite program containing given with the

following rules and facts:

q(x)← p(x).

r(x)← q(x).

p(i).

r(j).

A definite program with variables can be considered as a shorthand for

the set of all ground instances of its rules, i.e., for the result of substituting

variables in the rules of the program in all possible ways (this process is often
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referred to as grounding). Therefore Π is a shorthand for the following set of

ground instances of its rules plus the above mentioned facts:

q(i)← p(i).

r(i)← q(i).

q(j)← p(j).

r(j)← q(j).

The set of all ground atoms in the language of a definite program Π is

called the Herbrand base of Π and denoted by HB . Note that the language of

a definite program is the set of constant, function and predicate symbols that

occur in the definite program. In our example Π has the following Herbrand

base

HB = {p(i), q(i), r(i), p(j), q(j), r(j)}. (3.18)

A Herbrand model of a definite program Π is a subset of HB . The semantics

of a definite program Π is the smallest Herbrand model.

Datalog , a prominent query and rule language used in deductive databases,

supports only definite clauses without function symbols. In addition, Datalog

requires all variables that appear in the head of a rule to appear also in the body

of the same rule3. Systems supporting Datalog often employ forward-chaining ,

also known as bottom-up inference. Here the name forward-chaining indicates

that rules are processed forward, i.e., in the sense of the logical implication

sign, from body (premise) to head (conclusion).

Prolog is a widely-used logic programming system, and, unlike Datalog,

Prolog supports definite clauses with function symbols. Prolog uses resolution

based inference algorithms, which work in a backward-chaining way, also known

as top-down or goal-directed inference. Backward-chaining inference based on

the SLD resolution does not always guarantee termination since inference with

definite clauses with function symbols is undecidable in general [VEK76], but

decidable for certain subclasses, whereas termination is guaranteed for the

fixed-point based inference algorithms employed for Datalog [Ull85].

3safety property
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In the context of Datalog, one usually distinguishes between two sets of

clauses: a set of ground facts, called the Extensional Database (EDB), and a

set of rules or Datalog program Π, called the Intentional Database (IDB). The

predicates that appear in the EDB are called EDB-predicates. EDB-predicates

may appear in Π as well, but only in clause bodies. The predicates that appear

in Π but not in the EDB are called IDB-predicates . As a consequence, the

head predicate of each clause in Π is an IDB-predicate.

Assume that a Datalog rule A0 ← A1, . . . , An and a set of ground facts

F = EDB are given. If a substitution θ exists, which replaces variables with

constants, such that for each 1 ≤ i ≤ n it holds that θ(Ai) ∈ F , i.e. the premises

of the rule are satisfied, then we can infer the fact θ(A0), also known as the

conclusion. In other words, we say that a rule is applied to a set of ground

facts or extensional knowledge base (EDB). Notice that the inferred fact may

either be a new fact or it may already be contained in the EDB. As mentioned

above, we say a set of rules Π is applied to a KB in a forward-chaining way,

if for every rule in Π whose premises are satisfied the conclusion of the rule is

added to the EDB, and this process is repeated until a fixed point is reached

such that no new facts can be added to the EDB. As an example, consider the

following set of ground facts stored as tuples in a relational database:

EDB = {parent(mary, john), parent(john,michael)}

and the following Datalog program Π consisting of the two rules:

ancestor(i, j)← parent(i, j)

ancestor(i, j)← parent(i, k), ancestor(k, j)

that defines the ancestor relationship. As a consequence of applying the rules

in Π to EDB, the following facts are added to the EDB:

{ancestor(mary, john), ancestor(john,michael), ancestor(mary,michael)}.

Notice that after the addition of these tuples to the EDB, a fixed point is

reached and no new facts can be inferred.
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In this thesis we use Datalog rules in a backward-chaining way to define a

space of possible latent structures used as symbolic descriptions (annotations)

of media content. As an example we assume that the following rule is given:

isAdjacent(Y, Z)←PoleV ault(X), hasPart(X, Y ), Crossbar(Y ),

hasPart(X,W ), Pole(W ), hasParticipant(X,Z)

PoleV aulter(Z).

Figure 3.2: Example for a triangular structure. For an atom isAdjacent(i, j) new

objects are generated, namely a pole vault X and a pole W , with respective relations to the

pole vaulter Z = j and the crossbar Y = i.

The idea is that for an atom isAdjacent(i, j) the rule given above can be

employed in a backward-chaining way, and, as shown in Figure 3.2, possibly

new objects will be generated, namely a pole vault X and a pole W , with

respective relations to the pole vaulter Z = j and the crossbar Y = i.

With backward-chaining for atoms α, new atoms are generated such that α

atoms can be derived in a forward-chaining way if the new atoms were added

to the EDB. The newly generated atoms serve as explanations for α atoms,

and backward-chaining in this way can be seen as a form of abduction.
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Computing explanations via abduction

Abduction [Sha05, PKMM08, HB12, MGXC12, Sob13] can be considered as

a new type of non-standard inference service. In this view, observations (or

parts of them) are utilized to constitute A-box entailment problems. More

formally, for a given set of A-box assertions Γ (observations, to be explained)

and a knowledge base KB = (T ,A), the abductive retrieval inference service

aims to derive all sets of A-box assertions ∆ (explanations) such that

KB ∪∆ |= Γ (3.19)

and the following conditions are satisfied:

• ∆ ∈ backward chain(T ,A,R,Γ) ∧ S(∆) > 0, where S is a monotone

scoring function.

• KB ∪∆ is satisfiable, and

• ∆ is a minimal explanation for Γ, i.e., there exists no other explanation

∆′ ⊆ ∆ and it holds that KB ∪∆′ |= Γ.

The function backward chain is defined as follows:

backward chain(T ,A,R,Γ) =
⋃

γ∈Γ∧requires fiat(γ)

bc(T ,A,R, γ) (3.20)

In turn, bc is defined as

bc(T ,A,R, (Z) : P ) = transform(Φ, σ) (3.21)

if there exists a rule

r = P (X)← Q1(Y1), . . . , Qn(Yn) ∈ R (3.22)

such that a set of query atoms Φ and an admissible variable substitution σ

with σ(X) = Z can be found, and the query

{() | expand(P (Z), r,R) \ Φ} (3.23)

is answered with true. Otherwise, or if no such rule r exists in R, it holds that

bc(T ,A,R, (Z) : P ) = {(Z) : P}. (3.24)
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The goal of the function backward chain is to determine what must be added

(Φ) such that an entailment

KB ∪ Γ ∪ Φ |= (Z) : P (3.25)

holds. The set of query atoms Φ defines what must be hypothesized in order

to answer the query Q with true such that

Φ ⊆ expand(P (Z), r,R) (3.26)

holds. The definition of backward chain is non-deterministic due to several

possible choices for Φ. The function application

expand(P (Z), P (X)← Q1(Y1), . . . , Qn(Yn),R) (3.27)

is also defined in a non-deterministic way as

expand′(σ′(Q1(Y1)),R) ∪ · · · ∪ expand′(σ′(Qn(Yn)),R) (3.28)

where σ′ is a minimal substitution such that σ′(X) = Z and expand′(P (X),R)

being expand(P (X), r,R) if there exist a rule r = P (X) ← . . . ∈ R and

〈P (X)〉 otherwise. We say the set of rules is backward-chained, and since

there might be multiple rules in R, backward chaining is non-deterministic.

The function requires fiat depends on the application context and we

assume the following definition:

requires fiat((Z) : P ) = true iff P ∈ {near, adjacent to, . . .} (3.29)

Obviously, backward chaining potentially produces infinite structures if

rules are recursive. Therefore we assume a scoring function S to be applied

to all ∆s, with the goal to inhibit infinite structures. For implementing A-box

interpretations we use a function interpret(T ,A,R, S,Γ) defined as

maximize({∆ | ∆ is an explanation}, S), (3.30)

where S is a scoring function defined as follows

S(∆) := Si(∆)− Sh(∆), (3.31)
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where Si and Sh are defined as follows [PKMM08]:

Si := |{i|i ∈ inds(∆) and i ∈ inds(Φ)}| (3.32)

Sh := |{i|i ∈ inds(∆) and i ∈ newInds}| (3.33)

The set newInds contains all individuals that are hypothesized during the

generation of an explanation (new individuals). An explanation with the high-

est score is preferred to others. Kaya has presented in [Kay11] that a scoring

function is required because of possibly existing recursive rules, but the A-box

abduction algorithm does not provide a depth or branch control for sequential

abduction steps. In order to avoid the limitations of A-box abduction and

the scoring function, in [Naf13] Nafissi suggest to use a probabilistic scoring

function for interpretation purposes. The new function is implemented as an

extension to [Kay11]. In this thesis we use Kaya’s scoring function for explain-

ing the interpretation process as a part of the symbolic content description

approach because the observations are strict, and we consider only a single

abduction step so that we have no problems with recursive rules.

In the context of symbolic IR, A-boxes are symbolic representations for

document modalities such as images, text, and caption. It may be possible

that assertions in an A-box do not precisely enough represent the content of

document modalities. A-box abduction is one technique which can be used

for creating interpretations (new assertions) so that symbolic IR systems can

deliver documents with higher precision.

A-box difference

In general, one document consists of different modalities. Each modality has

at least one symbolic representation. The fusion of all representations for a

document can lead to higher precision results [Kay11]. In this thesis we present

an implementation of fusion using the so-called A-box difference operator in

Section 4.2. The A-box difference operator defined in [HMW07, MOH+16]

provides means for determining differences on a semantic basis.

The semantic difference ∆A,B (read as: ∆ from A added to B so that A
is entailed) of two A-boxes A = {α1, . . . , αn} and B = {β1, . . . , βm} is a set of

assertions of A with such that:
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1. There exists a (not necessarily total) mapping φ : inds(B) 7→ inds(A)

such that (T , φ(B)∪∆A,B) |= A where φ is defined as follows: φ(B) =def

{φ(β1), . . . , φ(βm)}, φ(i : C) =def φ(i) : C, φ((i, j) : R) =def (φ(i), φ(j)) :

R. (Analogously for attribute and same-as assertions.)

2. φ(B) ∪∆A,B is satisfiable w.r.t. T ,

3. ∆A,B ⊆ A is minimal.

In the following we use a function term abox diff (T ,A,B) to denote (∆A,B, φ(B)).

Note that the A-box difference operator is not commutative.

Example 3.1 The T-box T = {Person≡̇∃hasPart.Body u ∃hasPart.Face},
the A-box A = {i : (∃hasPart.Body u ∃hasPart.Face)}, and the A-box B =

{j : Person} are given.

The A-box differences are:

• ∆A,B = {} because φ(B) = {i 7→ j}, since there is the entailed assertion

(T , φ({i : (∃hasPart.Body u ∃ hasPart.Face)})) |= {j : Person}.

• ∆B,A = {j : Person} because φ(A) = {}, so that a new assertion is

hypothesized.

Example 3.2 The T-box T = {}, the A-box A = {i : Athlete}, and the A-box

B = {j : Athlete} are given.

The A-box differences are:

• ∆A,B = {} because φ(B) = {i 7→ j}, since there is the entailed assertion

(T , φ({j : Athlete})) |= {i : Athlete}.

• ∆B,A = {} because φ(A) = {j 7→ i}, since there is the entailed assertion

(T , φ({i : Athlete})) |= {j : Athlete}.

Example 3.3 The T-box T = {}, the A-box A = {i : Athlete}, and the A-box

B = {j : Person} are given.

The A-box differences are:
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• ∆A,B = {i : Athlete} because φ(B) = {}, so that a new assertion is

hypothesized.

• ∆B,A = {j : Person} because φ(A) = {}, so that a new assertion is

hypothesized.

Previous examples present that the A-box difference operator fulfills the

first condition. The next example presents that the first condition is fulfilled

but the second condition φ(B) ∪∆A,B w.r.t. T is not satisfiable.

Example 3.4 The T-box T = {}, the A-box A = {i : ¬Athlete}, and the

A-box B = {j : Athlete} are given.

The returned results of the A-box difference operator are:

• (∆A,B, φ(B)) = {} because φ(β1) = {k 7→ i} with ∆A,B = {k : ¬Athlete},
since φ(β2) = {j 7→ i} with ∆A,B = {j : ¬Athlete} violates condition 2,

since {j : ¬Athlete} ∪ {j : Athlete} is inconsistent.

• ∆B,A = {j : ¬Athlete} because φ(A) = {}, so that a new assertion is

hypothesized.

In the following further examples are presented with varying assertions.

Example 3.5 The T-box T = {Person ≡̇ ∃hasPart.Faceu∃hasPart.Body},
the A-box A = {i : Person}, and the A-box B = {j : ∃hasPart.Face} are

given.

The A-box differences are:

• ∆A,B = {i : Person} because φ(B) = {}, so that a new assertion is

hypothesized.

• ∆B,A = {} because φ(A) = {j 7→ i}, since there is the entailed assertion

(T , φ({i : Face})) |= {j : Person}.

Example 3.6 The T-box T = {Person ≡̇ ∃hasPart.Faceu∃hasPart.Body},
the A-box A = {i : Person}, and the A-box B = {j : ∃hasPart.Face, k :

∃hasPart.Body} are given.
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The results are:

• ∆A,B = {i : Person} φ(B) = {}, so that a new assertion is hypothesized.

• ∆B,A = {j : ∃hasPart.Face, k : ∃hasPart.Body} φ(A) = {}, so that

new assertions are hypothesized.

Example 3.7 The T-box T = {Athlete ≡̇ PersonuparticipatesIn.SportsEvent},
the A-box A = {i : Athlete}, and the A-box B = {j : Person} are given.

The results are:

• ∆A,B = {j : Athlete}, because φ(B) = {}.

• ∆B,A = {} because φ(A) = {j 7→ i}, since there is the entailed assertion

(T , φ({i : Person})) |= {j : Athlete}.

Example 3.8 T = {Athlete ≡̇ Person u participatesIn.SportsEvent}, A =

{i : Athlete}, and B = {j : Person, (j , k) : participatesIn, k : SportsEvent}
are given.

The results are:

• ∆A,B = {i : Athlete} because for the mappings φ(β1) = {k 7→ i} and

φ(β2) = {j 7→ i} there are not entailed assertions.

• ∆B,A = {(j , k) : participatesIn, k : SportsEvent} which has two hy-

pothesized assertions.





Chapter 4

Holistic and Symbolic Content

Retrieval

In the previous chapter we have presented fundamentals for holistic and sym-

bolic representations in order to formalize a context-specific environment to

be used in Nonaka’s knowledge creation process. In this chapter we describe

holistic and symbolic content descriptions as well as retrieval processes using

a representative example for our knowledge management scenario with the

aim of presenting precision and recall results for both approaches, before we

present our methodology for systematically combining holistic and symbolic

content descriptions deriving a formalization for the knowledge creation pro-

cess (Chapter 5).

4.1 Holistic Content Description Approach

A holistic content description approach, here the LSI approach, is used in order

to create holistic content descriptions (see Figure 4.1 [left]). As explained above

LSI includes singular value decomposition (SVD) and latent semantic indexing

as a technique for better support information retrieval. It is also possible to

use other holistic approaches, such as, e.g., LDA as discussed in Section 3.2.2.

However, the key point for our choice is that holistic information retrieval

supports high recall and provides a means to compute latent structures.

53
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Figure 4.1: Holistic representation of document contents. The columns of the

matrix H are the holistic representation for the documents d1 . . . d10.

4.1.1 Holistic Content Description Creation Process

For explaining how holistic content descriptions are created, we return to the

knowledge management scenario presented in Section 2.2.2. An engineer has

the task to construct athletic areas, for instance, jumping areas in a stadium.

As we have argued in Section 2.2.2, standard retrieval techniques do deliver

context-specific results neither automatically nor in a proactive way because of

missing latent structures for a document. How to compute the latent structure

of documents in a repository is described in the following using LSI.

Assume that we have a repository which contain documents from different

domains such as an Athletics domain and a FairyTale domain. In particular,

assume that we have ten documents: Six documents are from the Athletics

domain (labeled d1 . . . d6) and four documents are from the FairyTale domain

(labeled d7 . . . d10). Each document contains images, caption texts, and texts

in general. Document d1 is shown in Figure 4.2. In the text we can find
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that d1 describes high jump events. For the holistic approach we only use the

textual parts (caption and text) of a document. Titles of the sample dataset

of documents are presented in Table 4.1.

Figure 4.2: A sample multimedia document d1 with athletics news. Source: IAAF

[IAA09]

For demonstration purposes we use the thirteen words high, jump, long,

pole, vault, person, snow, white, prince, charming, sleeping, beauty, and Rapunzel

for indexing as representative terms for our knowledge management scenario.

The words high, jump, long, pole, vault, and person are often used in articles

for describing sports events. The words which are often used to describe fairy

tales are snow, white, prince, charming, sleeping, beauty, and Rapunzel. How to

automatically find topics for describing athletics news or fairy tales is described

in [Ble12].
For presenting the LSI approach, in our example the input term-document

matrix is a 13×10 matrix C for the ten documents d1 . . . d10 (see Table 4.1) and
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Document

number

Title Origin

d1 Kajsa Bergqvist clears 2:06 in

Eberstadt

London 2003

2 August 2003 [IAA09]

d2 Women Pole Vault Qualification Helsinki 2005 News Team,

7 August 2005 [IAA09]

d3 Silnov improves to 2.37 Bob Ramsak for the IAAF,

20 August 2006 [IAA09]

d4 Lysenki closes in on World record

with 75.95m Hammer Throw

(c) 1996-2007 IAAF,

14 July 2005 [IAA09]

d5 Mack delights with 6.01 vault Bob Ramsak for the IAAF

18 September 2004 [IAA09]

d6 Gay skims 200m in 19.79 Chris Turner for the IAAF,

25 August 2006 [IAA09]

d7 Prince Charming [Wik15b]

d8 Rapunzel [Wik15c]

d9 Sleeping Beauty [Wik15d]

d10 Snow White [Wik15e]

Table 4.1: Representative documents from the Athletics and FairyTale domain.

the thirteen terms mentioned above. The entries in the term-document matrix
are simply the frequencies (counts) with which a term occurs in the respective
document. In Table 4.2 is presented that the documents d1, d3, d4, d5, and d6

about athletics events have no words which are used for describing fairy tales.
Document d2 only contains the word “white.” Words such as long and jump for
describing athletics news can be found in Athletics documents (d1 . . . d6) as well
as in FairyTale documents (d7 . . . d10). But in both document categories words
are differently combined. In athletics documents the term “long” is often used
with the term“jump”whereas in fairy tales ”for a long time” is a coherent term.
The idea of LSI is to compute a latent structure such that for the string queries
“long jump” and “high jump” a user receives no documents about fairy tales
and for the string query“snow white”he obtains no documents about athletics.
The representation of each document w.r.t. a given repository is given by the
columns of a document matrix V T . For the input term-document matrix the
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Term/document d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

high 1 2 2 5 7 3 0 0 1 0

jump 2 5 4 10 9 4 4 15 19 1

long 0 1 3 3 1 3 1 7 5 1

pole 0 3 1 0 2 1 0 0 0 0

vault 0 4 1 0 5 2 0 0 0 0

person 0 0 7 2 1 2 1 0 1 0

snow 0 0 0 0 0 0 13 1 1 123

white 0 1 0 0 0 0 13 2 1 123

prince 0 0 0 0 0 0 48 21 48 13

charming 0 0 0 0 0 0 37 2 0 1

sleeping 0 0 0 0 0 0 7 1 56 2

beauty 0 0 0 0 0 0 7 2 52 2

Rapunzel 0 0 0 0 0 0 1 58 0 0

Table 4.2: Term-document matrix for a corpus with texts from the Athletics

(d1 . . . d6) and emphFairyTale domains (d7 . . . d10). Representative terms are high, jump,

long, pole, vault, person, snow, white, prince, charming, sleeping, beauty, and Rapunzel. Each

matrix cell indicates the frequency with which a term occurs in the respective document.

according matrices are a term matrix U , a matrix Σ with the singular values,
and a document matrix V T . For our examples the three matrices are presented
in the following:

U =



0 0.01 0 0.02 0.48 −0.16 −0.13 −0.65 −0.32 0, 26

0.02 0.22 0.14 0.18 0.71 −0.11 −0.35 0.31 0.35 0.21

0.01 0.07 0.08 0.07 0.2 0.35 0 0.43 −0.8 −0.21

0 0 0 0 0.15 −0.14 0.48 0.38 0.15 0.41

0 0 0 0.01 0.27 −0.35 0.72 −0.12 −0.12 −0.1

0 0.01 0 0 0.24 0.83 0.31 −0.24 0.3 −0.1

0.70 −0.10 −0.02 0.03 −0.01 0.02 −0.05 −0.16 −0.07 −0.03

0.70 −0.10 0 0.04 0.01 −0.03 0.05 0.16 0.07 −0.38

0.14 0.64 0.13 −0.42 −0.07 −0.01 0.03 −0.05 −0.02 0.39

0.04 0.15 0.10 −0.72 0.08 −0.01 −0.03 0.04 0.00 0.05

0.04 0.50 −0.30 0.31 −0.12 0.00 0.05 −0.05 −0.02 0.55

0.04 0.47 −0.26 0.29 −0.11 0.00 0.05 −0.05 −0.02 0.22

0.01 0.16 0.89 0.30 −0.20 −0.01 0.08 −0.12 0.01 −0.12



.
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Σ =



176.47 0 0 0 0 0 0 0 0 0

0 101.72 0 0 0 0 0 0 0 0

0 0 60.58 0 0 0 0 0 0 0

0 0 0 45.3 0 0 0 0 0 0

0 0 0 0 19.35 0 0 0 0 0

0 0 0 0 0 6.92 0 0 0 0

0 0 0 0 0 0 4.78 0 0 0

0 0 0 0 0 0 0 2.19 0 0

0 0 0 0 0 0 0 0 1.62 0

0 0 0 0 0 0 0 0 0 0.0001



.

V T =



0 0 0 0 0 0 0.15 0.04 0.07 0.99

0 0.01 0.01 0.02 0.02 0.01 0.41 0.27 0.86 −0.13

0 0.01 0.01 0.03 0.02 0.01 0.12 0.93 −0.35 −0.03

0.01 0.02 0.02 0.05 0.04 0.02 −0.89 0.25 0.36 0.10

0.10 0.32 0.34 0.54 0.61 0.31 0.04 −0.07 −0.05 0.01

−0.06 −0.34 0.81 0.12 −0.43 0.14 0 0 0 0

−0.18 0.49 0.36 −0.74 0.16 0.16 0 0.01 0.01 0

−0.01 0.70 −0, 10 0.30 −0.63 0.11 0 −0.01 −0.01 −0.01

0.24 0.23 0.29 0.07 0.08 −0.89 0 0 0 0

0.22 0.18 0.22 −0.28 0.13 0.25 0.22 −0.03 0.79 −0.17


Computing an approximation for C by keeping the first two singular values

and using the corresponding columns from the U and V matrices yields C ≈
C2 = U2Σ2V

T
2 :

U2 =



0 0.01

0.02 0.22

0.01 0.07

0 0

0 0

0 0.01

0.70 −0.10

0.70 −0.10

0.14 0.64

0.04 0.15

0.04 0.50

0.04 0.47

0.01 0.16



, Σ2 =

(
176.47 0

0 101.72

)
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V T
2 =

(
0 0 0 0.01 0.10 −0.06 −0.18 −0.01 0.24 0.22

0 0.01 0.01 0.02 0.32 −0.34 0.49 0.70 0.23 0.18

)
The holistic representation for the documents d1 to d10 in a 2-dimensional space

is H := V T
2 . The columns of both matrices V T and V T

2 are the representations

of the ten documents. In the original space, document d1 has the holistic

representation

V T (d1) =
〈

0 0 0 0.01 0.10 −0.06 −0.18 −0.01 0.24 0.22
〉T

,

which is reduced to the lower rank representation

V T
2 (d1) =

〈
0 0

〉T
.

Consider that the determination of k, the number of singular values to

keep, can be regarded as an optimization problem. In the following, we show

the results for different k’s and discuss the results briefly.

4.1.2 Holistic Information Retrieval

We have seen that a document can be presented as a vector in a k-dimensional

space, and accordingly, a k-dimensional query vector can be derived from a

string-based query as ~qk = Σ−1
k UT

k ~q (cf. Equation 3.13 and Equation 3.14).

If the query vector ~qk and the document representation V T (di) have a small

distance value sim(~q, V T (di)) ≤ θ, where θ is a threshold, the associated doc-

ument di will be returned to the user.

Sample query for the Athletics domain In general, users expect docu-

ments about athletics events for the string query “high jump.” In the following

we compute the latent structure of the repository via LSI and receive the fol-

lowing results for the input query “high jump.” The corresponding vector ~q

is:

~q =
〈

1 1 0 0 0 0 0 0 0 0 0 0 0
〉T

When the query vector ~q is directly compared against all documents (doc) with

the cosine similarity sim(~q, V T (di)) (see Equation 3.15), we receive the result:

doc d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

sim 0.73 0.50 0.35 0.82 0.84 0.61 0.09 0.31 0.34 0.01
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In our methodology, a threshold value θ is an input parameter and it is required

in order to determine which documents users will receive.

If θ = 0.7, the document hits will be the documents d1, d4, and d5 which

describe athletics events. The documents d2, d3, and d6 also describe athletics

events but are not in the result set. If θ = 0.35, the user will receive all

athletics documents (d1 . . . d6). However, in general a small threshold value is

not a good approach for receiving documents with high precision. Moreover,

a user expects especially high jump news (here: document d1) using the query

“high jump” and not all documents about athletics news, for this reason a

high threshold value is required. Though, if θ = 0.95, there will be no hits.

For the case of an empty result set, the threshold value should be reduced

automatically. For the same input query the corresponding query vector in

the 2-dimensional space is:

~q2 =
〈
−0.02 0.23

〉T
If the query vector ~q2 is directly compared against all documents with the

cosine similarity sim(~qk, V
T
k (di)), the result will be:

doc d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

sim 1.00 0.92 1.00 1.00 1.00 1.00 0.94 1.00 1.00 0.01

If θ = 0.7 was the threshold value, the documents hits will be d1, d2, d3, d4,

d5, d6, d7, d8, and d9. In this result set there are all documents about athletics

and three fairy tales documents. In order to reduce the false positive rate the

threshold value should be increased. If θ = 0.95 was the threshold value, the

document hits will be d1, d3, d4, d5, d6, d8, and d9. In this case the documents

d2 and d7 are no longer in the result set because d2 is a document about pole

vault and d7 about Prince Charming. We see, that the similarity results of the

query vectors (~q and ~q2) differ for the input query “high jump”. The retrieval

results using the original space is more precise than using the 2-dimensional

space. After presenting a second example for another string query, we will see

that for the dimensions k = 4 and k = 5 the retrieval results are similar to the

original space.
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Sample query for the FairyTale domain For the query “snow white” the

corresponding query vector ~q is:

~q =
〈

0 0 0 0 0 0 1 1 0 0 0 0 0
〉T

If the query vector ~q is compared against all documents with the cosine simi-

larity approach, the result will be

doc d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

sim 0.00 0.02 0.00 0.00 0.00 0.00 0.18 0.02 0.01 1.00

If we choose θ = 0.95 as a threshold value, we will retrieve the document d10.

The reduced query vector ~q2 is:

~q2 =
〈

1.40 0.20
〉T

If the query vector ~q2 is compared against all documents with the cosine simi-

larity approach, the result will be1:

doc d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

sim −0.04 0.39 −0.03 −0.04 −0.04 −0.03 0.34 0.06 0.0 1.0

If we choose θ = 0.95 as a threshold value, we will retrieve the document d10.

This result set is equal to the result set above because the repository only

contains one document about Snow White which has very little resemblance

to the other documents in the repository. In contrast, the repository contains

more than one document about high jump and the similarity of high jump

documents to other documents is higher. The next paragraphs show similarity

results for the dimension k = 2 to k = 10 for both input queries: “high jump”

and “snow white” with different threshold values.

Query overview for different dimensions We mentioned above that the

choice of k is an optimization problem, and we presented results w.r.t. different

k’s because for our methodology, k is an input parameter, and we suggest a

1The similarity measure “sim” contains negative values because of the cosine function. It

is possible to choose a negative threshold value but it is not an intuitive approach. It might

indeed be scale the threshold value between 0 and 1.
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k based on our experimental results. Table 4.3 shows the document similarity

values for the query term “high jump” with the dimensions k = 2 to k = 10.

In the following, we will see that recall and precision results indeed differ and

depend on the choice of dimension k and threshold θ.

doc k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

d1 1 0.97 0.94 0.94 0.92 0.81 0.81 0.73 0.73

d2 0.92 0.91 0.9 0.93 0.85 0.61 0.51 0.5 0.5

d3 1 0.96 0.94 0.93 0.43 0.35 0.36 0.35 0.35

d4 1 0.96 0.93 0.94 0.91 0.84 0.82 0.82 0.82

d5 1 0.97 0.93 0.93 0.9 0.86 0.84 0.84 0.84

d6 1 0.95 0.93 0.93 0.86 0.79 0.77 0.61 0.61

d7 0.94 0.92 0.13 0.09 0.09 0.09 0.09 0.09 0.09

d8 1 0.71 0.71 0.32 0.31 0.31 0.31 0.31 0.31

d9 1 0.75 0.76 0.35 0.35 0.35 0.34 0.34 0.34

d10 0.01 0.01 0.03 0.01 0.01 0.01 0.01 0.01 0.01

Table 4.3: Document similarity values for the string query “high jump” with

the dimensions k = 2 to k = 10.

In order to find the best choice of k and θ, we have a look to the recall

and precision results (see Table 4.4, Table 4.5, and Table 4.6). We would like

to mention that in our example the values for recall and precision often is 1

because we have used a small repository for demonstration purposes. For big

repositories recall and precision are smaller than 1. In Table 4.4 recall and

precision results for the string query “high jump” with the dimensions k = 2

to k = 10 and the threshold θ = 0.95 are given. Table 4.4 shows that we have

θ = 0.95 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

recall 0.57 0.8 0 0 0 0 0 0 0

precision 1 1 0 0 0 0 0 0 0

Table 4.4: Recall and precision results for the string query “high jump” with

the dimensions k = 2 to k = 10, and the threshold θ = 0.95.

high recall and high precision for threshold θ = 0.95 and dimension k = 2 or

k = 3. Otherwise recall and precision is very low.
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In Table 4.5 recall and precision results for the string query “high jump”

with the dimensions k = 2 to k = 10 and the threshold θ = 0.94 are given.

θ = 0.94 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

recall 0.5 0.8 0.8 1 0 0 0 0 0

precision 1 1 1 0.5 0 0 0 0 0

Table 4.5: Recall and precision results for the string query “high jump” with

the dimensions k = 2 to k = 10, and the threshold θ = 0.94.

Table 4.5 shows that we have high recall and high precision for threshold

θ = 0.94 and the dimensions k = 2, k = 3, k = 4, and k = 5. Otherwise

recall and precision are very low. More concretely, we have best recall results

for k = 5, and we have best precision results for k = 2, k = 3, or k = 4. If

we have to decide for the best k w.r.t. precision and recall, k = 3, k = 4, and

k = 5 will be good candidates.

In Table 4.6 recall and precision results for the string query “high jump” with

the dimensions k = 2 to k = 10, and the threshold θ = 0.5 are given.

θ = 0.5 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

recall 0.44 0.44 0.5 0.67 0.8 0.8 0.8 0.8 0.8

precision 1 1 1 1 1 1 1 1 1

Table 4.6: Recall and precision results for the string query “high jump” with

the dimensions k = 2 to k = 10, and the threshold θ = 0.5.

Table 4.6 shows that we have the best recall and precision results for threshold

θ = 0.5 and the dimensions k = 6, k = 7, k = 8, k = 9, and k = 10.

Figure 4.3 and Figure 4.4 present recall and precision results graphically.
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Figure 4.3: Recall results for the string query “high jump” with the dimensions k = 2 to

k = 10 with different thresholds

Figure 4.4: Precision results for the string query “high jump” with the dimensions k = 2

to k = 10 with different thresholds

Taking both diagrams into account, then k = 4 and θ = 0.94 are the best

parameters for an information retrieval system for our specific example because

we have high recall (0.8) and high precision (1.0). For our Snow White example,

Table 4.7 shows document similarity values for the string query “snow white”

with the dimensions k = 2 to k = 10.

In order to find the best choice of k and θ for this example, we have a look

at the recall and precision results (see Table 4.8). In the following, recall and

precision results for the string query “snow white” with the dimensions k = 2

to k = 10 and the threshold θ = 0.95 are given:

If we choose the threshold values θ = 0.94 or θ = 0.5, we will receive the

same recall and precision results shown in Table 4.8. As we have mentioned

above, the similarity between the Snow White document d10 and the others in
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doc k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

d1 −0.04 −0.04 −0.01 0 0 0 0 0 0

d2 0.39 0.3 0.23 0.04 0.03 0.03 0.2 0.02 0.02

d3 −0.03 −0.03 0 0 0 0 0 0 0

d4 −0.04 −0.03 0 0 0 0 0 0 0

d5 −0.04 −0.04 0.01 0 0 0 0 0 0

d6 −0.03 −0.03 0 0 0 0 0 0 0

d7 0.34 0.33 0.18 0.18 0.18 0.18 0.18 0.18 0.18

d8 0.06 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02

d9 0 0 0.01 0.02 0.01 0.01 0.01 0.01 0.01

d10 1 1 1 1 1 1 1 1 1

Table 4.7: Document similarity for the string query “snow white” with the

dimensions k = 2 to k = 10.

θ = 0.95 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

recall 1 1 1 1 1 1 1 1 1

precision 1 1 1 1 1 1 1 1 1

Table 4.8: Recall and precision results for the string query “snow white” with

the dimensions k = 2 to k = 10, and the threshold θ = 0.95.

the repository is very small. Consequently the result set is very precise. But

usually the challenge is that a document cannot be easily distinguished from

other documents while only considering used terms in the documents. For our

knowledge management scenario we have IR results with high recall and high

precision if we set the parameters k = 4 and θ = 0.94, so that the best holistic

representation is H = V T
4 .

In order to find the best dimension for a holistic representation in general,

can be solved by using an IR system with a feedback process. A feedback

process is characterized by a learning process in which the retrieved result set

is evaluated by user’s surf behavior. If a user visits a web site which is in the

result set, this web site is classified as a hit. On the basis of this information,

the best k can be found. But the best choice of k and threshold θ do not

imply to have the best recall and precision results (cf. Table 4.4). The result

set using the parameters k = 4 and θ = 0.94 is a good compromise w.r.t recall
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and precision but this is just a compromise. In this thesis, we will present

how to increase recall and at least maintaining precision while systematically

combining holistic and symbolic approaches. Another approach for evaluating

test result is to use plot a receiver operating characteristic (ROC) curve2 with

the true positive against the false positive rate. The true positive rate is also

known as recall. False positive rate is also known as fall-out. The accurancy

is measured under the ROC curve. An area of 1 represents a perfect test and

an area of 0.5 represents a worthless test.3 Plots of such curves are useful for

interpreting medical test results as well as IR result. But in the context of

information retrieval precision and recall values are used as an alternative to

ROC.

2https://en.wikipedia.org/wiki/Receiver_operating_characteristic
3http://gim.unmc.edu/dxtests/roc3.htm

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
http://gim.unmc.edu/dxtests/roc3.htm
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4.2 Symbolic Content Description Approach

In this section we present a symbolic content description approach for our

knowledge management scenario presented in Section 2.2.2. For the purpose

of increasing precision we use description logics as a language for presenting

symbolic representations Sym for the content of each document di (see Figure

4.5 [right]).

Figure 4.5: Representation types: holistic and symbolic content descriptions with the

focus on “symbolic representation”.

In this thesis the process for creating symbolic representations Sym for each

di is called symbolic knowledge creation process (SKCP) and is illustrated

in Figure 4.6. The three main processes are analysis process, interpretation

process, and fusion process.

Analysis process The SKCP diagram shows that the analysis process en-

riches objects from the pre-iconographical level by giving a meaning to such



68 Chapter 4. Holistic and Symbolic Content Retrieval

Figure 4.6: Symbolic Knowledge Creation Process (SKCP) with the main processes anal-

ysis process, interpretation process, and fusion process for creating symbolic representations

for each document.

objects (iconographical level). More technically, in the analysis process docu-

ments will be annotated by so-called low-level extraction tools (IE) with the

aim to find annotations which represent content of a document manually or

automatically. Low-level IE tools such as DeepDive, NELL (Never-Ending

Language Learning), or M-OntoMat Annotizer which identify objects and re-

lations among the objects within documents, videos, and HTML pages are

presented in [MCH+15, CBK+10, Pal09].

Interpretation process The interpretation process computes interpreta-

tions for the analysis result set with the aim to enrich symbolic content de-

scriptions delivered by the analysis process that means there is a switch from

the iconographical to the iconological level. In contrast to Panofsky’s defini-

tion, here, the interpretation process can also deliver many interpretations for

one document part.

Fusion process The fusion process merges interpretation results given from

different media parts such as image, caption, and text from the same docu-

ment. The union of symbols for image, caption, and text aims at a symbolic

description for a document. The level of description does not change after the

execution of fusion.

4.2.1 Symbolic Knowledge Creation Process

The symbolic knowledge creation process needs documents as input (see Fig-

ure 4.6). In our example we use documents from different web sites such as

International Association of Athletics Federations (IAAF) and Wikipedia as

representative repositories in order to demonstrate the creation process for
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symbolic representations and symbolic information retrieval.

In the project BOEMIE (Bootstrapping Ontology Evolution with Multi-

media Information Extraction), which was a research project funded by the

European Union under the Information Society Technologies program (IST-

FP6-027538), a symbolic content description creation process was developed

for creating symbolic representations for the athletics domain. The document

content descriptions are stored in a so-called BOEMIE repository. In this

repository representations are directly linked to the corresponding document

via an URL. We use this BOEMIE repository and Wikipedia pages in order

to demonstrate our methodology suggested in this work (see Chapter 5). The

symbolic representations for the Wikipedia pages had to be created for our

symbolic IR purposes. Therefore the service Calais [CFO10] was used. Calais

automatically extracts semantic information from web pages, in other words,

it reads unstructured text and classified entities, facts, and events within a

text.

In the following we present the three processes analysis, interpretation and

fusion process of the symbolic knowledge creation process for a better un-

derstanding how symbolic representations are created, which are used for our

knowledge management scenario. As a representative example we present how

symbolic representations are generated for the document parts (image, caption,

and text) from document d1. The other symbolic representations for documents

Docs from the BOEMIE repository ({d2 . . . d6} ⊆ Docs) were created in the

same way. The documents from the FairyTale domain ({d7 . . . d10} ⊆ Docs)

were annotated by the service Calais. The specific A-box for each document

d7 . . . d10 ⊆ Docs is presented in Appendix A. Consider that the quality of

annotations differs by using different annotation services.

Analysis process

The document d1 from the BOEMIE repository presented in Figure 4.2 has

the document parts: image and caption (see Figure 4.7). Textual informa-

tion in the caption supplements visual information in the image by providing

additional information such as the athlete’s name, performance, and city. It

is assumed that the multimedia document in Figure 4.7 has successfully been

partitioned into image, caption, and text parts before the analysis process



70 Chapter 4. Holistic and Symbolic Content Retrieval

continues.

Figure 4.7: Image and caption from Figure 4.2. Source: IAAF [IAA09].

Figure 4.8: Annotated image. Low-level objects in the image: bar1, body1, face1, and

image1. Image source: IAAF [IAA09].

In the analysis process the following objects are extracted for the image in

Figure 4.8: bar1, body1, face1, and image1; and the relations isAdjacent(body1,

face1) and isAdjacent(body1, bar1). In addition, the four objects are linked

with concepts, and stored in modality-specific A-boxes (image: see Figure 4.9

and caption: see Figure 4.10). The analysis A-box for the image in Figure 4.7

is presented in Figure 4.9. The A-box contains the assertions:
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domain1 : Athletics

image1 : Image

bar 1 : HorizontalBar

body1 : PersonBody

face1 : PersonFace

(body1, face1) : isAdjacent

(body1, bar 1) : isAdjacent

Figure 4.9: The analysis A-box AnalysisAboxImage. This A-box represents the

results of image analysis for the image in Figure 4.7.

• domain1 : Athletics , which represents the domain of this document part,

• image1 : Image, which represents the modality of this document part,

• face1 : PersonFace, bar 1 : HorizontalBar , and body1 : PersonBody,

which represent objects in the image at the iconographical level, and

• (body1, face1) : isAdjacent , (body1, bar 1) : isAdjacent , which represent

relations of objects in the image.

domain1 : Athletics

caption1 : Caption

pname1 : PersonName

perf 1 : Performance

(pname1, perf 1 : personNameToPerformance

(pname1, “Kajsa Bergqvist”) : hasValue

(perf 1, “2.06”) : hasValue

Figure 4.10: The analysis A-box AnalysisAboxCaption. This A-box represents the

results of caption analysis for the caption in Figure 4.7.

The A-box in Figure 4.10 contains the assertions:

• domain1 : Athletics , which represents the domain of this document part,

• caption1 : Caption, which represents the modality of this document part,
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• pname1 : PersonName and perf 1 : Performance, which represent objects

in the caption at the iconographical level,

• (pname1, perf 1) : personNameToPerformance, which represents a rela-

tion in the caption, and

• (pname1, “Kajsa Bergqvist”) :hasValue, (perf 1, “2.06”): hasValue, which

represent attributes in the caption.

For the text part in document d1 (Figure 4.2) the associated A-box is

presented in Figure 4.11.

domainsn1 : Athletics

text1 : Text

sn1 : SportsName

(pn1, perf1) : personNameToPerformance

(pn2, perf2) : personNameToPerformance

city1 : City

(city1, “London”) : hasCityNameV alue

event1 : SportsEventName

(event1, “Norwich Union London Grand Prix”) : hasSportsEventNameV alue

hjn1 : HighJumpName

(hjn1, “High Jump”) : hasSportsNameV alue

pn1 : PersonName

(pn1, “Kajsa Bergqvist”) : hasPersonNameV alue

pn2 : PersonName

perf1 : Performance

(perf1, “2.06”) : hasPerformanceV alue

perf2 : Performance

(perf2, “2.09”) : hasPerformanceV alue

d1 : Date

(d1, “Friday 8 August 2003”) : hasStartDateV alue

Figure 4.11: Analysis A-box Text. This A-box represents the results of text analysis

for the text in Figure 4.2.

Analogously to both A-boxes described above, this A-box contains the asser-

tions:

• domainsn1 : Athletics , which represent the domain of this document

part,
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• text1 : Text, which represents the modality of this document part,

• sn1 : SportsName, city1 : City, event1 : SportsEventName, hjn1 :

HighJumpName, pn1 : PersonName, pn2 : PersonName, perf1 :

Performance, perf2 : Performance, d1 : Date, which represent ob-

jects in the caption at the iconographical level,

• (pn1, perf1) : personNameToPerformance and (pn2, perf2) :person-

NameToPerformance represent the relations between the assertions

pn1 : PersonName and perf1 : Performance, pn2 : PersonName and

perf2 : Performance within the text, and

• (city1, “London”) : hasCityNameV alue, (event1, “Norwich Union Lon-

don Grand Prix”): hasSportsEventNameV alue, (hjn1, “High Jump”)

: hasSportsNameV alue, (pn1, “Kajsa Bergqvist”) : hasPersonName-

V alue, (perf1, “2.06”) : hasPerformanceV alue, (perf2, “2.09”): has-

PerformanceV alue, (d1, “Friday 8 August 2003”):hasStartDateV alue,

which represent attributes given by the text.

The three A-boxes are symbolic representations of document d1 at the pre-

iconographical level. The interpretation process delivers representations at the

iconological level. This process is described as follows.

Interpretation process

The interpretation process computes interpretations for the analysis results

in this work by using the A-box abduction algorithm in order to enrich sym-

bolic content descriptions delivered by the analysis process. We call this kind

of interpretation process high-level interpretation process. As described in

Section 3.3 the abduction process is used to find explanations (causes) for ob-

servations (effects). In our case observations are for example symbolic content

descriptions for images, texts, and videos. As described in Section 3.3.2, ab-

duction is formalized as

KB ∪∆ |= Γ,

where the background knowledge (KB), and observations (Γ) are given and

explanations (∆) are to be computed. For example, the A-boxes presented
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in Figure 4.9, Figure 4.10, and Figure 4.11 are observations. To compute the

explanation ∆ in our context we modify this equation into

KB ∪ Γ1 ∪∆ |= Γ2, (4.1)

where the assertions in Γ will be split into bona fide assertions (Γ1) and asser-

tions requiring fiats (Γ2). Bona fide assertions are assumed to be believed to

be true by default, whereas fiat assertions are aimed to be explained. The ab-

duction process tries to find explanations (∆) such that Γ2 is entailed. This en-

tailment decision on the abduction process is implemented as (boolean) query

answering. The output ∆ of the abduction process represents the enhanced

symbolic content descriptions. Multiple solutions are possible. Consequently,

a ranking of explanation is needed. We rank explanations via Equation 3.31

in order to receive a preferred ∆.

In this work the interpretation process is done by a semantic interpretation

service called BIWS (BOEMIE Interpretation Web Services) [Kay11, Chapter

4.2]. BIWS is part of the BOEMIE system and is a high-level extraction tool

which is offered by a semantic interpretation engine. BIWS supports the inter-

pretation by implementing the A-box abduction operation (more details of the

abduction process are described formally in Section 3.3.1). To this end it uses

the inference services provided by RacerPro4. As an output, BIWS generates

interpretation data based on the following input: symbolic annotations, T-box

and rules (see Ontologien.zip5).

For instance, A-box abduction is assumed to be used on the observations

image and caption analysis Aboxes (Figure 4.9, and Figure 4.10), the T-box

in Figure 4.12, and rules in Figure 4.13 as input. The T-box contains in-

tentional knowledge in the form of a terminology (see Figure 4.12). Sports

specific rules and T-boxes are defined during the BOEMIE project which are

called Athletics Event Ontology (AEO), where all concepts and relations re-

garding the athletics domain are modeled, the Multimedia Content Ontology

(MCO), which has been defined to address structural aspects of multimedia

content, and the Geographic Information Ontology (GIO), where notions for

representing geographic information are modeled.

4www.racer-systems.com
5https://www.ifis.uni-luebeck.de/fileadmin/user files/ifis/files/melzer/Ontologien.zip
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Athletics u FairyTale v ⊥
Person v Human

Pole v SportsEquipment

Bar v SportsEquipment

Pole u Bar v ⊥
JumpingEvent v ∃≥1hasParticipant .Person

PoleVault v JumpingEvent u ∃hasPart .HorizontalBaru
∃hasPart .Pole

HighJump v JumpingEvent u ∃hasPart .HorizontalBar

...

Figure 4.12: An excerpt of KB consisting of a T-box T .

isAdjacent(Y, Z) ← Person(X), hasPart(X, Y ),PersonFace(Y ),

hasPart(X,Z),PersonBody(Z)

isAdjacent(Y, Z) ← PoleVault(X), hasPart(X, Y ),HorizontalBar(Y ),

hasPart(X,W ),Pole(W ), hasParticipant(X,Z),

PoleVaulter(Z)

isAdjacent(Y, Z) ← HighJump(X), hasPart(X, Y ),HorizontalBar(Y ),

hasParticipant(X,Z),HighJumper(Z)

...

Figure 4.13: An excerpt of rules.

In order to find explanations for image and caption, the A-box Γ is divided

into Γ1 (bona fide assertions) and Γ2 (fiat assertions) following Equation 4.1.

In this example, the bona fide assertions of analysis A-box AnalysisAboxImage

presented in Figure 4.9 are:

Γ1(image) = {Athletics(domain1), Image(image1),HorizontalBar(bar 1),

PersonBody(body1),PersonFace(face1)}.

Γ1 has all assertions from the analysis A-box AnalysisAboxImage without the

role assertions. And Γ2 contains the fiats:

Γ2(image) = {isAdjacent(body1, face1), isAdjacent(body1, bar 1)}.
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Γ2 has all role assertion from the analysis A-box AnalysisAboxImage. The

bona fide assertions for the analysis A-box AnalysisAboxCaption presented in

Figure 4.10 are:

Γ1(caption) = {Athletics(domain1),Caption(caption1),

PersonName(pname1),Performance(perf 1),

hasValue(pname1,Kajsa Bergqvist),

hasValue(perf 1, 2.06)}.

Here Γ1 has the same assertions from the A-box AnalysisAboxCaption pre-

sented in Figure 4.10. Γ2 is:

Γ2(caption) = {personNameToPerformance(pname1, perf 1)}.

Γ2 has the one role assertion from the analysis A-box AnalysisAboxCaption.

The DL reasoner RacerPro provides the function retrieve-with-explanation,

which is an implementation of the A-box abduction algorithm. The function

retrieve-with-explanation accepts a strategy parameter that defines the strat-

egy for instantiating variables. There are two possible values: “use new in-

dividuals” and “reuse existing individuals” (:reuse-old). If the retrieve-with-

explanation function is called without the optional strategy parameter, the

value is“use new individuals”, and thus the function prefers to hypothesize new

individual names instead of reusing existing individual names while generating

explanations. The retrieve-with-explanation function can also be instructed to

additionally generate explanations where existing individual names are reused.

If the function retrieve-with-explanation is called with the optional parameter

value reuse-old, which corresponds to the value “reuse existing individuals”,

it tries to reuse existing individual names as part of an explanation, if such

individual names exist in the A-box.

For the queries

Q(image) := {()|isAdjacent(body1, face1)}

Q(image2 ) := {()|isAdjacent(body1, bar 1)}

which contain the role assertions of Γ2(image), the exact syntax of the RacerPro

function calls are:
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((retrieve-with-explanation ()

(body1 face1 isadjacent) (:reuse-old))

((retrieve-with-explanation ()

(body1 bar1 isadjacent) (:reuse-old))

Assume that the three rules for query expansion presented in Figure 4.13 are

given. All rules have the atom isAdjacent in the head, and thus can be ex-

ploited to generate explanations for the boolean query Q(image):

Γ2.1(image) = {Person(IND1), hasPart(IND1, face1),PersonFace(face1),

hasPart(IND1, body1),PersonBody(body1)}

Γ2.2(image) = {PoleVault(IND1), hasPart(IND1, face1),HorizontalBar(face1),

hasPart(IND1, IND2),Pole(IND2),PoleVaulter(body1),

hasParticipant(IND1, body1)}

Γ2.3(image) = {HighJump(IND1), hasPart(IND1, face1),HorizontalBar(face1),

hasParticipant(IND1, body1),HighJumper(body1)}

The retrieve-with-explanation function returns explanations, which contains

the set of non-entailed assertions from Γ2.1, Γ2.2, and Γ2.3:

∆1(image) = {Person(IND1), hasPart(IND1, face1), hasPart(IND1, body1)}.

The result set represents that PersonBody(body1 ) and PersonFace(face1 ) are

entailed from Γ1.

∆2(image) = {HighJump(IND6),HighJumper(IND1), isAdjacent(IND1, bar 1),

hasPart(IND6, bar 1), hasParticipant(IND6, IND1)}.

This result set represents that Person(IND1), HorizontalBar(bar 1), Person−
Body(body1), PersonFace(face1), isAdjacent(IND1, face1), isAdjacent(body1,

face1), hasPart(IND1, face1), hasPart(IND1, body1), and isAdjacent(body1,

bar 1) are entailed from Γ1.

∆3(image) = {PoleVault(IND6), IND1 : PoleVaulter , isAdjacent(IND1, bar 1),

hasPart(IND6, bar 1), hasParticipant(IND6, IND1)}.
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This result set represents that Person(IND1), PersonBody(body1), Person−
Face(face1), HorizontalBar(bar 1), isAdjacent(IND1, face1), isAdjacent(body1,

face1), hasPart(IND1, face1), hasPart(IND1, body1), and isAdjacent(body1,

bar 1) are entailed from Γ1. However, only Γ2.1 is consistent w.r.t. T and

A because of some disjointness axioms, i.e. PoleV ault and HighJump are

disjoint.

In order to retrieve an interpretation A-box, during the interpretation pro-

cess consistent assertions are added to the analysis A-box. Therefore, the rules

are applied in a forward-chaining way by using the so-called execute-or -reexe-

cute-all -rules function. After executing the rules, in this example the consis-

tent assertions of ∆1(image) are added to the A-box AnalysisAboxImage from

Figure 4.9. A new interpretation A-box for the analysis A-box AnalysisAbox -

Image is presented in Figure 4.14.

domain1 : Athletics

image1 : Image

bar 1 : HorizontalBar

body1 : PersonBody

face1 : PersonFace

(body1, face1) : isAdjacent

(body1, bar 1) : isAdjacent

IND1 : Person

(IND1, face1) : hasPart

(IND1,body1) : hasPart

Figure 4.14: A new interpretation A-box InterpretationAboxImage1. The analy-

sis A-box presented in Figure 4.9 is added with ∆1(image).

The retrieve-with-explanation function delivers for next query Q(image2 ) no

answers, because all explanations that can be generated are inconsistent.

Kaya argues in [Kay11] that there might be different levels of interpreta-

tions. A level i is the number of recursive calls of the interpretation process. In

the beginning of an interpretation process the fiats have level 0. In our example

the A-box presented in Figure 4.14 has interpretation results at level 0. The

choice of an appropriate level is discussed in Kaya’s thesis. For demonstrating
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the interpretation process by example, we choose level 1 because the A-box

in Figure 4.14 represents objects at the pre-iconographical level and symbolic

interpretations at level 1 represents objects at the iconographical level as we

will see in the following.

At level 1, Γ1
2(image) contains the fiat:

Γ1
2(image) = {isAdjacent(IND1, bar1)},

where the power of Γ denotes the interpretation level.

Analogously, the retrieve-with-explanation function delivers two further

(preferred) explanations ∆2(image) and ∆3(image) which are presented in Figure

4.15 and Figure 4.16.

domain1 : Athletics

image1 : Image

IND6 : HighJump

IND1 : HighJumper

IND1 : Person

bar1 : HorizontalBar

body1 : PersonBody

face1 : PersonFace

(IND1, bar1) : isAdjacent

(IND6, bar1) : hasPart

(IND6, IND1) : hasParticipant

(IND1, face1) : isAdjacent

(body1, face1) : isAdjacent

(IND1, face1) : hasPart

(IND1, body1) : hasPart

(body1, bar1) : isAdjacent

Figure 4.15: The interpretation A-

box InterpretationAboxImage2. The

analysis A-box in Figure 4.9 is added with

∆2(image).

domain1 : Athletics

image1 : Image

IND6 : PoleVault

IND1 : PoleVaulter

IND1 : Person

bar1 : HorizontalBar

body1 : PersonBody

face1 : PersonFace

(IND1, bar1) : isAdjacent

(IND6, bar1) : hasPart

(IND6, IND1) : hasParticipant

(IND1, face1) : isAdjacent

(body1, face1) : isAdjacent

(IND1, face1) : hasPart

(IND1, body1) : hasPart

(body1, bar1) : isAdjacent

Figure 4.16: The interpretation A-

box InterpretationAboxImage3. The

analysis A-box in Figure 4.9 is added with

∆3(image).

In order to reduce the number of explanations, a scoring function (see

Equation 3.31) as described in Section 3.3.2 is used. Explanation with the

highest scores are in the result set. In our example the scores are:
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S(∆2(image)) = Si(∆2(image))− Sh(∆2(image)) = |6 + 1| − |6 + 2| = 7− 8 = −1

S(∆3(image)) = Si(∆3(image))− Sh(∆3(image)) = |6 + 1| − |6 + 2| = 7− 8 = −1

Both explanations ∆2(image) and ∆3(image) have the same score in this example.

It is a plausible result because the image in document d1 could not exactly

interpreted as a high jump image because detected objects in the image are

not enough for finding an interpretation which represents high jump objects for

an image which represents a high jumper. In RacerPro, the preference score is

implemented accordingly and returns, in our example, ∆2(image) and ∆3(image).

We know from our knowledge that document d1 describes high jump events

and the high jumper “Kajsa Bergqvist” and that therefore ∆2(image) is the

“right” explanation, or, to put in other words ∆3(image) reduces precision. We

now present an approach how to find explanation results with high precision.

In [Kay11] is shown that fusion of modalities within a document can in-

crease precision. In the following we demonstrate the fusion process after

creating an interpretation representation for the caption part of document d1.

For a better understanding of the fusion process, the Figure 4.17 illustrates

the A-box InterpretationAboxImage2 (see Figure 4.15) (without the individual

names domain1 and image1). The red nodes demonstrate the analysis instance

assertions and the blue nodes represent the new instance assertions after the

interpretation process.

The particular A-box for the caption part of document d1 is the A-box

AnalysisAboxCaption which is presented in Figure 4.10. During the interpre-

tation process the following query is used with the input of Γ2(caption):

Q(caption) := {() | personNameToPerformance(pname1, perf 1)}.

The exact syntax of the RacerPro function call is for reusing existing individ-

uals (:reuse-old):

((retrieve-with-explanation ()

(pname1 perf1 personnametoperformance) (:reuse-old))
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Figure 4.17: Illustration of the interpretation A-box InterpretationAboxImage2:

Red nodes demonstrate the analysis assertions (bottom), blue nodes demonstrate the new

assertions after the interpretation process (top).

The retrieve-with-explanation function delivers one explanation:

∆1(caption) = {Person(IND11), hasPersonName(IND11, pname1),

personToPerformance(IND11, perf 1)}.

The specific interpretation A-box InterpretationAboxCaption with ∆1(caption) is

presented in Figure 4.18. In addition Figure 4.19 illustrates the interpretation

process (without the nodes domain1 and caption1). The red nodes demonstrate

the analysis assertions and the blue nodes represent the new created assertions.

In contrast to the image interpretation A-box, the caption interpretation A-box

contains attribute assertions, namely hasValue(pname1, “Kajsa Bergqvist”)

and hasValue(perf 1, “2.06”). The interpretation process is also done for the

textual part of document d1. One interpretation A-box for the textual part is

presented in Figure 4.20. For the fusion process, the symbolic representations

of the three modalities image, caption, and text for d1 is presented next.
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domain1 : Athletics

caption1 : Caption

pname1 : PersonName

perf 1 : Performance

IND11 : Person

(IND11,pname1) : hasPersonName

(IND11,perf1) : personToPerformance

(pname1perf 1) : personNameToPerformance

(pname1, “Kajsa Bergqvist”) : hasValue

(perf 1, “2.06”) : hasValue

Figure 4.18: InterpretationAboxCaption. The analysis A-box AnalysisAboxCaption

presented in Figure 4.10 extended with ∆1(caption).

Figure 4.19: Illustration of the interpretation A-box

InterpretationAboxCaption: Red nodes demonstrate the analysis assertions, or-

ange nodes are attribute assertions (bottom), and blue nodes demonstrate the new

assertions after the interpretation process (top).

Fusion process

Multimedia documents such as web pages are partitioned into segments possi-

bly w.r.t. different modalities (image, caption, and text) as we have seen above.
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domain1 : Athletics

text1 : Text

IND8 : HighJump

IND51 : Person

IND50 : Person

sn1 : SportsName

(IND50,perf1) : personToPerformance

(IND50,pn1) : hasPersonName

(IND51,pn2) : hasPersonName

(IND51,perf2) : personToPerformance

(pn1,perf1) : personNameToPerformance

(pn2,perf2) : personNameToPerformance

city1 : City

(city1,“London”) : hasCityNameValue

event1 : SportsEventName

(event1, “Norwich Union London Grand Prix”) : hasSportsEventNameValue

hjn1 : HighJumpName

(hjn1, “High Jump”) : hasSportsNameValue

pn1 : PersonName

(pn1, “Kajsa Bergqvist”) : hasPersonNameValue

pn2 : PersonName

perf 1 : Performance

(perf 1, “2.06”) : hasPerformanceValue

perf 2 : Performance

(perf 2, “2.09”) : hasPerformanceValue

d1 : Date

(d1, “Friday 8 August 2003”) : hasStartDateValue

Figure 4.20: Interpretation A-box Text. This A-box represents the interpretation

results for the text in Figure 4.2.

Modality-specific analysis and interpretation processes are then applied to each

segment to obtain modality-specific interpretation A-boxes. We have seen that

a document may even have multiple interpretations: image, caption, and text

interpretations. The challenge is to collate the three modality-specific interpre-

tations to a single coherent representation for a document, in other words, the

idea is to fuse all interpretations with the aim to increase the precision of IR

results. Fusion means that two individual names i, j which refer to the same

object are identified with same-as(i, j). In [Kay11, EKM09a, EKM09b] the
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authors present how to fuse interpretation results for a multimedia document

with structure-oriented rules created by experts. In this work we present two

fusion approaches: one fusion approach with using structure-oriented rules and

one without these rules. Fusion is a core element for our new methodology,

which is presented in Chapter 5.

Fusion process with structure-oriented rules In [Kay11] it is described

that each A-box has a modality-specific instance assertion of the particular

media type. This means that all analysis and interpretation A-boxes have the

assertion image1 : Image, caption1 : Caption, or text1 : Text. In addition, all

modality-specific individual names (image1, caption1, and text1) are set to a

new artificial depicts relation (e.g., depicts(image1, IND6)). The new relations

are essential for the structure-oriented rule approach, so that the following

rules can be used for fusing image, caption, and text A-boxes:

hasCaption(X ,A)←Image(X ), depicts(X ,Y ),Caption(A),

depicts(A,B), same-as(Y ,B)
(4.2)

hasImage(X ,A)←Text(X ), depicts(X ,Y ), Image(A),

depicts(A,B), same-as(Y ,B)
(4.3)

hasText(X ,A)←Caption(X ), depicts(X ,Y ),Text(A),

depicts(A,B), same-as(Y ,B)
(4.4)

The idea of same-as assertions is that individuals names will be fused when

rules are used abductively (with backward-chaining as explained above). For

fusing image, caption, and text interpretation A-boxes presented in our exam-

ple, the interpretation A-boxes have new depicts assertions. We present in the

following how to fuse image and caption interpretation A-boxes. Both A-boxes

with artificial depicts relations (see Figure 4.21 and Figure 4.18).

For creating same-as assertion for the purpose of fusing image and caption

interpretation A-boxes, the fusion rule hasCaption (see Equation 4.2) has to

be executed, then Γ2 contains the fiat assertion:

Γ2 = {hasCaption(image1, caption1)},
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domain1 : Athletics

image1 : Image

IND6 : HighJump

IND1 : HighJumper

IND1 : Person

bar 1 : HorizontalBar

body1 : PersonBody

face1 : PersonFace

(IND1, bar 1) : isAdjacent

(IND6, bar 1) : hasPart

(IND6, IND1) : hasParticipant

(IND1, face1) : isAdjacent

(body1, face1) : isAdjacent

(IND1, face1) : hasPart

(IND1, body1) : hasPart

(body1, bar 1) : isAdjacent

(image1, IND6) : depicts

(image1, IND1) : depicts

(image1,bar1) : depicts

(image1,body1) : depicts

(image1, face1) : depicts

Figure 4.21: The interpretation A-box InterpretationAboxImage from Fig-

ure 4.15 extended with depicts assertions.

which is translated to the query:

Q := {()|hasCaption(image1, caption1)}.

The explanation is:

∆1(image, caption) = {same-as(IND1, IND11)}.

The result shows that the individual name IND1 is equal to the individual

name IND11.
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domain1 : Athletics

caption1 : Caption

pname1 : PersonName

perf 1 : Performance

IND11 : Person

(IND11, pname1) : hasPersonName

(IND11, perf 1) : personToPerformance

(pname1perf 1) : personNameToPerformance

(pname1, “Kajsa Bergqvist”) : hasValue

(perf 1, “2.06”) : hasValue

(caption1,pname1) : depicts

(caption1,perf1) : depicts

(caption1, IND11) : depicts

Figure 4.22: The A-box InterpretationAboxCaption extended with depicts as-

sertions.

Figure 4.23: Illustration of the result of a fusion process using rules. In the

beginning (top): IND1 from image interpretation A-box and IND11 of caption interpretation

A-box are not fused. After the fusion process (bottom): IND1 and IND11 are fused via

same-as assertion so that image and caption assertions are associated.
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Figure 4.23 illustrates the result of a fusion process: In the beginning,

objects from different modalities are not fused, e.g., such as the individual

names IND1 from the image interpretation A-box and IND11 from the caption

interpretation A-box, where the modalities are from the same document d1.

After the fusion process, the individuals IND1 and IND11 (green nodes) are

fused. In Section 4.2.2 it is described that the fusion of image and caption

interpretation A-boxes has advantages w.r.t. precision. However, fusion using

structure-oriented rules has the disadvantage that the number of individuals

increases drastically, and therefore the performance for symbolic IR purposes

is quite low. The reason is that every instance assertion in an A-box has n new

created depicts role assertions and, in addition, the corresponding number of

queries is also n, and n queries have to be answered by symbolic IR systems.

An evaluation of the fusion process with structure-oriented rules versus the

new fusion process using the A-box difference operator (see below) is given in

Section 5.2.

Fusion process using the A-box difference operator A fusion algorithm

working without using structure-oriented rules is called A-box fusion and is

presented in Algorithm 1. The algorithm needs a T-box T , and two A-boxes

A and B as input. In our example, the A-box A is the interpretation A-box

for the image in document d1 and A-box B is the interpretation A-box for the

caption part in document d1. The T-box T is presented in Figure 4.12 and is

used for demonstrating how the A-box difference operator works. The A-box

difference operator abox diff is used for computing the mappings φ(A) and

φ(B) as well as differences ∆A,B and ∆B,A w.r.t. the T-box T . The differences

help to identify the commonalities of A and B. If there are two individual

names i : A, j : B which refer to the same object, they will be identified with

same-as(i, j). The same-as assertions are added to an A-box C. A fusion

A-box F is the symbolic representation for a document and is computed via

F := A ∪ B ∪ C. The A-box fusion returns a fused A-box F .

We give an example: the A-boxes InterpretationAboxImage2 (see Figure

4.15) and InterpretationAboxCaption (see Figure 4.18) are fused as follows:

RacerPro offers the function compute-abox -difference which is used for com-

puting the (φ(Caption),∆Image,Caption) and (φ(Image),∆Caption,Image).
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Algorithm 1 The A-box fusion algorithm.

function fusion(T ,A,B) :

F := ∅ //Fusion A-box

C := ∅ //A-box with equal assertions

(∆A,B, φ(B)) = abox diff (T ,A,B)

(∆B,A, φ(A)) = abox diff (T ,B,A)

if (i ∈ φ(A) ∪ j ∈ φ(B), where i, j refer to the same object) then

C := C ∪ {same-as(i, j)}
end if

F := A ∪ B ∪ C
return F

The returned results are:

∆Image,Caption = {HorizontalBar(bar 1), isAdjacent(IND1, bar 1),

HighJumper(IND1), hasParticipant(IND6, IND1),

HighJump(IND6), hasPart(IND6, bar 1),

PersonFace(face1), isAdjacent(IND1, face1),

PersonBody(body1), hasPart(IND1, face1),

Image(image1), isAdjacent(body1, face1),

hasPart(IND1, body1)}

because φ(Caption) has a mapping {IND11 7→ IND1}, since there is the en-

tailed assertion (T , φ({IND1 : Person})) |= {IND11 : Person}.

∆Caption,Image = {personToPerformance(IND11, perf 1),

PersonName(pname1),Performance(perf 1),

hasPersonName(IND11, pname1),

personNameToPerformance(pname1, perf 1),

Caption(caption1)}

because φ(Image) has a mapping {IND1 7→ IND11}, since there is the entailed

assertion (T , φ({IND11 : Person})) |= {IND1 : Person}.
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IND1 and IND11 refer to the same object and therefore set to the same-as

assertion same-as(IND1, IND11). The specific fusion A-box F is presented in

Figure 4.24.

domain1 : Athletics

image1 : Image

IND6 : HighJump

IND1 : HighJumper

IND1 : Person

bar 1 : HorizontalBar

body1 : PersonBody

face1 : PersonFace

(IND1, bar 1) : isAdjacent

(IND6, bar 1) : hasPart

(IND6, IND1) : hasParticipant

(IND1, face1) : isAdjacent

(body1, face1) : isAdjacent

(IND1, face1) : hasPart

(IND1, body1) : hasPart

(body1, bar 1) : isAdjacent

domain1 : Athletics

caption1 : Caption

pname1 : PersonName

perf 1 : Performance

IND11 : Person

(IND11, pname1) : hasPersonName

(IND11, perf 1) : personToPerformance

(pname1perf 1) : personNameToPerformance

(pname1, “Kajsa Bergqvist”) : hasValue

(perf 1, “2.06”) : hasValue

(IND1, IND11) : same-as

Figure 4.24: Symbolic representation Symd1
for document d1.

This example shows how to fuse A-boxes without structure-oriented rules.

If in the A-box InterpretationAboxImage2 we had two instance assertions which



90 Chapter 4. Holistic and Symbolic Content Retrieval

refer to the same object (Person), assume Person(IND1 ) and Person(IND4 ),

and in the A-box there only one instance assertion which refers to the object

Person Person(IND11), it could happen that the A-box C contained the two

assertions: same-as(IND1, IND11) and same-as(IND4, IND11). In this case,

the second assertion is not desired. To this end a-box fusion approach decreases

false positives but increases the false negatives. Fusing of same modalities via

a-box fusion, this approach is only applicable if the T-box has been adequately

specified or if image and caption interpretation A-boxes only contain one con-

cept name at a time. In Section 5.2 an evaluation of the a-box difference

operator is given.

4.2.2 Symbolic Information Retrieval

In the following, we present the advantages and disadvantages of both fusion

algorithms for symbolic information retrieval tasks.

With respect to a T-box T and a symbolic content description Symi of doc-

ument di, an online symbolic query answering problem answers for retrieving

relevant documents is defined as (cf. Section 3.3.1):

answers((T , Symi), cq) (4.5)

where cq is an A-box query.

Example 1 Assume an image of multimedia document d1 ∈ Docs (see Figure

4.2) with the associated symbolic representations presented in Figure 4.15 and

Figure 4.16 enriched with depicts role assertions. Further assume an engineer

who is interested in documents with images representing high jump events

and uses the symbolic query:

cqhj := {(x, y)|Image(x),HighJump(y), depicts(x, y)}.

The information retrieval service RacerPro delivers the answer

{(image1, IND1)}

because image1 and IND1 are parts of the A-boxes (symbolic content descrip-

tions of d1). The A-boxes are linked to the documents via URIs, and accord-

ingly the engineer retrieves document d1 as a result.
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Example 2 Assume an image of multimedia document d1 ∈ Docs (see Figure

4.2) with the associated symbolic representations presented in Figure 4.15 and

Figure 4.16 enriched with depicts role assertions. And assume another engineer

is interested in images with pole vault events and uses the symbolic query:

cqpv := {(x, y)|Image(x),PoleVault(y), depicts(x, y)}.

The answer of RacerPro is:

{(image1, IND1)}.

Document d1 will be returned as a result for cqhj and cqpv because the symbolic

interpretations for the image in document d1 are also interpreted as a pole

vault event. The reason is that the image in document d1 could not exactly be

interpreted as a pole vault or a high jump image by the interpretation process,

because for the image in document d1 there exist two symbolic representations

presented in Figure 4.15 and Figure 4.16. To this end, there are two symbolic

content descriptions for d1, and the second engineer retrieves document d1 as

a false positive document.

If we have a fused symbolic representation, presented in Figure 4.24, for

document d1, RacerPro will deliver an empty set for cqpv because the symbolic

representation A-box of d1 represents a high jump event.

Precision and recall Suppose we have a document repository represented

by a set of documents Docs = 〈d1, . . . , d10〉 and by a symbolic representation

Symdoc associated with each document doc. For the purpose of comparability

with the holistic approach we define a set of queries in which people could be

interested in choosing documents from the Athletics or FairyTale domain.

The queries are

cq1 :={x|HighJump(x)}

cq2 :={x|PoleVault(x)}

cq3 :={x|FairyTale(x)}

cq4 :={x|Person(x), hasPersonName(“Snow White”, x)}

cq5 :={x|Person(x), hasPersonName(“Kajsa Bergqvist”, x)}
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Tables 4.9 and 4.10 represent the retrieval results for queries cq1 to cq5 versus

documents d1 to d10 with symbolic content descriptions generated by analysis

or interpretation processes. Hits are marked with 3and no hits with 7.

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

cq1 3 7 3 3 7 3 7 7 7 7

cq2 3 3 3 7 3 3 7 7 7 7

cq3 7 7 7 7 7 7 3 3 3 3

cq4 7 7 7 7 7 7 7 7 7 3

cq5 3 7 7 7 7 3 7 7 7 7

Table 4.9: Information retrieval results using symbolic content descriptions for

multimedia content representations (analysis).

For the queries cq1, cq2, and cq5, the symbolic IR system delivers the high

jump document d1. It would be desirable not to obtain d1 if we want to receive

pole vault documents (cq2). This example shows that symbolic IR systems

deliver documents with low precision.

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

cq1 3 7 3 3 7 3 7 7 7 7

cq2 7 3 3 7 3 3 7 7 7 7

cq3 7 7 7 7 7 7 3 3 3 3

cq4 7 7 7 7 7 7 7 7 7 3

cq5 3 7 7 7 7 3 7 7 7 7

Table 4.10: Information retrieval results using symbolic content descriptions for

multimedia content representations (interpretation).

In Table 4.10 we see the information retrieval results for all symbolic content

descriptions (interpretation). There is one difference (highlighted in green).

The symbolic IR system delivers two hits for the queries cq1, cq2, and cq5.

For queries cq1 and cq5 the retrieval systems delivers the high jump document

d1 as a result. We see that the interpretation process leads to an increase of

precision. Recall and precision results are given in Tables 4.11 and 4.12.
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cq1 cq2 cq3 cq4 cq5

recall 1 1 1 1 1

precision 1 0.6 1 1 1

Table 4.11: Recall and precision results for queries cq1 to cq5 (analysis).

cq1 cq2 cq3 cq4 cq5

recall 1 1 1 1 1

precision 1 0.75 1 1 1

Table 4.12: Recall and precision results for queries cq1 to cq5 (interpretation).

The recall and precision results in Table 4.11 and Table 4.12 show for a

small document set that we have high recall and also high precision for our

knowledge management scenario. As a result we confirm with our computa-

tions the results presented in Kaya [Kay11] that symbolic representations at

the iconological level lead to high precision results (see Figure 4.25).

Figure 4.25: Recall and precision results for using interpretation A-boxes as

symbolic representations for documents. Source for the values: Kaya [Kay11]

Figure 4.25 shows the average recall and precision values for an experiment

with 100 documents from the BOEMIE repository. The experimental study
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delivers good results w.r.t. recall and precision. The concept name Person is

an outlier and represents that Person is denoted in various ways during the

analysis process.

In contrast to Kaya’s experiments in which only athletics documents are

used, our repository contains athletics as well as fairy tale documents for

demonstrating the advantages of symbolic IR. We have shown that precision

results (here for cq2) are even better with symbolic content descriptions by us-

ing more than one repository. In addition, we have shown that in contrast to

the holistic information retrieval results, we do not need any threshold values

for receiving precise results. Nevertheless the queries have to be written by

experts and symbolic IR tools have to be used.



Chapter 5

Systematic Combination of

Holistic and Symbolic Content

Descriptions

In the following we present a methodology for the systematic combination of

symbolic and holistic content descriptions for information retrieval which we

call HolSym Methodology. As presented in Chapter 2, fundamental aspects

of knowledge management have to be formalized in order to realize Nonaka’s

knowledge creation process and to provide an automated knowledge manage-

ment process. In addition, we address non-functional issues such as the per-

formance of the HolSym Methodology and the quality of the results obtained.

As an important contribution of this thesis, we would like to explore holistic

and symbolic information retrieval in combination, and evaluate the results

in a representative knowledge management scenario. We show the evaluation

results after the presentation of the proposed methodology. How this method-

ology can usefully contribute to an automated knowledge management pro-

cess using so-called semantic assets as reified knowledge units, which represent

context-specific knowledge, is described at the end of this chapter.

95
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Descriptions

5.1 HolSym Methodology

We have discussed that, on the one hand, holistic methods tend to provide

high recall and low precision, and on the other hand, symbolic methods can be

characterized by low recall and high precision. The systematic combination of

different problem solving methods could have the advantage that in a combined

formalism they benefit from each other. In this thesis we suggest a so-called

HolSym Methodology for presenting how to surpass or alleviate the limitation

of holistic methods by systematically combining holistic and symbolic methods.

5.1.1 Symbolic versus Holistic Information Retrieval

In this section, we give an overview of symbolic and holistic information re-

trieval. In general the objective of retrieval systems is that users receive high-

quality documents. Therefore a query answering problem has to be solved in

a way that a user does not receive false positive or false negative documents.

For this reason, in the research area of distributional semantics, algorithms

were developed, e.g. LSI [DDF+90a], word2vec [MCCD13], Knowledge Vault

[DMG+14], DeepDive [Zha15], and NELL [MCH+15] which built latent struc-

tures of knowledge in order to provide the delivering of high-quality documents.

LSI, for instance, is an approach to automatic indexing and retrieval. It

solves the problem to match the strings in a user’s query with those of relevant

documents. If words have multiple meanings, or documents are written with

words which equal to an implicit knowledge representation, an estimation of

a so-called semantic space is required for solving query answering problems

with high recall and precision. LSI has a statistical technique to compute

the latent structure in this semantic space. This latent structure represents

a holistic representation of documents in a repository. To this end we use

LSI for computing a holistic representation and use it as a basis for system-

atically combining holistic and symbolic approaches. Holistic and symbolic

query answering algorithms are described in the following before we present

the combined IR approach.

Suppose a repository R is computed offline. R is represented by a set of

documents Docs = 〈d1, . . . , dn〉, by a holistic representation H, by a symbolic

representation (an A-box Symdoc) associated with each document doc, and also
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by a feature-based representation (FBdoc) associated with each document (cf.

Figure 1.1), formally:

R := (Docs , H, T , Sym,FB). (5.1)

With respect to a repository of this kind, an online query answering problem

QA for retrieving relevant documents is defined as:

QA(Q,R, θ), (5.2)

where Q is a query vector ~q (see Equation 3.2.1) or an A-box query cq (as

defined in Section 3.3.1), and θ is a threshold value. Above, we presented

two approaches for solving query answering problems, namely holistic and

symbolic approaches. Queries referring to FB are well understood and will

not be considered here. Nevertheless, FB representation and query language

such as Metalog1 could easily be integrated in our systematic combination of

holistic and symbolic representations.

The query answering algorithm for holistic IR is defined in Algorithm 2. As

discussed in Section 4.1, a holistic document representation V T is computed as

an approximation of a term-document matrix C by one of lower rank using the

singular value decomposition (SVD). The document representation H := V T
k

with V T
k = 〈doc1, . . . , docN〉 is a new representation for each document in the

collection. Queries will also be cast into the same low-rank representation

which are represented by ~qk. The documents Docs , their holistic representa-

tions presented with H, and the query vector ~qk are input parameters of Algo-

rithm 2. For solving the query answering problem QAhol, query-document sim-

ilarity scores via cosine similarity are computed. It means that all documents

will be compared with the query vector which is very time-consuming. LSH

solves this performance problem. In an implementation of the HolQuery algo-

rithm we suggest to use LSH. For a simple demonstration of our methodology

we use the cosine similarity measure. If the query vector ~qk and the document

representation doci have a small distance, i.e. the predicate sim(~qk
T , doci) ≥ θ,

where θ is a threshold, the associated document Docs(i) of doci will be in the

result set docs.

1http://www.w3.org/TandS/QL/QL98/pp/metalog.html

http://www.w3.org/TandS/QL/QL98/pp/metalog.html
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The query answering algorithm for symbolic IR is defined in Algorithm 3.

A conjunctive query cq , documents Docs , a T-box T , and symbolic represen-

tations of the documents Symdoc are input parameters of the SymQuery algo-

rithm. The algorithm solves the query answering problem answers((T , Symdoc),

cq). If the query is answered with true, the document doc ∈ Docs will be in

the result set docs . Then the result set will be returned to the user.

Algorithm 2 The HolQuery algorithm.
QAhol(~qk, (Docs, H, , , ), θ):

docs := ∅
for i = 1 to N do

if sim(~qk
T , doci ∈ Hi) ≥ θ then

docs := docs ∪ {(doci ,Docs(i))}
end if

end for

return docs

Algorithm 3 The SymQuery algorithm.
QAsym(cq , (Docs, , T ,Sym, ), ):

docs := ∅
for doc ∈ Docs do

ans := answers((T ,Symdoc), cq)

if ans 6= ∅ then
docs := docs ∪ {(doc, ans)}

end if

end for

return docs

In Chapter 4, we presented the limitation of holistic and symbolic ap-

proaches and showed that the symbolic approach leads to higher precision by

combining Information Retrieval approaches.

5.1.2 Combined Information Retrieval

In general it is challenging to combine holistic and symbolic approaches with

the aim to increase recall and precision simultaneously. In the context of

statistical relational learning many researcher contributions present an highly
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specialized scientific background for combined IR, e.g., for learning from low-

dimensional embeddings [MCCD13], identify a set of plausible formulas from

knowledge bases [WMC14], as well as learning latent and distributional repre-

sentations of Horn clauses to enhance logic-based completion for large datasets

[WC16] by using a scalable probabilistic logic called ProPPR [WMC13] in order

to build intelligent IR systems to deal with the uncertainty of data represen-

tations. Towards a combined IR a standard boolean model was developed

[Sal83, SM86]. Nevertheless the potential of systematically combining holistic

and symbolic for receiving high-quality documents is far from exhausted.

Clustering approaches such as, e.g., k-means and GVM2 (Greedy Variance

Minimization) clustering can be formulated as an optimization problem for

identifying similar groups (clusters) of documents automatically so that the

retrieval is effective and efficient (the clustering approach used in this thesis

is described below). However for classical clustering algorithms it is difficult

to determine clusters in high-dimensional data. In [Rac08], Race proposes

a clustering approach via dimension reduction. Dimension reduction is done

with LSI in order to reduce the dimension of data so that the inherent clusters

become clearer. Race also presents that the accuracy is increased by using LSI

in combination with clustering approaches.

In this thesis we pick up the idea to combine LSI with a clustering approach

in order to benefit from its improvements. GVM is one clustering algorithm

which has been popularly used in the area of IR. If GVM is used via LSI, the

two problems have to be solved:

1. The document dimensionality has to be reduce in a way that more se-

mantic of documents is captured.

2. Discover the initial central location of the cluster that can represent most

semantic information.

We have presented that symbolic representations capture more precise seman-

tics of documents than holistic ones. In order to solve the first problem, we

define a new semantic representation HSem based on symbolic data which is

described below. Then LSI is used to reduce the document dimensionality. For

2http://www.tomgibara.com/clustering/fast-spatial/

http://www.tomgibara.com/clustering/fast-spatial/
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solving the second problem we use the score values delivered by LSI as input

parameters for discovering the initial central location of the cluster. These

solutions are parts of our new suggested methodology. Therefore a repository

R′ is required:

R′ := (R, HSem)

such that HSem is a semantic representation. As we will see in the following,

in addition Docs ′ as a partitioning of Docs of the form 〈{di . . .} . . .〉 and the

associated symbolic representation Sym ′ for a set of documents in the same

cluster are required. The symbolic representation Sym ′ is a union A-box and

represents a synopsis of all document representations which are in the same

cluster. Symbolic query answering is then accomplished with QA′sym(cq ,R, θ).
QA′sym(.) takes care of using sets of documents rather than single documents.

How to compute QA′sym is described in the following. In addition, the system-

atic combination of holistic and symbolic approaches and the required compu-

tation of Docs ′ and Sym ′ in an online process is presented with a simplified

example.

Document Clustering

In Chapter 5.1 the recall and precision results have shown that document

representations are not easy to separate, and patterns of document structures

are not obvious to find, and therefore sometimes a non-negligible set of outliers

are in the result set. Finding outliers can lead to increase precision of IR result

sets. Clustering is a way to identify outliers. Clustering is a way to identify

outliers by grouping documents (or their representations) such that documents

in the same document group grel are more similar to each other than to those

in other groups. In addition, by applying clustering techniques outliers can be

identified, which leads to decrease of false positive or true negative rates.

Algorithm 4 The clusterDocuments algorithm.
clusterDocuments(~qk, H, g):
S := scores(~qk, H)

grel := GVM (g, S)

return (grel , S)

Algorithm 4 presents the clusterDocuments algorithm. A query vector ~qk,
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a holistic representation H of documents, and the number of clusters (groups)

g are input parameters. For an input query vector ~q the similarity values

(scores) between query vector ~qk and document vectors H are computed using

the operation S = scores(~qk, H) (see Algorithm 5). In a next step the scores

are used to find the same groups of documents using the GVM algorithm

grel = GVM (g, S). As a result, each document is associated to a group number.

Algorithm 5 scores
scores(~qk, H):
n := size(H)

res := ARRAY[1 . . . n] OF R
for i=1 to n do

res[i] := sim(qTk , H[i])

end for

return res

The operation retrieveClusterResult as shown in Algorithm 6 returns a set

of document clusters Docs ′. Within this algorithm the central location of a

cluster is computed via ( 1
|grel[j]=i|

∑
j∈{1...m}∧grel[j]=i Sj) ≥ θ, where |grel[j] = i|

is the number of documents in the same group.

Algorithm 6 retrieveClusterResult
retrieveClusterResult(Docs, grel, S, g, θ):
Docs ′ := ∅
m := size(Docs) //number of documents

for i=1 to g do

if ( 1
|grel[j]=i|

∑
j∈{1...m}∧grel[j]=i Sj) ≥ θ then

Docs ′ := Docs ′ ∪
⋃

j∈{1...m}∧grel[j]=i{Docs[j]}
end if

end for

return Docs ′

The operation retrieveClusterResult delivers the information which docu-

ments are in the same cluster. All document representations of the same cluster

are fused to a union A-box Sym ′. If all input parameters for the repository

R′ are given, the query answering problems QAhol and QA′sym can be solved.

The query answering problem QA′sym(.) is presented in the SymQueryGroup

algorithm (see Algorithm 7). In comparison to the query answering prob-

lem QAsym, QA′sym computes document clusters and then a union A-box of
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clustered symbolic representations Sym ′ in order to solve the query answering

problem QA′sym.

Algorithm 7 The SymQueryGroup algorithm.
QA′

sym(cq , (Docs ′, , T ,Sym, ), ):

docs ′ := ∅
for group ∈ Docs ′ do

Sym ′ := ∪doc∈groupSymdoc

ans := answers((T ,Sym ′), cq)

if ans 6= ∅ then
docs ′ := docs ′ ∪ {(group, ans)}

end if

end for

return docs ′

Example In an example we demonstrate IR results of QAhol and of QA′sym.

Therefore we use our knowledge management scenario. The clusterDocuments

operation computes the scores S and groups grel of the ten documents d1 . . . d10,

the holistic representation H, and the string query “high jump” with the re-

duced query vector representation ~q2 (the computations of H and ~q2 are de-

scribed in Subsection 4.1.2). The returned result is presented in Table 5.1.

Query answering results for QAhol If the threshold θ = 0.94, QAhol

will return:

docs = {d1, d3, d4, d5, d6, d7, d8, d9}.

Document d1 is a high jump document. The documents d3, d4, d5, and d6 are

similar but do not especially represent high jump news. The documents d7, d8,

and d9 have no associations to high jump or athletics news. If the threshold is

slightly higher, the result set docs for QAhol will be:

docs = {d1, d3, d4, d5, d6, d8, d9}.

The result set has less false positive documents: document d7 is no longer in

the result set.
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Docs S grel (with g = 3) grel (with g = 4)

d1 1.00 1 3

d2 0.92 2 4

d3 1.00 1 4

d4 1.00 1 4

d5 1.00 1 4

d6 1.00 1 4

d7 0.94 2 2

d8 1.00 1 1

d9 1.00 1 2

d10 0.01 3 2

Table 5.1: Scores S of Docs for the string query “high jump” and grel with g = 3

and g = 4 (right) with input matrix H.

Query answering results for QA′sym The query answering QA′sym has

to solve Docs ′ which is required first. Docs ′ is delivered by retrieveClusterResult .

If we call retrieveClusterResult(Docs, grel, S, 3, 0.94) with Docs = 〈d1 . . . d10〉,
grel = 〈1, 2, 1, 1, 1, 1, 2, 1, 1, 3〉, and S = 〈1, 0.92, 1, 1, 1, 1, 0.94, 1, 1, 0.01〉, Docs ′

will be:

Docs ′ = {{d1, d3, d4, d5, d6, d8, d9}, {d2, d7}, {d10}}.

Document d2 is in a cluster although the score is smaller than the threshold.

In the athletics context, d2 is more similar to d1 than to documents d8 and d9.

QA′sym returns the following documents:

docs = {d1, d3, d4, d9, d10}.

The high jump document d1 is in the result set, but there are also four false

positive documents in the result set.

If the threshold is a bit higher (θ = 0.95), Docs ′ will be:

Docs ′ = {{d1, d3, d4, d5, d6, d8, d9}}.

The number of returned cluster results is smaller, but the delivered results of

QA′sym is equal because QA′sym returns the following documents:

docs = {d1, d3, d4, d9, d10}.
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If we increase the number of groups g to 4, retrieveClusterResult(Docs, grel,

S, 4, 0.94) with Docs = 〈d1 . . . d10〉, grel = 〈3, 4, 4, 4, 4, 4, 2, 1, 2, 2〉, and S =

〈1.00, 0.92, 1.00, 1.00, 1.00, 1.00, 0.94, 1.00, 1.00, 0.01〉 will deliver the result set

Docs ′:

Docs ′ = {{d1}, {d2, d3, d4, d5, d6}, {d8}}.

The result set represents a correct clustering of the documents w.r.t. the string

query “high jump.” Nevertheless document d8 does not represent high jump

news. QA′sym returns the following documents:

docs = {d1, d2, d3, d4, d5, d6}.

All delivered documents are about athletics. There are not documents about

the fairy tale domain. However, the documents d2, d3, d4, d5, and d6 are false

positives. If we increase the threshold value to 0.95, the results will not change:

Docs ′ = {{d1}, {d2, d3, d4, d5, d6}, {d8}}.

QA′sym returns the following documents:

docs = {d1, d2, d3, d4, d5, d6}.

If the threshold is θ = 1.00, Docs ′ will be:

Docs ′ = {{d1}, {d8}}.

For the query “high jump” the document cluster is more precise. The docu-

ments d2, d3, d4, d5, and d6 about athletics are not in the result set anymore.

Document d8 is in the result set, but it is not a document about athletics.

QA′sym returns the desired document:

docs = {d1}.

There are not any false positive documents. However, in general, a thresh-

old θ = 1.00 is not a good choice. Next, we present how a semantics-based

document reduction approach delivers more precise results.
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Semantics-based Document Reduction

A variety of modeling methods including LSI have been proposed to solve IR

tasks. These modeling methods are based on holistic approaches (i.e. PLSA).

A combined holistic and symbolic approach is presented in the following. We

show how to efficiently create the latent structure of documents using infor-

mation from symbolic representations. The latent structure using symbolic

representations is a complementarity matrix which represents the complemen-

taries between all document representations. This new representation matrix

is an input matrix of LSI. New document representations are computed. The

computation of the document representation at lower rank based on symbolic

representations is called semantics-based document reduction.

The semantics-based document reduction process is based on LSI and clus-

tering as described above, whereby instead of the term-document matrix a

so-called semantics-based complementarity matrix HSem is used and computed

offline. HSem is defined as:

HSem :=


h ′d1,d1 h ′d2,d1 . . . h ′dn,d1

h ′d1,d2 h ′d2,d2

. . . h ′dn,d2

...
. . . . . .

...

h ′d1,dn . . . h ′dn−1,dn h ′dn,dn

 ,

where

h ′di,dj :=
∣∣∣Symdi

\∆Symdi
,Symdj

∣∣∣ with 1 ≤ i, j ≤ N.

In our example we receive the following complementarity matrix:

HSem =



15 1 2 2 1 2 0 2 5 0

11 15 10 11 15 11 4 3 4 9

7 14 15 13 14 13 3 3 5 8

8 14 12 15 14 13 3 3 4 9

11 15 10 11 15 11 4 1 5 10

8 14 12 13 14 15 3 3 4 9

15 14 10 11 11 14 15 5 6 4

1 12 8 9 15 9 15 15 7 7

12 14 11 12 13 11 8 0 14 5

13 12 12 12 12 12 5 3 7 14


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The diagonal values are the maximum because documents are compared to

themselves. Large values represent low complementarity, and small values rep-

resent high complementarity. The example shows that the complementarity

values of the six documents about athletics (above/left) and the four docu-

ments about fairy tales (below/right) are surprising high (below/left). And the

complementarity values within the fairy tale are surprising low (below/right).

Explanations for the high complementarity are that the fairy tale concepts

are different and person names in fairy tales and athletics are similar. The

computation of HSem can be done in an offline process.
The new holistic document representation HSem in a 2-dimensional space

is computed via LSI, then:

V ′T
2 =

(
−0.31 −0.42 −0.34 −0.37 −0.42 −0.37 −0.20 −0.12 −0.20 −0.26

0.61 −0.04 0.07 0.05 −0.16 0.03 −0.54 −0.55 0.03 0.05

)

The reduced column vectors of V ′T2 represents the degree of associations be-

tween the documents. The reduced query vector ~q2
′ for the string query “high

jump” is computed in an online process: q′2 = 〈−0.42, 0.51〉 . If the new docu-

ment representation HSem is used instead of H, the scores for each document

will be a bit lower (cf. Table 5.1 and Table 5.2).

Docs S grel (with g = 3) grel (with g = 4)

d1 0.98 1 2

d2 0.85 2 1

d3 0.92 2 3

d4 0.90 2 3

d5 0.78 2 1

d6 0.89 2 3

d7 0.18 3 4

d8 −0.05 3 4

d9 0.91 2 3

d10 0.91 2 3

Table 5.2: Scores S of Docs for the string query “high jump” and grel with g = 3

and g = 4 (right) with input matrix HSem .

The scores in Table 5.2 show that d1 and d3 are more similar than the fairy
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tale documents d8 and d9. The documents d7 and d8 have a very low score.

The scores of documents d9 and d10 are very high because of the concept

name Person. Athletics as well as fairy tale characters are persons so that the

difference between the symbolic representations, i.e., Symd1 and Symd9 , are

quite low. Therefore, the documents d2, d3, d4, d5, d6, d9, and d10 are in the

same group (where g = 3), or d3, d4, d6, d9, and d10 are in the same group

(where g = 4). The returned clusters Docs ′ of clusterDocuments are presented

which are input values for QA′sym . In the following retrieval results of QAhol

and QA′sym are presented.

Query answering results for QAhol If the threshold is θ = 0.95 and

g = 3, the retrieval result of QAhol will be:

docs = {d1}.

The result set contains the correct document. There are no false positive or

false negative documents in the result set. If the number of groups is g = 4,

QAhol will deliver the same result:

docs = {d1}.

If the number of groups is g = 4, QAhol will deliver the result set:

docs = {d1, d3, d4, d9, d10}.

In the set are four false positives. The threshold θ = 0.9 is not a good choice.

Query answering results for QA′sym First, the document clusters are

computed via clusterDocuments . The result set is:

Docs ′ = {{d1}, {d3, d4, d6, d9, d10}}.

Document d6 is in a cluster because of the terms “high jump” found in the

document. QA′sym returns the following documents:

docs = {d1, d3, d4, d6, d9, d10}.

If the number of groups is reduced to g = 3, QAhol with the additional usage

of the clusterDocuments operation will deliver the result set:

Docs ′ = {{d1}}.
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QA′sym returns the following document:

docs = {d1}.

QA Hol.repr. θ g d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

QAhol H 0.94 - 3 7 3 3 3 3 3 3 3 7

QAhol H 0.95 - 3 7 3 3 3 3 7 3 3 7

QA′sym Hsem 0.94 3 3 7 3 3 7 7 7 7 3 3

QA′sym Hsem 0.95 3 3 7 3 3 7 7 7 7 3 3

QA′sym Hsem 0.94 4 3 3 3 3 3 3 7 7 7 7

QA′sym Hsem 0.95 4 3 3 3 3 3 3 7 7 7 7

QA′sym Hsem 1.00 4 3 7 7 7 7 7 7 7 7 7

QAhol Hsem 0.95 - 3 7 7 7 7 7 7 7 7 7

QAhol Hsem 0.90 - 3 7 3 3 7 7 7 7 3 3

QA′sym Hsem 0.90 3 3 7 7 7 7 7 7 7 7 7

Table 5.3: Retrieval results for QAhol and QA′
sym for the string query “high

jump.” Hits are marked with 3and no hits with 7.

The summarized results in Table 5.3 show that solving query answering

problems of the form QAhol(~qk
′, (Docs , HSem , , , ), θ) increase precision be-

cause of the new input parameter HSem whereby the threshold value has

to be about 0.95. For smaller threshold values the additional use of the

clusterDocuments operation increases the precision of IR result sets. More

experiments and discussions are given in Section 5.2.

Semantics-based Information Retrieval

In the case of retrieval results with high recall (|docs ′| ≥ δ), it should be

possible to translate holistic queries into symbolic ones automatically, so that

a user must not be an expert in query languages. An approach for defin-

ing particular translations from string queries to symbolic ones is presented

in [EKS13]. Here, the according algorithm is called HolSym and is presented

in Algorithm 8. In Algorithm 8 a query vector ~qk is an input parameter.
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For computing docs ′′ the query is transformed into a symbolic query with

the operation transform2cq(~qk). For implementing the transformation the ap-

proach presented in [EKS13] is recommended. The transformation function

transform2cv(docs , Hsem) := |docs|−1∑
doci∈docs(Hsem [i]) computes a necessary

complementary vector ~cv. In Algorithm 8 the transform2cv is used in order to

receive document indicators for further computations.

For retrieval results with very low recall (|docs ′| ≤ δ), is should also be

possible to translate symbolic queries into holistic ones automatically. The

according algorithm is called SymHol and is presented in Algorithm 9. In Al-

gorithm 9 a symbolic query cq is an input parameter. For computing docs ′′ the

query is transformed into a string query with the operation transform2qk(cq).

Algorithm 8 HolSymMethodology .
HolSym(~qk, ((Docs,H, T ,Sym, ), Hsem), θ, g, δ):

docs ′ := QAhol(~qk, (Docs, H, , , ), θ)

if |docs ′| ≥ δ then

(grel, S) := clusterDocuments(transform2cv(docs ′, Hsem), Hsem , g)

Docs ′ := retrieveClusterResult(Docs, grel, S, g, θ)

docs ′′ := QA′
sym(transform2cq(~qk), (Docs ′, , T ,Sym, ), )

else

docs ′′ := ∅
end if

return (docs ′, docs ′′)

Algorithm 9 SymHolMethodology .
SymHol(cq , ((Docs, H, T ,Sym, ), Hsem), θ, g, δ):

docs := QAsym(cq , (Docs, , T ,Sym, ), )

(grel, S) := clusterDocuments(transform2cv(docs,Hsem), Hsem , g)

Docs ′ := retrieveClusterResult(Docs, grel, S, g, θ)

docs ′ := QA′
sym(cq , (Docs ′, , T ,Sym, ), )

if |docs ′| ≤ δ then

docs ′′ := QAhol(transform2qk (cq), (Docs, H, , , ), θ)

else

docs ′′ := ∅
end if

return (docs ′, docs ′′)

As a result the Algorithms 8 and 9 return a tuple of documents (docs ′, docs ′′).
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Quality and performance issues of the HolSym Methodology are discussed in

the next section.

In the web exist documents which cannot be delivered by IR systems be-

cause publishers do not use proper search terms for their texts. In order to

capture such documents, we suggest to use logistic tensor factorization for

multi-relational data as a suitable approach for computing explicit knowledge

by predicting latent structures of missed explicit terms for a true positive

search result. A tensor factorization method is i.e. Rescal. It is used for ef-

ficiently modeling, analyzing, and predicting data with multiple modalities.

Dyadic relational data with D different relations and N entities, has a natural

representation as an adjacency tensor X of size N × N ×K, where xijk = 1,

if the Relationk(Entityi,Entityj) exists, and 0 otherwise. Rescal is a latent

factor model for relational learning. Rescal factorizes an adjacency tensor X

into latent representations of entities and relations. Formally:

Xk ≈ ARkA
T , (5.3)

where Xk is the k-th factor matrix of X, matrix A ∈ RN×r holds the latent

representations for the entities, Rk ∈ Rr×r is the latent representation of the

k-th predicate, and r is referred as the rank. Equation 5.3 can be also written

as xijk ≈ aTi Rkaj, where the column vector ai ∈ Rr denotes the i-th row of

A. Rescal is applicable if latent factors are suitable for capturing essential

information in a domain [NT13].

Another approach for enriching documents with explicit knowledge is pre-

sented in [BKM]. This contribution presents the approach unsupervised text

annotation (UTA). UTA can be used to link documents with an associated

symbolic content descriptions. The authors plan to extend UTA to an ap-

proach with an arbitrary query as input so that IR systems can return a set

of documents answering the query.

5.2 Evaluation

This chapter is structured as follows: First, we explore the feasibility of the A-

box difference operator and LSI through a representative experimental study.

Second, we analyze the quality of the A-box fusion algorithm (Algorithm 1)
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compared to the fusion approach by inference (cf. [Kay11]). For the evalua-

tion of the quality we exploit a large corpus of documents, which have been

annotated by human experts using concept and role names from respective do-

main ontologies. Last but not least we present quality results for the suggested

methodology for combining holistic and symbolic approaches for information

retrieval.

5.2.1 Feasibility

In this section we analyze the performance and quality of our methodology

through a representative experimental study in the following way:

• Start with a corpus of documents

• Collect a set of queries for this corpus

• Create the gold standard

• Measure the retrieval results

• Evaluate the retrieval results

We use a test corpus consisting of about 600 documents taken from the

athletics domain (BOEMIE repository) for evaluating the A-box difference

operation and 120 documents for the combination approach. The fusion ex-

periments were run on a Windows 7 Enterprise 64-bit system with an Intel(R)

CoreTM i5 3.2 GHz processor and 6 GB of main memory. The combination

experiments were run on a WindowsTM system with an Intel(R) CoreTM2 Duo

CPU, 2 GHz processor and 2 GB of main memory. The algorithms were im-

plemented in Eclipse version 4.2.1. The DL reasoner RacerPro version 2.0 was

used as an extern program in order to execute the A-box fusion algorithm.

Feasibility of A-box Difference Computation

Table 5.4 and Figure 5.1 indicate the performance of the A-box difference

operator.

Table 5.4 shows that the time of an A-box difference operation of two A-boxes

with an average size of 1.5 kB is reasonable. With an A-box size of 13 kB the

computation time increases drastically (see Figure 5.1).
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KBytes Milliseconds KBytes Milliseconds

3.16113 4213 8.26270 3445

3.17383 7404 9.41406 7798

3.83398 8435 9.86816 17058

3.94531 7734 9.91797 64937

6.16016 16940 10.1162 41279

6.34375 4702 10.5606 13619

6.64746 3891 11.4297 114236

7.27051 3640 12.8145 570820

7.56445 19605 13.6152 3436459

7.71777 8748 15.3125 4553505

Table 5.4: A-box sizes and performance of A-box difference operations

Figure 5.1: Performance of A-box difference operations
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This experiment shows that performance is quite low for an A-box difference

operation with an A-box size upwards to 13 kB. The performance results are ac-

ceptable for small A-box sizes but hardly practical for larger ones. In [Wan11]

an approach is presented how to handle with growing sets of assertional state-

ments in ontologies. The aim of this work is to reduce instance checking for an

individual in an ontology to smaller subsets. To this end better performance

results should be achievable.

Feasibility of LSI

In general, the performance results of LSI or more concretely SVD depends on

the number of k and the number of terms and documents. Some experiments in

the literature indicate that a value of k = 300 to 500 provides best performance

results. For a five million document collection, a value of k ≈ 400 provides the

best performance [Bra08].

In our experiment we have used 41, 1682, and 45687 documents of the

BOEMIE repository and the ten terms HighJump, PoleVault , Athlete, Person,

Marathon, SportsTrial , Performance, City , PersonName, and Rank for index-

ing as representative terms for demonstrating the performance results. In

Figure 5.2 it is presented that the performance decreases linearly with an in-

creasing number of documents in the repository. For instance, the computation

time for a 10 × 41 matrix is about 2 milliseconds and for a 10 × 1682 matrix

is about 1 second (1427 milliseconds), and for a 10 × 45687 matrix is about

25 minutes (1514592 milliseconds). The optimal choice of k depends on the

quality of terms which are used. In Subsection 5.2.2 we discuss the best choice

of k.

Similarity Score of the Topic Result Set

LSI provides a basis in the field of topic modeling. In order to define a result

set with relevant documents on the basis of a topic result set (document V T
k [i]

vs. query ~qk) a score value score i is required. For example (approximate)

nearest neighbor algorithms such as Cosine Similarity or Locality Sensitive

Hashing (LSH) delivers the required scores. The nearest neighbor problem is

the following: Given a set V T
k of i points in a metric space defined over a set
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Figure 5.2: Performance of LSI

X with a distance function D, pre-process V T
k to efficiently answer queries ~qk

for finding the points in V T
k [i] closest to a query ~qk ∈ X, where X = Rd with

dimension d under some ls norm [IM98].

Cosine Similarity Cosine similarity measure is used in information retrieval

system if it is important to have a low false positive rate. Relevant documents

on the basis of topic result set (document V T
k [i] vs. query ~qk) are computed. If

the score score of a document vs. the query is within a given threshold value

Θ, the document will be returned to the user. Unfortunately, as the dimension

increases, this approach become less efficient because the space or time re-

quirements increase exponentially in the dimension [IM98]. We suggest to use

locality-sensitive hashing in Algorithm 2 in order to achieve better performance

results.

5.2.2 IR Quality

In this section, we compare and evaluate the quality of precision of information

results using the fusion approaches presented in Section 4.2.1: fusion using a)

the A-box difference operator and b) structure-oriented rules.
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Quality of Documents using the A-box Difference Operator

In Section 4.2.1 we have presented that the abduction process computes two

different explanations for an high jump image (cf. Figure 4.15 and Figure 4.16).

Namely, high jump and pole vault. In the case, if more than one explanation

exists for an image, we suggest to use the a-box difference operator in order

to increase precision of document representations. Therefore the knowledge of

basis and differences of interpretation a-boxes is required. In [MGK+14] we

present how to compute the basis and the semantic differences of two a-boxes.

In addition we present that a T-box also plays an important role during the

computation of differences. If the T-box has the CGI HighJumpuPoleVault v
⊥ (high jump and pole vault are disjoint) then it is a hint that one explanation

is only valid. For making a decision for one symbolic representation further

knowledge is required. We suggest to use an associated A-box caption or text

and fuse the A-boxes (image and caption/ image and text). If the fused A-box

is consistent then we can decide for the more precise symbolic representation.

In our example, we can decide for the high jump representation (Figure 4.15).

A-box difference operator increases the precision of interpretation A-boxes.

In some cases in an A-box there are different individual names which repre-

sent the same object (see Figure 5.3). In Figure 5.3 the number of individuals

of 78 A-boxes is presented. We see that the number of same-as individuals

increases with the number of total individuals.

Figure 5.3: The number of individual names with and without using the A-box difference

operator

In order to evaluate IR results, in our experiment we compute the differ-



116
Chapter 5. Systematic Combination of Holistic and Symbolic Content

Descriptions

ence between image and caption A-Boxes for 78 documents using the A-box

difference operator and create for each document a fusion A-box so that the

new same-as assertions are parts of a fusion A-box. In sum, the number of

retrieved individuals is 1630 using the A-box difference operator and 1432

without using a fusion algorithm. All retrieved individual names are relevant

in our experiment, and the false positive rate decreases by 13.82 percent (cf.

[Cau13]).

A-box Fusion Algorithm versus Fusion with Structure-Oriented Rules

In a further experiment we compare A-box fusion algorithm with the fusion ap-

proach using structure-oriented rules. Again, we use a repository with 78 doc-

uments and their symbolic representations (A-boxes) and compute the number

of different individuals. Figure 5.4 shows that the number of same-as individ-

Figure 5.4: The number of different individuals in an A-Box using the A-box difference

operator and the fusion approach using structure-oriented rules

uals could be reduced using the A-box difference operator compared with the

fusion approach with structure-oriented rules by the factor of 91 percent.

The reduction of equal individuals has the advantage that the A-box sizes

are smaller, so that the A-box difference supports a better performance than

the fusion approach using structure-oriented rules.

Quality of LSI Results

We study LSI research results in order to evaluate the quality of LSI. Some

studies of LSI present that for a low k the performance is quite well, but
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the quality of IR results decreases because the representation of relationship

between document and terms is not representative [Bra08]. Hence, the choice

of the parameter k is essential w.r.t. performance and quality of IR results.

In Section 4.1 we presented that the best approximation is k = 4 in our

knowledge management scenario for a small repository. For a repository with

up to 5 million documents an optimal k is between 300 and 500 for specific tasks

(cf. Table 1 in [Bra08]). In general there is a great variability w.r.t. the kind of

documents, the used terms and queries. For instance, the studies in Table 5.5

use encyclopedias, articles, emails, or documents in different languages etc.

as an input repository. An optimal k of these studies has been found to be

between 80 and 400 for specific tasks.

k Mean (#docs) Median(#docs) References

400 10377 1238 [JM03, LG03, LST07]

300 17613 5939 [LD97, WHG99, JL00,

AF02, AKS06, BRP07]

250 37600 37600 [KKH00, TL03]

200 12649 2146 [Hul94, SLD96, YCBF98,

WH00, HSD01, Gee03b,

KCZ03, KP06]

150 699 699 [ZMS98, Pin04]

100 3917 1217 [DDF+90a, LS01, Che03,

Mor05, YYT05, Gei06]

90 1803 1803 [Dum03], in [Bra08] ref. [36]

80 2774 1000 [MBW05, HTDRP07]

Table 5.5: Evaluations results for an optimal LSI dimensionality.

In [Bra08] Bradford discusses that LSI studies have dealt with small test

collections, so that chance co-occurrence of terms in few documents can have

significant impact on term-term relationship. In order to find out the optimal

k Bradford uses a large test collection. As a result he receives k = 400 as a

best choice.

In order to find a mathematical explanation for the choice of k for a repos-

itory, we have compared all results of the LSI studies so that different kind of
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documents were considered. We determine for each k the mean and median

of test set size of documents (#docs). The values are presented in Table 5.5,

and a graphically representation is given in Figure 5.5.

Figure 5.5: Plot of measured optimum parameter k between 80 and 400 w.r.t. the mean

and median of test set size of documents (#docs).

Figure 5.5 presents interesting information:

• The optimal parameter k is 250.

• The median curve represents a normal distribution.

The formula for the normal distribution is:

f(x) =
1

σ
√

2π
exp

−(x−µ)2

2σ2 , (5.4)

where µ is the mean and σ the standard deviation. Our opinion is that the

parameter µ represents the value k. Standard normal distribution values are

µ = 0 and σ2 = 1. In our example µ = 250 and σ = ±150.

In the research field of (automatic) text processing it is known that sig-

nificant terms follows a normal distribution placed over a term list ranked by

the frequency of term occurrence [LH11]. In this work we establish the link

between the optimal parameter k, an input parameter for LSI and the normal

distribution.
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Quality of the HolSym Methodology

The clusterDocuments operation is one essential operator of the HolSym Method-

ology. We evaluate this operator using our knowledge management scenario.

We compute scores S and groups grel of the ten documents d1 . . . d10, use the

respective holistic representation H and the string queries “pole vault,” ”Prince

Charming,” and ”Snow White” with the particular reduced query vector repre-

sentation ~q2 (the computations of H and ~q2 are described in Subsection 4.1.2).

The returned results are presented

• in Table 5.6 and Table 5.7 for the query “pole vault.”

• in Table 5.9 and Table 5.10 for the query “Prince Charming.”

• in Table 5.12 and Table 5.13 for the query “Snow White.”

In the following we compare the result sets between QAhol and QA′sym .

IR Example: “Pole Vault” For the query “pole vault” and a threshold

θ = 0.95, QAhol delivers (cf. Table 5.6):

docs = {d1, d3, d4, d5, d6, d8, d9}.

Document d2 is a pole vault document and the result set does not contain d2.

The documents d1, d3, d4, d5, and d6 are similar but do not especially represent

pole vault news. The documents d8 and d9 have no associations to pole vault

or athletics news. If the threshold is 0.92, the result set docs for QAhol will be:

docs = {d1, d2, d3, d4, d5, d6, d7, d8, d9}.

The result set has more false positive documents, but d2 is in the result set.

For solving QAsem it is required to compute document clusters first. If the

retrieveClusterResult(Docs, grel, S, 3, 0.95) with Docs = 〈d1, d2, d3, d4, . . . , d10〉,
the score values S = 〈0.84, 0.98, 1.00, 1.00, 0.95, 0.99, 0.52, 0.30, 1.00, 1.00〉, and

grel = 〈1, 2, 2, 2, 2, 2, 3, 3, 2, 2〉, Docs ′ will be (cf. Table 5.7):

Docs ′ = {{d2, d3, d4, d5, d6, d9, d10}}.

The returned documents fo QAsem are:

docs = {d2, d3, d4, d5, d6, d9, d10}.
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Document d2 is in the result set, but there also are false positive documents.

And d5 is a false negative document.

If the number of groups g is 4, retrieveClusterResult (Docs, grel, S, 4,

0.95) with Docs = 〈d1 . . . d10〉, grel = 〈2, 1, 3, 3, 1, 3, 4, 4, 3, 3〉, and the score

values S = 〈0.84, 0.98, 1.00, 1.00, 0.95, 0.99, 0.52, 0.30, 1.00, 1.00〉 will deliver the

following result set Docs ′ (cf. Table 5.7):

Docs ′ = {{d2, d5}, {d3, d4, d6, d9, d10}}.

The result set represents a good clustering of the documents w.r.t. the string

query “pole vault.” The returned documents fo QAsem are docs = {d2, d5}.
The returned documents d2 and d5 correctly represents “pault vault” news.

This example shows that better cluster results could be expected, if the matrix

Hsym has a better semantics-based representation of documents. A summarized

overview about the IR results is given in Table 5.8.

Docs S grel (with g = 3) grel (with g = 4)

d1 1.00 1 1

d2 0.92 1 1

d3 1.00 1 1

d4 1.00 1 1

d5 1.00 1 1

d6 1.00 1 1

d7 0.94 1 4

d8 1.00 1 4

d9 1.00 2 2

d10 0.01 3 3

Table 5.6: Scores S of Docs for the string query “pole vault” and grel with g = 3

and g = 4 (right) with input matrix H.

In the case where the precision of retrieved results is high, the opera-

tion HolSym(~qk, (Docs , H, , , ), ( , Hsem, T , Sym ′, ), 0.95, 4, 3) is suitable to

use for increasing precision. The returned results are:

(docs ′, docs ′′) = ({d1, d3, d4, d5, d6, d8, d9}, {d2, d5})
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Docs S grel (with g = 3) grel (with g = 4)

d1 0.84 1 2

d2 0.98 2 1

d3 1.00 2 3

d4 1.00 2 3

d5 0.95 2 1

d6 0.99 2 3

d7 0.52 3 4

d8 0.30 3 4

d9 1.00 2 3

d10 1.00 2 3

Table 5.7: Scores S of Docs for the string query “pole vault” and grel with g = 3

and g = 4 (right) with input matrix Hsym.

QA Hol.repr. θ g d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

QAhol H 0.95 - 3 7 3 3 3 3 7 3 3 7

QAhol H 0.92 - 3 3 3 3 3 3 3 3 3 7

QA′sym Hsem 0.95 3 7 3 3 3 3 3 7 7 3 3

QA′sym Hsem 0.95 4 7 3 7 7 3 7 7 7 7 7

Table 5.8: Retrieval results for QAhol and QA′
sym for the string query“pole vault.”

Hits are marked with 3and no hits with 7.

In the case where retrieved results are low by using symbolic query answer-

ing, the operation SymHol increases the recall:

(docs ′, docs ′′) = ({d2, d5}, {d1, d3, d4, d5, d6, d8, d9})

In our example it makes sense so rank the results by precision and score

HolSym should return docs ′′ ∪ docs ′, and SymHol should return docs ′ ∪ docs ′′.

The user would retrieve the documents d2, d5, d3, d4, d9, d6, d1, and d8. As a

result precision and recall is increased.
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IR Example: “Prince Charming” For the query “Prince Charming” and

a threshold θ = 0.95, QAhol delivers (cf. Table 5.9):

docs = {d1, d2, d3, d4, d5, d6, d7, d8, d9}.

This result set contains many false positive documents. Only document d7 is

about Price Charming. If the threshold is 0.98, the result set docs for QAhol

will be:

docs = {d1, d3, d4, d5, d6, d7, d8, d9}.

The result set has less false positive documents, and document d7 is in the

result set. If the threshold is 0.99, QAhol will return two documents:

docs = {d8, d9}.

The result set has less false positive documents, but document d7 is not any-

more in the result set.

Before we compute QA′sym for doing comparisons between retrieved IR re-

sults, semantics-based clustering is done. The returned clusters of retrieve−
ClusterResult(Docs, grel, S, 3, 0.95) with Docs = 〈d1 . . . d10〉, the score values

S = 〈0.87, 0.97, 0.99, 0.99, 0.93, 0.98, 0.46, 0.24, 0.99, 0.99〉, and the group num-

bers grel = 〈1, 2, 2, 2, 2, 2, 3, 3, 2, 2〉 are (cf. Table 5.10):

Docs ′ = {{d2, d3, d4, d5, d6, d9, d10}, {d7, d8}}.

Docs ′ has two clusters. The first cluster with documents d2, d3, d4, d5, d6, d9, d10

only has false positive documents. The second cluster with documents {d7, d8}
has one right document (d7) and one false positive document (d8), whereby d7

and d8 are about the same domain. QA′sym returns:

docs = {d7, d8}.

If the threshold is 0.98 or 0.99, Docs ′ will be (cf. Table 5.10):

Docs ′ = {{d7, d8}}.

Docs ′ has one cluster. In the cluster is one right (d7) and one false positive

document (d8). QA′sym returns the same documents:

docs = {d7, d8}.
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If the number of groups g is increased to 4, retrieveClusterResult(Docs, grel,

S, 4, 0.95) with Docs = 〈d1 . . . d10〉, grel = 〈2, 1, 3, 3, 1, 3, 4, 4, 3, 3〉, and S =

〈0.87, 0.97, 0.99, 0.99, 0.93, 0.98, 0.46, 0.24, 0.99, 0.99〉 will deliver the result set

Docs ′ (cf. Table 5.10):

Docs ′ = {{d5}, {d3, d4, d6, d9, d10}}.

Document d7 is not part of a cluster. However, QA′sym returns an empty set:

docs = {}.

If the threshold is 0.98 or 0.99, then Docs ′ = {{d3, d4, d6, d9, d10}}. QA′sym also

returns an empty set docs = {}.

This example shows that the choice of g = 4 is not a good choice. A summa-

rized overview about the IR results is given in Table 5.11.

Docs S grel (with g = 3) grel (with g = 4)

d1 0.98 1 1

d2 0.97 1 1

d3 0.98 1 1

d4 0.98 1 1

d5 0.98 1 1

d6 0.98 1 1

d7 0.98 1 4

d8 0.99 1 4

d9 0.99 2 2

d10 0.18 3 3

Table 5.9: Scores S of Docs for the string query “prince charming” and grel with

g = 3 and g = 4 (right) with input matrix H.
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Docs S grel (with g = 3) grel (with g = 4)

d1 0.87 1 2

d2 0.97 2 1

d3 0.99 2 3

d4 0.99 2 3

d5 0.93 2 1

d6 0.98 2 3

d7 0.46 3 4

d8 0.24 3 4

d9 0.99 2 3

d10 0.99 2 3

Table 5.10: Scores S of Docs for the string query “prince charming” and grel

with g = 3 and g = 4 (right) with input matrix Hsym.

QA Hol.repr. θ g d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

QAhol H 0.95 - 3 3 3 3 3 3 3 3 3 7

QAhol H 0.98 - 3 7 3 3 3 3 3 3 3 7

QAhol H 0.99 - 7 7 7 7 7 7 7 3 3 7

QA′sym Hsem 0.95 3 7 7 7 7 7 7 3 3 7 7

QA′sym Hsem 0.98 3 7 7 7 7 7 7 3 3 7 7

QA′sym Hsem 0.99 3 7 7 7 7 7 7 3 3 7 7

QA′sym Hsem 0.95 4 7 7 7 7 7 7 7 7 7 7

QA′sym Hsem 0.98 4 7 7 7 7 7 7 7 7 7 7

QA′sym Hsem 0.99 4 7 7 7 7 7 7 7 7 7 7

Table 5.11: Retrieval results for QAhol and QA′
sym for the string query “Prince

Charming.” Hits are marked with 3and no hits with 7.

In the case where the precision of retrieved results is high, the opera-

tion HolSym(~qk, (Docs , H, , , ), ( , Hsem, T , Sym ′, ), 0.98, 4, 3) is suitable to

use for increasing precision. The returned results are:

(docs ′, docs ′′) = ({d1, d3, d4, d5, d6, d7, d8, d9}, {d7, d8})
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In the case where retrieved results are low by using symbolic query answer-

ing, the operation SymHol(cq , (Docs , H, , , ), ( , Hsem, T , Sym ′, ), 0.95, 3, 3)

increases the recall:

(docs ′, docs ′′) = ({d7, d8}, {d1, d3, d4, d5, d6, d7, d8, d9})

In our example it makes sense so rank the results by precision and score

HolSym should return docs ′′ ∪ docs ′, and SymHol should return docs ′ ∪ docs ′′.

The user would retrieve the documents d7, d8, d3, d9, d4, d6, d5, and d1. In the

second case the recall is increased.

IR Example: “Snow White” For the query “snow white” and a threshold

θ = 0.95, QAhol delivers (cf. Table 5.12):

docs = {d10}.

Document d10 is a snow white document. There are no false positive docu-

ments. Before we compute QA′sym for doing comparisons between retrieved IR

results, semantics-based clustering is done. The retrieveClusterResult(Docs,

grel, S, 3, 0.95) with Docs = 〈d1, d2, d3, d4, d5, d6, d7, d8, d9, d10〉, the scoring

values S = 〈0.26, 0.86, 0.78, 0.79, 0.92, 0.81, 0.96, 0.86, 0.79, 0.78〉, and grel =

〈1, 2, 2, 2, 2, 2, 3, 3, 2, 2〉, the new result set Docs ′ will be (cf. Table 5.13):

Docs ′ = {{}}.

QA′sym delivers no documents because docs = {}.
If the number of groups g is increased to 4, retrieveClusterResult(Docs,

grel, S, 4, 0.95) with Docs = 〈d1 . . . d10〉, grel = 〈2, 1, 3, 3, 1, 3, 4, 4, 3, 3〉, and S

= 〈0.26, 0.86, 0.78, 0.79, 0.92, 0.81, 0.96, 0.86, 0.79, 0.78〉 will deliver the result

set Docs ′ (cf. Table 5.13):

Docs ′ = {{}}.

QA′sym delivers docs = {} The result set is empty and represents that Hsym

has not reached his optimal document representation. A summarized overview

about the IR results is given in Table 5.14.
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Docs S grel (with g = 3) grel (with g = 4)

d1 −0.04 1 1

d2 0.39 1 1

d3 −0.03 1 1

d4 −0.04 1 1

d5 −0.04 1 1

d6 −0.03 1 1

d7 0.34 1 4

d8 0.06 1 4

d9 0.00 2 2

d10 1.00 3 3

Table 5.12: Scores S of Docs for the string query “snow white” and grel with

g = 3 and g = 4 (right) with input matrix H.

Docs S grel (with g = 3) grel (with g = 4)

d1 0.26 1 2

d2 0.86 2 1

d3 0.78 2 3

d4 0.79 2 3

d5 0.92 2 1

d6 0.81 2 3

d7 0.96 3 4

d8 0.86 3 4

d9 0.79 2 3

d10 0.78 2 3

Table 5.13: Scores S of Docs for the string query “snow white” and grel with

g = 3 and g = 4 (right) with input matrix Hsym.
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QA Hol.repr. θ g d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

QAhol H 0.95 - 7 7 7 7 7 7 7 7 7 3

QA′sym Hsem 0.95 3 7 7 7 7 7 7 7 7 7 7

QA′sym Hsem 0.95 4 7 7 7 7 7 7 7 7 7 7

QA′sym Hsem 0.99 3 7 7 7 7 7 7 3 3 7 7

Table 5.14: Retrieval results for QAhol and QA′
sym for the string query “Snow

White.” Hits are marked with 3and no hits with 7.

The operation HolSym(~qk, (Docs , H, , , ), ( , Hsem, T , Sym ′, ), 0.95, 3, 3)

returns in this example:

(docs ′, docs ′′) = ({d10}, {})

In this case recall can be increased if the threshold is lower than 0.96, whereby

the precision would be decreased.

5.3 Formalized Knowledge-Creation Process

Nonaka et al. define a knowledge creation process for creating knowledge in

companies (see Subsection 2.2.1). The process of knowledge creation is based

on the SECI process, a platform for knowledge creation, and so-called knowl-

edge assets. The implementation of the knowledge creation process is called

ba. In Subsection 2.2.1 we have discussed that the knowledge creation process

as defined by Nonaka et al. is too informal because, in general, there only is a

vague explanation“HOW”to create and share knowledge and it is not specified

“WITH WHAT” the creation is accomplished.

In this subsection we present that Nonaka’s visionary model is practically

realizable by (i) defining operations for the SECI model (ii) using Nonaka’s

method for knowledge creation as a basis, and (iii) using semantic assets as

introduced above as an implementation of Nonaka’s knowledge assets.

The concrete symbolic knowledge creation process is illustrated in Fig-

ure 5.6. It represents a formalized symbolic knowledge creation process (SKCP),

i.e., a SKCP with concrete operations. The SKCP has the following elements:

SECI, ba, and semantic assets; and the operations: create low-level content
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Figure 5.6: Formalized symbolic knowledge creation process with the three elements:

SECI, ba, and semantic assets; and the operations: create low-level content descriptions,

create symbolic content descriptions, create holistic content descriptions, and combine holistic

and symbolic content descriptions.

descriptions, create symbolic content descriptions, create holistic content de-

scriptions, and combine holistic and symbolic content descriptions.

The operations of the SECI process transfer knowledge to the modes so-

cialization, externalization, combination, and internalization. In the following,

we describe the operations and new assets types, and we present an example

afterwards.

Create low-level content descriptions The operator create low-level con-

tent descriptions generates a transfer from the mode initialization to socializa-

tion. The transfer is done via an analysis process.

For the internalization process there exists a repository (e.g., derived from a

set of web pages) without any content descriptions. The content of documents,

or of parts of documents (i.e. images, texts) in a repository is represented by

an asset which we call pre-iconographical asset (pre-asset).

For each document or document parts low-level content descriptions will be

created. These low-level descriptions are called iconographical asset (ico-asset).
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Create symbolic and holistic content descriptions The operators create

symbolic content descriptions and create holistic content descriptions generate

a transfer from the mode socialization to externalization. The transfer is done

via an interpretation process.

For the socialization process there exists ico-assets. The operators create

symbolic content descriptions and create holistic content descriptions create

high-level content descriptions. Both processes are described in detail in Sec-

tions 3.2, and 3.3, respectively. The high-level content descriptions are repre-

sented by an asset which we call iconological asset (log-asset).

Combine holistic and symbolic content descriptions The operator

combine holistic and symbolic content descriptions generates a transfer from

mode externalization to combination. The transfer is done via the HolSym

Methodology.

The outputs of the HolSym Methodology are called combined asset (com-

asset).

Semantic assets Semantic assets are the input and output assets of the

SECI process. We presented four different types of semantic assets: pre-asset,

ico-asset, log-asset, and com-asset.

Figure 5.7: Semantic asset types: pre-asset, ico-asset, log-asset, and com-asset.

In the following we present an example showing how semantic assets are cre-

ated.

SECI process In general the SECI process creates semantic assets for a

multimedia document at different levels (see Figure 5.8). At level 0 knowledge
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Figure 5.8: One example of the SECI process for a multimedia document. De-

scription see text.

is created for a multimedia object, i.e. an image (pre-asset). At the social-

ization stage this multimedia object image is specified as content (ico-asset).

At the externalization stage, content descriptions, for instance, feature-based

metadata (fbm), holistic content descriptions (hcd), and symbolic content de-

scriptions (scd) are created for the object image (log-asset). After that, all

content descriptions will be combined (combination stage), and then, the con-

tent and the content descriptions (cds) is merged (com-asset) and allocated

(internalization stage). The SECI process at level 1 works analogously to the

first level with the difference that the input is another one: the multimedia

object is caption. The SECI process at level 2, and so forth, works analogously

to level 1.

Example 5.1 (SECI process) The multimedia document presented in Fig-

ure 5.9 contains three multimedia objects: image, caption, and text.
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Figure 5.9: Multimedia document which contains three multimedia objects:

image, caption, and text. Adapted from [IAA09].

Pre-asset In this example, the pre-asset contains the multimedia objects

(image and caption), which are presented in Figure 5.9.

Ico-asset Symbolic and holistic content representations at low-level for the

pre assets of the Figure 5.9 are represented via ico assets. In our example

A-boxes such as those given in Figures 4.9 and 4.10 are ico-assets.

Log-asset Symbolic and holistic content representations at high-level for the

ico-assets are represented via log-assets. In our example, A-boxes such as those

given in 4.15, 4.16, and 4.18 contain high-level symbolic content descriptions.
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Section 4.1 gives some examples for holistic representations.

Com-asset Com-assets represents combined symbolic and holistic represen-

tations. In our example the output if the HolSym algorithm delivers com

assets.

Ba Ba is a user-specific environment. In this thesis we use the ba environ-

ment as a context-specific repository for information retrieval tasks. If a user

searches for information about jumping events all user specific queries could

be predict during typing the query (i.e., via word2vec approach [MCCD13]),

or a query can be stored and later used for further IR tasks. For the second

case, a very simple approach could be i.e., the first string query of an user is

“long jump”, than the terms “long” and “jump” are stored in a context-specific

repository (ba). The particular query vector for the example presented in

Section 4.1 is ~q =
〈

1 1 0 0 0 0 0 0 0 0 0 0 0
〉T

.

If the second query is “high jump”, the terms “long”, “jump”, and “high”

will be considered in a so-called ba-query. Our ideas of a ba-query is that

1. the original user query of the HolSym algorithm is replaced by a ba-query

or

2. the best 10 retrieval results of the original query vector ~q will be linked

to documents which answers of query vector ~qba.

Ba usage: Case 1 In the first case we assume that the ba-query vector ~qba

is ~qba =
〈

1 1 1 0 0 0 0 0 0 0 0 0 0
〉T

. The query vector ~q is

replaces of ~qba so that the following HolSym algorithm is solved

HolSym(~qba, (Docs , H, , , ), ( , Hsym, T , Sym ′, ), θ, g, δ).

As an example, we use the same holistic representation of documents H

from Table 4.2 and the parameter k = 2. Then the holistic representation in

a 2-dimensional space is

V ′T
2 =

(
0 0 0 0 0 0 0.15 0.04 0.07 0.99

0 0.01 0.01 0.02 0.02 0.01 0.41 0.27 0.86 −0.13

)
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The reduced query vector ~q2ba for the string query is ~q2ba = 〈0.03, 0.30〉. The

score SH is presented in Table 5.15.

Docs SH SHsym grel with g = 3 grel with g = 4

d1 1.00 0.92 1 2

d2 0.93 0.93 2 1

d3 1.00 0.98 2 3

d4 1.00 0.97 2 3

d5 1.00 0.88 2 2

d6 1.00 0.96 2 3

d7 0.95 0.36 3 4

d8 1.00 0.13 3 4

d9 1.00 0.97 2 3

d10 0.03 0.97 2 3

Table 5.15: Scores SH of Docs and SHsym for the ba-query “high long jump” using

H and Hsym as input.

If the threshold is θ = 0.95, QAhol will be:

docs = {d1, d3, d4, d5, d6, d7, d8, d9}.

This result set has many false positives. Better IR results could be archived via

by increasing the parameter k, decreasing the threshold, or using the HolSym

Methodology.

The holistic representation in a 4-dimensional space is:

V ′T
4 =


0 0 0 0 0 0 −0.15 −0.04 −0.07 −0.99

0 −0.01 −0.01 −0.02 −0.02 −0.01 −0.41 −0.27 −0.86 0.13

0 −0.01 −0.01 −0.03 −0.02 −0.01 −0.12 −0.93 0.35 0.03

−0.01 −0.02 −0.02 −0.05 −0.04 −0.02 0.89 −0.25 −0.36 −0.10


The reduced query vector ~q4ba for the string query is:

~q4ba = 〈−0.03,−0.30,−0.22,−0.27〉 .

The score S is presented in Table 5.16.
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Docs S

d1 0.95

d2 0.91

d3 0.96

d4 0.95

d5 0.94

d6 0.94

d7 0.13

d8 0.76

d9 0.71

d10 0.04

Table 5.16: Scores S of Docs for the ba-query “high long jump.”

If the threshold is θ = 0.95, QAhol will be (cf. Table 5.15):

docs = {d1, d3, d4}.

Document d1 is a high jump document without long jump news. The docu-

ments d3 and d4 are documents with jumping news (i.e., hurdle run), but these

false positive documents have no long jump news. If the threshold is θ = 0.9,

QAhol will be (cf. Table 5.15):

docs = {d1, d2, d3, d4, d5, d6, d7, d8, d9}.

The result set has many false positives.

For solving QAsem it is required to compute document clusters first. The op-

erator retrieveClusterResult(Docs, grel, SHsym , 3, 0.95) with Docs = 〈d1 . . . d10〉,
and grel = 〈1, 1, 1, 1, 1, 1, 3, 3, 1, 1〉 computes the following cluster:

Docs ′ = {{d2, d3, d4, d5, d6, d9, d10}}.

QAsem returns:

docs = {d2, d3, d4, d5, d6, d9, d10}.

In the result set are many false positives.
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The retrieveClusterResult(Docs, grel, SHsym , 4, 0.95) withDocs= 〈d1 . . . d10〉,
and grel = 〈2, 1, 3, 3, 2, 3, 4, 4, 3, 3〉, the new result set Docs ′ will be:

Docs ′ = {{d3, d4, d6, d9, d10}}.

QAsem returns:

docs = {d3, d4, d6, d9, d10}.

In the result set are a little less false positives. But d1 and d5 are not in the

result set.

If the threshold is decreased to θ = 0.9, the retrieveClusterResult(Docs,

grel, SHsym , 4, 0.95) with Docs = 〈d1 . . . d10〉, and the document group numbers

grel = 〈2, 1, 3, 3, 2, 3, 4, 4, 3, 3〉 will deliver the new result set Docs ′:

Docs ′ = {{d1, d5}{d3, d4, d6, d9, d10}}.

QAsem returns (if the string query “long high jump” is transferred to the two

symbolic queries cq1 := {x|HighJump(x)} and cq6 := {x|LongJump(x)}):

docs = {d1, d5}.

Docs ′ represents a good clustering as well as the retrieval results because

the documents d1 and d5 represent the same domain (athletics news). The

other documents are false positive documents.

The operation HolSym(~qk, (Docs , H, , , ), ( , Hsem, T , Sym ′, ), 0.95, 3, 3)

returns in this example:

(docs ′, docs ′′) = ({d2, d3, d4, d5, d6, d9, d10}, {d1, d5})

The operation SymHol(~qk, (Docs , H, , , ), ( , Hsem, T , Sym ′, ), 0.95, 3, 2)

returns in this example:

(docs ′, docs ′′) = ({d1, d5}, {d2, d3, d4, d5, d6, d9, d10})

The HolSym and the SymHol algorithms deliver both high recall and precision

results.

These experiments show that knowledge is created using a ba-query vector

instead of the original query vector, thus we present that is possible to realize

Nonaka’s concept of knowledge-creation with the extension of the ba concept.
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Ba usage: Context-specific service In the second case and for our knowl-

edge management scenario that concretely means that an extension of Google’s

symbolic content representation for the string query “Kajsa Bergqvist” could

be created so that in our case a hyperlink to “high jumper” exists. In the

following we extend our example using a ba environment.

If the first string query is “Kajsa Bergqvist”, the particular query vector

will be ~q =
〈

0 0 0 0 0 0 0 0 0 0 0 0 0
〉T

. The vector is a null

vector because of the missing term “Kajsa Bergqvist” in our example (cf. Ta-

ble 4.2 in Section 4). In the reality (cf. Google), we can assume that there ex-

ists a term-document matrix which contains the terms “Kajsa Bergqvist” and

Google’s KV delivers a symbolic representation of the person Kajsa Bergqvist.

But if a user types the string query “Kajsa Bergqvist high jump”, Google’s KV

does not deliver the symbolic description presented in Figure 2.3 (right). But

the text in research results have the query terms which are in bold. Our sug-

gestion is that the terms in bold are linked with documents (see Figure 5.10).

An approach how to link (highlight) documents, images, text etc. in order

to support a context-specific service is presented by Espinosa in [EP11]. This

kind of improvement provides the creativity mode of an engineer in a proactive

way automatically.
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Figure 5.10: Extended Google’s symbolic content representation for the string query “Kajsa Bergqvist” w.r.t. the ba environment.





Chapter 6

Conclusion and Outlook

In this thesis we present the dependency between the quality of information re-

trieval results and the computation of latent structures in documents. We show

that in the field of distributional semantics, e.g. LSI combined with clustering,

approaches exist for finding latent structures so that the recall of retrieved

documents increases. However precision decreases. Over time further holistic

and symbolic retrieval algorithms or systems were improved in increasing recall

and precision by computing latent structures effectively and efficiently. The

improvements comprise increasing quality of holistic and symbolic document

representations and performance of suggested algorithms or systems. Often

such holistic and symbolic approaches were developed separately because it is

hard to simultaneously maximize quality measures for query answers. In this

thesis we present a new algorithm, which is called HolSym Methodology. The

new algorithm systematically combines holistic and symbolic IR in such a way

that recall and precision of retrieved documents is high.

For the holistic part of the HolSym Methodology we suggest to use LSI

combined with clustering for computing latent structures of documents. In-

stead of the classical holistic document representation H = V T , we define a

new semantics representation HSem based on symbolic data as a new input pa-

rameter for LSI. After the reduction of document dimensionality with HSem as

a new input parameter, the initial central location of the cluster is computed

via a scoring function. Afterwards the query answering problem is solved in a

way that documents with high recall and precision are determined.

The retrieval of high-quality documents is a frequent problem in KM con-

139
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texts. Indeed, in [NKT98] Nonaka, Konno, and Toyama present a knowledge

creation process, but this process is too informal because, in general, there only

is a vague explanation how to create and share knowledge and it is not specified

with what the creation is accomplished. We present that Nonaka’s visionary

model is practically realizable. Therefore we define holistic and symbolic op-

erators for creating knowledge management units, which are called semantic

assets, in order to have a formalized symbolic knowledge creation process.

An other important objective of this work is the systematic combination of

holistic and symbolic representations. We explore the feasibility and we exam-

ined the quality of the usage of the HolSym Methodology through experimental

studies, and investigate the quality in terms of recall and precision.

We identified several promising directions for future work. We have shown

in [MGK+14] that from a systems engineering point of view, the A-box dif-

ference operator of the HolSym Methodology has several advantages com-

pared to alternative solutions in which existing tools such as those presented

in [Fal07, Mag14] have to be enhanced in order to retrieve semantic differ-

ences of, i.e., developed components. We are planning to integrate the A-box

difference operator in developing tools for automatically computing semantic

differences. We believe that the A-box difference operator enhances the devel-

opment of systems (cf. [MGK+14]) because existing tools, i.e., in the area of

model-based systems engineering do not offer reasoner’s specific operations. In

[BMGK15, MWHG16, AMGS17] we have identified some use cases for using

the A-box difference operator.

For a contextual predictive search approach, i.e. word2vec, it is conceivable

that T-boxes play a crucial role in order to predict queries in a proactive way.

Nonaka describes the knowledge creating process having different levels for

creating knowledge. At level 0 a holistic query answering problem increases

symbolic information retrieval results during the combination process at level

1. Our idea is that we have at level 0 a string query q. The holistic query

answering problem QAhol(q, (Docs , H, , , ), θ) (the first part of the HolSym

Algorithm) returns a set of documents docs . Each document has a symbolic

representation D. In order to find more context-based retrieval results, at the

next level a new query q′ is to compute such that it holds D′ v D (or D′ w D)

and q′ v q (or q′ w q). In addition, the new identified CGIs are added to the
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T-box at the combination process for further IR tasks. We suggest to create

some experiments in this field in order to have another potential to improve

IR processes.
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Annotations. In Proceedings of the 6th Workshop on Dynamics of

Knowledge and Belief (DKB-2017) and the 5th Workshop KI &

Kognition (KIK-2017) co-located with 40th German Conference on

Artificial Intelligence (KI 2017), series = CEUR Workshop Pro-

ceedings, volume = 1928, year = 2017, month = 25.-29.09., pages

= 23–30, publisher = CEUR-WS.org, url = http://ceur-ws.org/Vol-

1928/paper2.pdf. [110]

[Ble12] D. M. Blei. Probabilistic topic models. Commun. ACM, 55(4):77–

84, April 2012. [55]

[BMGK15] T. Bahns, S. Melzer, R. God, and D. Krause. Ein modellbasiertes

Vorgehen zur variantengerechten Entwicklung modularer Produkt-

familien, pages 141–150. Carl Hanser Verlag, 2015. [8, 140]

[BMM92] D. S. Blank, L. A. Meeden, and J. B. Marshall. Exploring the

Symbolic/Subsymbolic Continuum: A Case Study of RAAM. In

John Dinsmore, editor, The Symbolic and Connectionist Paradigms:

Closing the Gap, pages 113–148. Erlbaum, Hillsdale, NJ, 1992. [2]

[BN03] F. Baader and W. Nutt. Basic description logics. In Baader et al.

[BCM+03], chapter 2, pages 43–95. [40]

[BNJ03] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation.

J. Mach. Learn. Res., pages 993–1022, March 2003. [29, 34]

[Bos08] S. Bossung. Conceptual Content Modeling - Languages, Applica-

tions, and Systems. PhD thesis, Hamburg University of Technology

(TUHH), 2008. [6, 7, 27, 28]

[Bra08] R. B. Bradford. An empirical study of required dimensionality for

large-scale latent semantic indexing applications. In Proceedings of



Bibliography 145

the 17th ACM Conference on Information and Knowledge Manage-

ment, CIKM ’08, pages 153–162, New York, NY, USA, 2008. ACM.

[113, 117]

[BRP07] R. Budiu, C. Royer, and P. Pirolli. Modeling information scent:

A comparison of lsa, pmi and glsa similarity measures on com-

mon tests and corpora. In Large scale semantic access to content

(text, image, video, and sound), pages 314–332. LE CENTRE DE

HAUTES ETUDES INTERNATIONALES D’INFORMATIQUE

DOCUMENTAIRE, 2007. [117]

[Cas23] E. Cassirer. Philosophie der symbolischen Formen. Number Bd. 1

in Philosophie der symbolischen Formen. B. Cassirer, 1923. [28]

[Cau13] J. Martinez Caudillo. Evaluation of fusion operators. Projektarbeit,

TU Hamburg-Harburg, June 2013. [116]

[CBK+10] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka

Jr., and T. M. Mitchell. Toward an architecture for never-ending

language learning. In Proceedings of the Twenty-Fourth Conference

on Artificial Intelligence (AAAI 2010), 2010. [68]

[CFO10] E. Curry, A. Freitas, and S. O’Riain. The Role of Community-

Driven Data Curation for Enterprises, pages 25–47. Springer US,

2010. [6, 69]

[Che03] B. Cheng. Towards understanding latent semantic indexing. 2003.

[117]

[CN64] E. Cassirer and H. Noack. Philosophie der symbolischen For-

men. Number Bd. 3 in Philosophie der symbolischen Formen. Wis-

senschaftliche Buchgesellschaft, 1964. [27]

[CW99] J. W. Cortada and J. A. Woods, editors. The Knowledge Manage-

ment Yearbook 1999-2000. Butterworth-Heinemann, 1999. [15]

[DACN03] M. Dierkes, A. B. Antal, J. Child, and I. Nonaka, editors. Hand-

book of Organizational Learning and Knowledge. Oxford University

Press, 2003. [12, 19]



146 Bibliography

[DB05] C. De Brun. ABC of Knowledge Management. NHS National Li-

brary for Health: Knowledge Management Specialist Library, 2005.

[15]

[DDF+90a] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and

R. Harshman. Indexing by latent semantic analysis. JOURNAL OF

THE AMERICAN SOCIETY FOR INFORMATION SCIENCE,

(6):391–407, 1990. [3, 32, 96, 117]

[DDF+90b] Scott Deerwester, Susan T. Dumais, George W. Furnas,

Thomas K. L, and Richard Harshman. Indexing by latent semantic

analysis. Journal of the American Society for Information Science,

41:391–407, 1990. [9, 30]

[DMG+14] X. L. Dong, K. Murphy, E. Gabrilovich, G. Heitz, W. Horn, N. Lao,

T. Strohmann, and W. Zhang. Knowledge Vault: A Web-scale ap-

proach to probabilistic knowledge fusion. In DEXA ’00: Proceed-

ings of the 11th International Workshop on Database and Expert

Systems Applications. KDD 2014, 2014. [2, 21, 29, 35, 96]

[DSdGM15] A. Dittmar, M. Sikorski, T. de Greef, and K. Marasek, editors.

Proceedings of the European Conference on Cognitive Ergonomics

2015. ACM, 2015. [27, 148]

[Dum03] Susan Dumais. Data-driven approaches to information access. Cog-

nitive Science, 27(3):491–524, 2003. [117]

[EKM09a] S. Espinosa, A. Kaya, and R. Möller. The boemie semantic browser:
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Appendix A

A-boxes

Annotation of Document d7

PC -domain : FairyTale,

PC -IND1 : City, (PC -IND1, “Fabletown”) : hasCityName

PC -IND2 : City, (PC -IND2, “New York City”) : hasCityName

PC -IND3 : Company, (PC -IND3, “Rumpelstiltskin”) : hasCompanyName

PC -IND4 : Entertainment, (PC -IND4, “Oscar”) : hasEntertainment

PC -IND5 : Movie, (PC -IND5, “Cinderella”) : hasMovieName

PC -IND6 : Movie, (PC -IND6, “Into the Woods”) : hasMovieName

PC -IND7 : Movie, (PC -IND7, “Prince Charming”) : hasMovieName

PC -IND8 : Movie, (PC -IND8, “Shrek 2”) : hasMovieName

PC -IND9 : Movie, (PC -IND9, “Shrek the Third”) : hasMovieName

PC -IND10 : Movie, (PC -IND10, “Sleeping Beauty”) : hasMovieName

PC -IND11 : Movie, (PC -IND11, “Snow White”) : hasMovieName

PC -IND12 : Movie, (PC -IND12, “Snow White and the Seven Dwarfs”) : hasMovieName

PC -IND13 : Movie, (PC -IND13, “The Blue Bird”) : hasMovieName

PC -IND14 : MusicAlbum, (PC -IND14, “Beautiful”) : hasMusicAlbumName

PC -IND15 : MusicAlbum, (PC -IND15, “Fine”) : hasMusicAlbumName

PC -IND16 : MusicAlbum, (PC -IND16, “Prince Charming”) : hasMusicAlbumName

PC -IND17 : Person, (PC -IND17, “Abigail”) : hasPersonName

PC -IND18 : Person, (PC -IND18, “Andrew Lang”) : hasPersonName

PC -IND19 : Person, (PC -IND19, “Andy Lau”) : hasPersonName

PC -IND20 : Person, (PC -IND20, “Charles Perrault”) : hasPersonName

PC -IND21 : Person, (PC -IND21, “Chris Colfer”) : hasPersonName

PC -IND22 : Person, (PC -IND22, “Clara”) : hasPersonName

PC -IND23 : Person, (PC -IND23, “David Charvet”) : hasPersonName

PC -IND24 : Person, (PC -IND24, “David Nolan”) : hasPersonName

PC -IND25 : Person, (PC -IND25, “Giselle”) : hasPersonName

PC -IND26 : Person, (PC -IND26, “James”) : hasPersonName

PC -IND27 : Person, (PC -IND27, “Josh Dallas”) : hasPersonName

PC -IND28 : Person, (PC -IND28, “Ling Ling”) : hasPersonName

PC -IND29 : Person, (PC -IND29, “Mary Margaret”) : hasPersonName

PC -IND30 : Person, (PC -IND30, “Prince”) : hasPersonName

PC -IND31 : Person, (PC -IND31, “Robert Scott”) : hasPersonName

PC -IND32 : Person, (PC -IND32, “Robert Sheckley”) : hasPersonName

PC -IND33 : Person, (PC -IND33, “Roger Zelazny”) : hasPersonName

PC -IND34 : Person, (PC -IND34, “Tia Carrere”) : hasPersonName

PC -IND35 : Position, (PC -IND35, “Head of Prince”) : hasPositionName

PC -IND36 : Position, (PC -IND36, “King”) : hasPositionName

PC -IND37 : Position, (PC -IND37, “Prince”) : hasPositionName

PC -IND38 : Position, (PC -IND38, “mayor”) : hasPositionName

PC -IND39 : Position, (PC -IND39, “princess”) : hasPositionName

PC -IND40 : Position, (PC -IND40, “young actress”) : hasPositionName

PC -IND41 : TVShow , (PC -IND41, “Once Upon a Time”) : hasTVShowName
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PC -IND42 : TVShow , (PC -IND42, “Prince Charming”) : hasTVShowName

PC -IND43 : Technology, (PC -IND43, “Adam”) : hasTechnologyName

Table A.1: Analysis Abox Ad7

Annotation of Document d8

(R-domain : FairyTale),

(R-IND1 : City), ((R-IND1, Dresden) : hasCityName)

(R-IND2 : City), ((R-IND2, Helsinki) : hasCityName “”))

(R-IND3 : City), ((R-IND3, Leipzig) : hasCityName)

(R-IND4 : City), ((R-IND4, New Orleans) : hasCityName)

(R-IND5 : Company), ((R-IND5, Delphi) : hasCompanyName)

(R-IND6 : Company), ((R-IND6, Oracle) : hasCompanyName)

(R-IND7 : Company), ((R-IND7, Princeton University Press) : hasCompanyName)

(R-IND8 : Company), ((R-IND8, The Walt Disney Company) : hasCompanyName)

(R-IND9 : Company), ((R-IND9, W W Norton & Company Incorporated) : hasCompanyName)

(R-IND10 : Country), ((R-IND10, France) : hasCompanyName)

(R-IND11 : Country), ((R-IND11, Germany) : hasCompanyName)

(R-IND12 : Country), ((R-IND12, United States) : hasCompanyName)

(R-IND13 : Facility), ((R-IND13,The Tower) : hasFacilityName)

(R-IND14 : IndustryTerm), ((R-IND14, food) : hasIndustryTermName)

(R-IND15 : IndustryTerm), ((R-IND15, media) : hasIndustryTermName)

(R-IND16 : Movie), ((R-IND16, Beauty and the Beast) : hasMovieName)

(R-IND17 : Movie), ((R-IND17, Grimm) : hasMovieName)

(R-IND18 : Movie), ((R-IND18, Into the Woods) : hasMovieName)

(R-IND19 : Movie), ((R-IND19, Persinette) : hasMovieName)

(R-IND20 : Movie), ((R-IND20, Shrek the Third) : hasMovieName)

(R-IND21 : Movie), ((R-IND21, Tangled) : hasMovieName)

(R-IND22 : Movie), ((R-IND22, The Blue Bird) : hasMovieName)

(R-IND23 : MusicGroup), ((R-IND23, Brothers Grimm) : hasMusicGroupName)

(R-IND24 : Organization), ((R-IND24, Princeton University) : hasOrganizationName)

(R-IND25 : Person), ((R-IND25, Andrew Lang) : hasPersonName)

(R-IND26 : Person), ((R-IND26, Annotated Rapunzel) : hasPersonName)

(R-IND27 : Person), ((R-IND27, Charlotte) : hasPersonName)

(R-IND28 : Person), ((R-IND28,Donna Murphy) : hasPersonName)

(R-IND29 : Person), ((R-IND29, Eurydice) : hasPersonName)

(R-IND30 : Person), ((R-IND30, Fiona) : hasPersonName)

(R-IND31 : Person), ((R-IND31, Friedrich Schulz Kleine Romane) : hasPersonName)

(R-IND32 : Person), ((R-IND32, Gena Rowlands) : hasPersonName)

(R-IND33 : Person), ((R-IND33, Gothel) : hasPersonName)

(R-IND34 : Person), ((R-IND34, Heidi Anne) : hasPersonName)

(R-IND35 : Person), ((R-IND35, Jack Zipes) : hasPersonName)

(R-IND36 : Person), ((R-IND36, Jeff Bridges) : hasPersonName)

(R-IND37 : Person), ((R-IND37, Johnny Gruelle) : hasPersonName)

(R-IND38 : Person), ((R-IND38, Mandy Moore) : hasPersonName)

(R-IND39 : Person), ((R-IND39, Maria Tatar) : hasPersonName)

(R-IND40 : Person), ((R-IND40, Maya Rudolph) : hasPersonName)

(R-IND41 : Person), ((R-IND41, Olivia Newton) : hasPersonName)

(R-IND42 : Person), ((R-IND42, Paul O. Zelinsky) : hasPersonName)

(R-IND43 : Person), ((R-IND43, Rose de Caumont La) : hasPersonName)

(R-IND44 : Person), ((R-IND44, Ruth Manning) : hasPersonName)

(R-IND45 : Person), ((R-IND45, Shelley Duvall) : hasPersonName)

(R-IND46 : Person), ((R-IND46, Whoopi Goldberg) : hasPersonName)

(R-IND47 : Person), ((R-IND47, Zachary Levi) : hasPersonName)

(R-IND48 : Position), ((R-IND48, King) : hasPositionName)

(R-IND49 : Position), ((R-IND49, Maid) : hasPositionName)

(R-IND50 : Position), ((R-IND50, Queen) : hasPositionName)

(R-IND51 : Position), ((R-IND51, artist) : hasPositionName)

(R-IND52 : Position), ((R-IND52, author) : hasPositionName)

(R-IND53 : Position), ((R-IND53, illustrator) : hasPositionName)

(R-IND54 : Position), ((R-IND54, kitchen maid) : hasPositionName)

(R-IND55 : Position), ((R-IND55, prince) : hasPositionName)

(R-IND56 : Position), ((R-IND56, princess) : hasPositionName)

(R-IND57 : ProgrLanguage), ((R-IND57, php) : hasProgrLanguageName)

(R-IND58 : TVShow), ((R-IND58, Faerie Tale Theatre) : hasTVShowName)
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(R-IND59 : TVShow), ((R-IND59, Grimm’s Fairy Tale Classics) : hasTVShowName)

(R-IND60 : Technology), ((R-IND60, Animation) : hasTechnologyName)

(R-IND61 : TVShow), ((R-IND61, Happily Ever After: Fairy Tales for Every Child) : hasTVShowName)

Table A.2: Analysis Abox Ad8

Annotation of Document d9

(SB-domain : FairyTale),

(SB-IND1 : City), ((SB-IND1, Paris) : hasCityName )

(SB-IND2 : Company), (( SB-IND2, ABC) : hasCompanyName)

(SB-IND3 : Company), ((SB-IND3, Mattel) : hasCompanyName)

(SB-IND4 : Company), ((SB-IND4, The Glass Coffin Rip Van Winkle) : hasCompanyName)

(SB-IND5 : Company), ((SB-IND5, Walt Disney) : hasCompanyName)

(SB-IND6 : Company), ((SB-IND6, the Walt Disney Company) : hasCompanyName)

(SB-IND7 : Country), ((SB-IND7, Germany) : hasCountryName)

(SB-IND8 : Country), ((SB-IND8, United Kingdom) : hasCountryName)

(SB-IND9 : Facility), ((SB-IND9, Jenny Harbour) : hasFacilityName)

(SB-IND10 : Facility), ((SB-IND10, Rosamund’s castle) : hasFacilityName)

(SB-IND11 : IndustryTerm), ((SB-IND11, food) : hasIndustryTermName)

(SB-IND12 : IndustryTerm), ((SB-IND12, literature portal) : hasIndustryTermName)

(SB-IND13 : IndustryTerm), ((SB-IND13, mother-in-law attempting) : hasIndustryTermName)

(SB-IND14 : Movie), ((SB-IND14, Prinsessa Ruusunen) : hasMovieName)

(SB-IND15 : Movie), ((SB-IND15, Rosebud) : hasMovieName)

(SB-IND16 : Movie), ((SB-IND16, Sleeping Beauty) : hasMovieName)

(SB-IND17 : Movie), ((SB-IND17, The Brothers Grimm) : hasMovieName)

(SB-IND18 : Movie), ((SB-IND18, The League of Extraordinary Gentlemen) : hasMovieName)

(SB-IND19 : Movie), ((SB-IND19, The Rose and the Ring) : hasMovieName)

(SB-IND20 : Movie), ((SB-IND20, The Sleeping Beauty) : hasMovieName)

(SB-IND21 : MusicAlbum), ((SB-IND21, A Kiss In Time) : hasMusicAlbumName)

(SB-IND22 : MusicAlbum), ((SB-IND22, Moon) : hasMusicAlbumName)

(SB-IND23 : MusicAlbum), ((SB-IND23, Sleeping Beauty Wakes) : hasMusicAlbumName)

(SB-IND24 : MusicAlbum), ((SB-IND24, Sun) : hasMusicAlbumName)

(SB-IND25 : NaturalFeature), ((SB-IND25, Ardennes forests) : hasNaturalFeatureName)

(SB-IND26 : NaturalFeature), ((SB-IND26, Zellandine falls) : hasNaturalFeatureName)

(SB-IND27 : Organization), ((SB-IND27, League of Extraordinary Gentlemen) : hasOrganizationName)

(SB-IND28 : Organization), ((SB-IND28, UN Court) : hasOrganizationName)

(SB-IND29 : Person), ((SB-IND29, Abby Dobson) : hasPersonName)

(SB-IND30 : Person), ((SB-IND30, Alex Flinn) : hasPersonName)

(SB-IND31 : Person), ((SB-IND31, Alexander Zick) : hasPersonName)

(SB-IND32 : Person), ((SB-IND32, Angelina Jolie) : hasPersonName)

(SB-IND33 : Person), ((SB-IND33, Anne Rice) : hasPersonName)

(SB-IND34 : Person), ((SB-IND34, Archie Campbell) : hasPersonName)

(SB-IND35 : Person), ((SB-IND35, Arthur Rackham) : hasPersonName)

(SB-IND36 : Person), ((SB-IND36, Bois Dormant) : hasPersonName)

(SB-IND37 : Person), ((SB-IND37, Briar Rose) : hasPersonName)

(SB-IND38 : Person), ((SB-IND38, Charles Perrault) : hasPersonName)

(SB-IND39 : Person), ((SB-IND39, David Irving) : hasPersonName)

(SB-IND40 : Person), ((SB-IND40, Edward Burne-Jones) : hasPersonName)

(SB-IND41 : Person), ((SB-IND41, Edward Frederick Brewtnall) : hasPersonName)

(SB-IND42 : Person), ((SB-IND42, Emily Smith Michele Carafa) : hasPersonName)

(SB-IND43 : Person), ((SB-IND43, Eugene Scribe) : hasPersonName)

(SB-IND44 : Person), ((SB-IND44, Florimund) : hasPersonName)

(SB-IND45 : Person), ((SB-IND45, Fritz Genschow) : hasPersonName)

(SB-IND46 : Person), ((SB-IND46, Gustave DorÃ c©) : hasPersonName))

(SB-IND47 : Person), ((SB-IND47, Hee Haw) : hasPersonName)

(SB-IND48 : Person), ((SB-IND48, Ivan Vsevolozhsky) : hasPersonName)

(SB-IND49 : Person), ((SB-IND49, Ivy Green) : hasPersonName)

(SB-IND50 : Person), ((SB-IND50, Jane Yolen) : hasPersonName)

(SB-IND51 : Person), ((SB-IND51, Jim C. Hines) : hasPersonName)

(SB-IND52 : Person), ((SB-IND52, Johann Georg van Caspel) : hasPersonName)

(SB-IND53 : Person), ((SB-IND53, John Stejean) : hasPersonName)

(SB-IND54 : Person), ((SB-IND54, Joseph Jacobs) : hasPersonName)

(SB-IND55 : Person), ((SB-IND55, Julian Morris) : hasPersonName)

(SB-IND56 : Person), ((SB-IND56, Kristin Bauer van Straten) : hasPersonName)

(SB-IND57 : Person), ((SB-IND57, Louis Sussmann-Hellborn) : hasPersonName)
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(SB-IND58 : Person), ((SB-IND58, Mercedes Lackey) : hasPersonName)

(SB-IND59 : Person), ((SB-IND59, Mother) : hasPersonName)

(SB-IND60 : Person), ((SB-IND60, Orson Scott Card) : hasPersonName)

(SB-IND61 : Person), ((SB-IND61, Phillip) : hasPersonName)

(SB-IND62 : Person), ((SB-IND62, Prince) : hasPersonName)

(SB-IND63 : Person), ((SB-IND63, Rachel Sheinkin) : hasPersonName)

(SB-IND64 : Person), ((SB-IND64, Richard Wagner) : hasPersonName)

(SB-IND65 : Person), ((SB-IND65, Robert Schumann) : hasPersonName)

(SB-IND66 : Person), ((SB-IND66, Robin McKinley) : hasPersonName)

(SB-IND67 : Person), ((SB-IND67, Sailor Moon) : hasPersonName)

(SB-IND68 : Person), ((SB-IND68, Sarah Bolger) : hasPersonName)

(SB-IND69 : Person), ((SB-IND69, Silver Millennium) : hasPersonName)

(SB-IND70 : Person), ((SB-IND70, Sophie Masson) : hasPersonName)

(SB-IND71 : Person), ((SB-IND71, Viktor Vasnetsov) : hasPersonName)

(SB-IND72 : Person), ((SB-IND72, Walter Crane) : hasPersonName)

(SB-IND73 : Person), ((SB-IND73, William Makepeace Thackeray) : hasPersonName)

(SB-IND74 : Position), ((SB-IND74, Director of the Imperial Theatres) : hasPositionName)

(SB-IND75 : Position), ((SB-IND75, Princess) : hasPositionName)

(SB-IND76 : Position), ((SB-IND76,Queen) : hasPositionName)

(SB-IND77 : Position), ((SB-IND77, Sailor) : hasPositionName)

(SB-IND78 : Position), ((SB-IND78,chaplain) : hasPositionName)

(SB-IND79 : Position), ((SB-IND79, collector) : hasPositionName)

(SB-IND80 : Position), ((SB-IND80, king) : hasPositionName )

(SB-IND81 : Position), ((SB-IND81, king and queen) : hasPositionName)

(SB-IND82 : Position), ((SB-IND82, player) : hasPositionName)

(SB-IND83 : Position), ((SB-IND83, prince) : hasPositionName)

(SB-IND84 : Position), ((SB-IND84, prince and princess) : hasPositionName)

(SB-IND85 : Position), ((SB-IND85, queen) : hasPositionName)

(SB-IND86 : Position), ((SB-IND86, the king) : hasPositionName)

(SB-IND87 : Position), ((SB-IND87, secretary) : hasPositionName)

(SB-IND88 : Position), ((SB-IND88, skilled martial artist) : hasPositionName)

(SB-IND89 : Position), ((SB-IND89, the king) : hasPositionName)

(SB-IND90 : ProvinceOrState), ((SB-IND90, Aurora) : hasProvinceOrStateName)

(SB-IND91 : ProvinceOrState), ((SB-IND91, Calabria) : hasProvinceOrStateName)

(SB-IND92 : PublishedMedium), ((SB-IND92, L’Aurore) : hasPublishedMediumName)

(SB-IND93 : PublishedMedium), ((SB-IND93, Le Jour) : hasPublishedMediumName)

(SB-IND94 : TV Show), ((SB-IND94, Once Upon a Time) : hasTVShowName)

(SB-IND95 : TV Show), ((SB-IND95, Sleeping Beauty) : hasTVShowName)

Table A.3: Analysis Abox Ad9

Annotation of Document d10

(SW -domain : FairyTale),

(SW -IND1 : Company), (SW -IND1, “ABC”) : hasCompanyName)

(SW -IND2 : Company), (SW -IND2, Disney Enterprises Inc.) : hasCompanyName)

(SW -IND3 : Company), (SW -IND3, Huntsman) : hasCompanyName)

(SW -IND4 : Company), (SW -IND4, Walt Disney) : hasCompanyName)

(SW -IND5 : Continent), (SW -IND5,Europe) : hasContinentName)

(SW -IND6 : Continent), (SW -IND6, North America) : hasContinentName)

(SW -IND7 : Country), (SW -IND7, Albania) : hasCountryName)

(SW -IND8 : Country), (SW -IND8, Armenia) : hasCountryName)

(SW -IND9 : Country), (SW -IND9, Germany) : hasCountryName)

(SW -IND10 : Holiday), (SW -IND10, peace day) : hasHolidayName)

(SW -IND11 : Movie), (SW -IND11, Blancanieves) : hasMovieName)

(SW -IND12 : Movie), (SW -IND12, Grimm) : hasMovieName)

(SW -IND13 : Movie), (SW -IND13, Into the Woods) : hasMovieName)

(SW -IND14 : Movie), (SW -IND14, Mirror Mirror) : hasMovieName)

(SW -IND15 : Movie), (SW -IND15, Rose Red) : hasMovieName)

(SW -IND16 : Movie), (SW -IND16, Snow White) : hasMovieName)

(SW -IND17 : Movie), (SW -IND17, Snow White and the Seven Dwarfs) : hasMovieName)

(SW -IND18 : Movie), (SW -IND18, Snow White: A Tale of Terror) : hasMovieName)

(SW -IND19 : Movie), ( SW -IND19, Snow White: The Fairest of Them All) : hasMovieName)

(SW -IND20 : Movie), ( SW -IND20, The Brothers Grimm) : hasMovieName)

(SW -IND21 : Organization), (SW -IND21, US Patent and Trademark Office) : hasOrganizationName)

(SW -IND22 : Organization), (SW -IND22, group of seven) : hasOrganizationName)
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(SW -IND23 : Person), (SW -IND23, Adolph Zukor) : hasPersonName)

(SW -IND24 : Person), (SW -IND24, Alexander Pushkin) : hasPersonName)

(SW -IND25 : Person), (SW -IND25, Alexander Zick Folk tale) : hasPersonName)

(SW -IND26 : Person), (SW -IND26, Andrew Alcott) : hasPersonName)

(SW -IND27 : Person), (SW -IND27, Bill Willingham) : hasPersonName)

(SW -IND28 : Person), (SW -IND28, Brangomar) : hasPersonName)

(SW -IND29 : Person), (SW -IND29, Brighton) : hasPersonName)

(SW -IND30 : Person), (SW -IND30, Charlize Theron) : hasPersonName)

(SW -IND31 : Person), (SW -IND31, Chris Hemsworth) : hasPersonName)

(SW -IND32 : Person), (SW -IND32, Clementianna) : hasPersonName)

(SW -IND33 : Person), (SW -IND33, Creighton Hale) : hasPersonName)

(SW -IND34 : Person), (SW -IND34, Daniel Frohman) : hasPersonName)

(SW -IND35 : Person), (SW -IND35, Diana Rigg) : hasPersonName)

(SW -IND36 : Person), (SW -IND36, Dorothy Cumming) : hasPersonName)

(SW -IND37 : Person), (SW -IND37, Elizabeth McGovern) : hasPersonName)

(SW -IND38 : Person), (SW -IND39, Evil Queen) : hasPersonName)

(SW -IND40 : Person), (SW -IND40, Florimond) : hasPersonName)

(SW -IND41 : Person), (SW -IND41, Ginnifer Goodwin) : hasPersonName)

(SW -IND42 : Person), (SW -IND42, Johann Georg von Hahn) : hasPersonName)

(SW -IND43 : Person), (SW -IND43, Julia Roberts) : hasPersonName)

(SW -IND44 : Person), (SW -IND44, Kristen Stewart) : hasPersonName)

(SW -IND45 : Person), (SW -IND45, Kristin Kreuk) : hasPersonName)

(SW -IND46 : Person), (SW -IND46, Lily Collins) : hasPersonName)

(SW -IND47 : Person), (SW -IND47, Marguerite Clark) : hasPersonName)

(SW -IND48 : Person), (SW -IND48, Mary Jane) : hasPersonName)

(SW -IND49 : Person), (SW -IND49, Miranda Richardson) : hasPersonName)

(SW -IND50 : Person), (SW -IND50, Mirror Queen) : hasPersonName)

(SW -IND51 : Person), (SW -IND51, Monica Keena) : hasPersonName)

(SW -IND52 : Person), (SW -IND52, Nagamati) : hasPersonName)

(SW -IND53 : Person), (SW -IND53, Nathan Lane) : hasPersonName)

(SW -IND54 : Person), (SW -IND54, Nicola Stapleton) : hasPersonName)

(SW -IND55 : Person), (SW -IND55, Prince) : hasPersonName)

(SW -IND56 : Person), (SW -IND56, Ravenna) : hasPersonName)

(SW -IND57 : Person), (SW -IND57, Rupert Sanders) : hasPersonName)

(SW -IND58 : Person), (SW -IND58, Sam Claflin) : hasPersonName)

(SW -IND59 : Person), (SW -IND59, Sam Neill) : hasPersonName)

(SW -IND60 : Person), (SW -IND60, Sarah Patterson) : hasPersonName)

(SW -IND61 : Person), (SW -IND61, Sigourney Weaver) : hasPersonName)

(SW -IND62 : Person), (SW -IND62, Stephen Sondheim) : hasPersonName)

(SW -IND63 : Person), (SW -IND63, Vanessa Redgrave) : hasPersonName)

(SW -IND64 : Person), (SW -IND64, Snow White) : hasPersonName)

(SW -IND65 : Person), (SW -IND65, William) : hasPersonName)

(SW -IND66 : Person), (SW -IND66, Zwerge) : hasPersonName)

(SW -IND67 : Position), (SW -IND67, King) : hasPositionName)

(SW -IND68 : Position), (SW -IND68, Prince) : hasPositionName)

(SW -IND69 : Position), (SW -IND69, Princess) : hasPositionName)

(SW -IND70 : Position), (SW -IND70, farmer) : hasPositionName)

(SW -IND71 : Position), (SW -IND71, queen) : hasPositionName)

(SW -IND72 : Position), (SW -IND72, queen and king) : hasPositionName)

(SW -IND73 : Position), (SW -IND73, teacher) : hasPositionName)

(SW -IND74 : TV Show), (SW -IND74, Faerie Tale Theatre) : hasTVShowName)

(SW -IND75 : TV Show), (SW -IND75, Once Upon a Time) : hasTVShowName)

(SW -IND76 : TV Show), (SW -IND76, The 10th Kingdom) : hasTVShowName)

Table A.4: Analysis Abox Ad10
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